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Abstract—This paper presents the coupled electro-
mechanical design of a synchronous reluctance machine. The
purpose of the study is to decide whether such motor could sub-
stitute usual induction machines in railway traction applications.
Reluctance machines are indeed competitive for applications
requiring high efficiency at low cost. However, it is a challenging
task to find design solutions that ensure structural integrity
of the motor without compromising its overall performance,
in particular in the presence of optimized flux barriers in
the rotor. The design strategy presented in this paper is
a combined electromagnetic and structural optimization, the
latter accounting not only for the centrifugal force but also for
the overstress due to manufacturing.

Index Terms—Synchronous reluctance machines, finite ele-
ment analysis, shrink-fitting, multiphysical optimization, contact
model, multiple operating speeds

I. INTRODUCTION

Synchronous reluctance machines can be traced back
to their invention by Kostko in 1923, [1]. However, they
did not find widespread use as motors until the late 1970s
because of the complexity of the power electronics control
they require. In recent years, synchronous reluctance motors
have been receiving increasing interest in industry as well
as in automotive applications. When compared to induction
machines and permanent magnet synchronous machines of
the same power rating, reluctance machines can provide
similar performances, with no expensive copper bars or rare-
earth magnets. Because of their robustness and efficiency
over a wide speed range, they are a valuable alternative to
induction and permanent magnet machines in a variety of
applications, including hybrid and electric vehicles as well
as traction applications [2]–[4].

Several multi-physics approaches have been proposed
over the last decade [5]–[11] to achieve motor designs with
high electromagnetic performances, satisfying requirements
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de Louvain (UCLouvain), Louvain-la-Neuve, Belgium (e-mail:
bruno.dehez@uclouvain.be, christophe.degreef@uclouvain.be).

C. Versèle is with Alstom Belgium, Charleroi, Belgium (e-mail:
christophe.andre.versele@alstomgroup.com).

on the rotor integrity and ensuring eventually lifelong relia-
bility. Because operating conditions of traction motors vary
considerably, such multidisciplinary analyses are preferably
conducted over the drive cycle; see for instance [12] or
[13]. In practice, many studies are focused on the magnetic
aspects of the design, and the mechanical dimensioning
only considers the effect of centrifugal forces on the rotor
structure [14], [15], and on the fatigue life. To the best of our
knowledge, only few studies have been reported that take the
overstress resulting from the assembly process into account.

The level of torque ripple is a major concern in reluctance
machine design. It can be lowered by rotor skewing [16],
or by an appropriate choice of the number and shape of
flux-barriers according to the number of stator slots [17].
More recently, flux- and end-barrier geometries [18], as well
as axially and transversally laminated rotors (see [19]–[21])
have also been investigated. Despite the higher saliency ratio
and rigid structure of axially laminated rotors, the lowered
level of iron losses, along with a simplified manufacturing
process, make transversally laminated rotors a preferable
alternative in many automotive applications; see for instance
[16], [22].

Usually, electrical motor cores are manufactured by
stamping or laser cutting steel laminations. Stamped lami-
nations have sometimes to undergo a heat treatment process
to stabilize their electromagnetic, thermal, and mechanical
properties, and they are then stacked to form rotor cores.
The rotor assembly is achieved when the shaft is fitted into
the rotor core. The fitting operation is essential to ensure
reliable motor operation and a correct transmission of torque
to the external load. Improper fitting may lead to rotor
core loosening during motor operation. Rotor assembly by
shrinkage of laminations onto the shaft induces however
significant mechanical stresses in the laminations [23], which
increase with the interference (i.e. the difference between
the shaft diameter and the inner diameter of the laminations
before shrink-fitting). If the interference value is too large,
the laminations may plasticize in the vicinity of the shaft
during assembly, which is not desirable.

The use of solid rotor structures [20], and more re-
cently the use of external rotor sleeves [10], as well as
dual-state soft magnetic materials [24] and high strength
soft magnetic materials [5], [7], [11] are among the most
successful approaches overcoming the structural limitations
of synchronous machines when applied in variable speed
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Fig. 1. Lamination of a synchronous reluctance machine with flux-barriers,
including radial as well as tangential iron bridges (ribs).

applications. Although all these methods relieve the me-
chanical stress experienced by the iron bridges, only the
last approach does not require any particular manufacturing
process since it makes use of available off-the-shelf materials.
Moreover, a solid rotor structure would drastically limit the
machine performance due to the high rotor losses, while
the rotor with an external sleeve inevitably increases the
physical airgap, and dual-state materials are not an off-the-
shelf products, leading to high costs and low availability. In
these approaches the electromagnetic design is followed by
a proper mechanical design, mainly based on the centrifugal
force acting on the rotor structure, through a finite element
(FE)-based optimization. This approach has shown to be
beneficial in view of the necessary computational effort as
well as the performance of the final solution.

The rotor integrity of modern synchronous reluctance
machines is highly dependent on the so-called iron bridges
(also known as “ribs”)—see Fig. 1. As the speed increases
these bridges are made to be wider for the sake of the
rotor robustness but at the cost of a reduction in torque and
power factor. Several attempts have been made in order to
identify guidelines based on analytical rules to design the
iron bridge dimensions [6], [25]. However, such analytical
models cannot predict the subdivision between the tangential
and radial ribs and the positions of the latter along the
flux-barrier. Regarding the latter, it has been shown that the
position of the radial ribs plays a key role in the minimization
of the maximum stress. However such results are obtained
via a parametric study which obviously does not take into
account the interaction of all rotor parameters on the struc-
tural performances. The mechanical models implemented in
previous studies model the behavior of the laminations under
the effect of centrifugal loading resulting from the rotation
of the rotor around its axis. However, these models assume a
virgin initial state of stress in the laminations. The overstress
resulting from the assembly process is not taken into account
accurately, which leads to a current lack of accuracy of
current models suffer from a lack of accuracy.

The purpose of this paper is twofold. On the one hand
we want to confirm the potential of reluctance machines as

competitive substitutes for induction machines, in terms of
average torque level and mechanical robustness, by replacing
the rotor core of an existing induction machine used in a
railway application. On the other hand, we want to improve
the mechanical model by including the stresses resulting
from the manufacturing process of the rotor core, submitted
to a centrifugal loading. For the sake of rapid prototyping,
we consider only a few operating points (speeds) rather
than a time-consuming fatigue life analysis. We adopt a
FE-based optimization and divide the design procedure in
electromagnetic performance and proper mechanical design.

The paper is organized as follows. The parameterization
of the rotor is discussed in Section II. Section III deals with
the electromagnetic modeling, while the assembly process
model is discussed in Section IV. In Section V, the joint
electro-mechanical optimization is applied to the design op-
timization of the synchronous reluctance machine rotor.

II. PARAMETERIZATION OF THE FLUX-BARRIERS

Rotor laminations with Joukowski type flux-barriers (FB)
are investigated in the present work. In order to prevent the
optimizer from testing sets of parameters corresponding to
erroneous geometries, i.e., geometries with intersecting flux
barriers, an indirect parameterization is adopted that ensures
non-intersecting constraints are always fulfilled [26]. Basi-
cally, flux-barrier positions and thicknesses are determined by
a number of constructive geometrical points that cannot meet.
The idea of the indirect parametrization is to create a network
of virtual springs that connect these constructive points in
order to repel them from each other. The spring stiffnesses
are the new design parameters. An advantage of this method
is that all design parameters are of the same nature (whereas
geometrical parameters can be lengths or angles, see [2]),
which basically acts as an implicit normalization of the design
space.

III. MAGNETIC MODEL

For the purposes of the optimization at hand, the electro-
magnetic performance of the motor can be evaluated with
satisfying accuracy under a quasi-static assumption. This
means that stator windings are supplied with the prescribed
three-phase currents, and the simulation is done for a series
of equidistant rotor positions over one pole pitch, as a suc-
cession of static computations. Eddy currents and magnetic
losses in the laminations, which are so disregarded, can be
estimated a posteriori as a post-processing step if necessary.
The quasi-static assumption is customary in synchronous
machine models, and particularly helpful in the context of an
optimization, because the magnetic model needs be evaluated
a large number of times. The electromagnetic symmetries are
also exploited to simulate only a quarter of the machine by
means of appropriate periodicity boundary conditions.

The finite element model takes the nonlinear magnetic
behavior of the stator and rotor laminations into account.
The used anhysteretic saturation curve is that of a M400-
50A steel grade, and the non linear finite element problem is



solved thanks to a Newton-Raphson method. The saturation
curve can be modified locally (e.g. in the iron bridges
where cut-edge effects are not negligible) to account for the
demagnetization effects due to manufacturing, [27].

The torque is computed thanks to the Maxwell stress ten-
sor in the airgap, where numerical errors linked to remeshing
are minimized thanks to a moving band method, where the
rotor and stator mesh are kept unchanged.

IV. SHRINK-FITTING UNDER CENTRIFUGAL LOAD

Interference fit, more particularly shrink-fit, is extensively
used to join rotor cores and shafts. In an assembly process, to
achieve a shrink-fit joint between the rotor core and the shaft,
either the rotor core or the shaft (or both) must be treated.
This can be done by either heating the core to increase the
internal diameter or cooling the shaft to reduce the external
diameter. Thus, according to the fitting conditions, shrink-fit
techniques can be categorized into three groups: (1) heating
technique; (2) cooling technique, and (3) mixing technique,
which is the combination of (1) and (2). In this paper, we
adopted the first approach.

In previous studies, the mechanical design of shrink-fit
set is based on either the classical Lamé elastic solution of
a thick-walled cylinder or the elastoplastic solution that is
based on the yield criterion of von Mises, see for instance [6],
[28], [29] or [30]–[32]. In this paper, we use a significantly
more complex model, based on finite element method, than
existing analytical guidelines due to the introduction of a
contact condition between the shaft and the lamination.

The model takes into account the interference, (i.e. the
difference between the diameter of the shaft and the inside
diameter of the magnetic laminations before shrinking). It
has been implemented with Morfeo [33], an in-house ex-
pert software for industrial simulations, including processes
simulation (eg. machining and welding) and crack analysis
capabilities. The model consists of three steps: (i) heating
the metal sheet to increase its diameter and compensate for
interference; (ii) cooling the metal sheet in contact with the
shaft; and (iii) rotating the assembly at the operating speeds.
Steps (i) and (ii) correspond to the shrinking process. The
stresses induced by the process are evaluated at the end
of step (ii). A linear coefficient of thermal expansion was
considered for step (i) based on data available in literature.
The other properties of 42CrMo4 (shaft material) and M400-
50A (magnetic sheets material) are extracted from literature
as well.

The contact pressure and the maximum torque transmitted
by the existing induction machine at the shaft-rotor interface
are first studied. For these calculations, the assumption of
plane strain is considered on the assembled laminations
(thick laminations at the ends and clamping plates). The
contact pressure along the shaft-rotor interface for a mid
range shrinkage interference when the rotor is at rest and
spinned at 6000 RPM is always much greater than zero,
see Fig. 2. These calculations show that the laminations are
still in compression on the shaft. In addition, they highlight
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Fig. 2. Contact pressure distribution along the shaft-rotor interface for the
rotor of an induction machine at 0 rpm (continuous curves) and spinned
at 6000 rpms (discontinuous curves). The difference with the solid disc
approximation (constant curves) under the same shrinkage and spinning
conditions is also highlited.

0 0.5 1 1.5 2 2.5

8

10

12

14

16

18

20

22

24

26

normalized angular speed (-)

to
rq
u
e
(k
N
m
)

Min. Shrink-Fitting Interference
Mid. Shrink-Fitting Interference
Max. Shrink-Fitting Interference

Fig. 3. Maximum torque that can be transmitted by the induction machine
as a function of speed for different initial shrinkage interferences.

the difference with the solid disc approximation (dashed
curves) under the same shrinkage and spinning conditions.
As expected, the approximation of the rotor with holes by a
solid rotor leads to much higher contact pressure between
the rotor and shaft than observed experimentally. For the
particular case of the induction machine rotor spinned at
maximum velocity of 6000 RPM, the finite element based
model predicts a minimum value contact pressure of 53 MPa,
while the analytical model predicts 76 Mpa. This difference
would be much greater if circular holes were replaced by
flux-barriers.

From a mechanical point of view, it is essential to ensure
that the torque is transmitted to the shaft. The maximum
transmissible torque is evaluated by assuming a constant
coefficient of friction between the rotor core lamination and
the shaft. It can be observed that the transmitted torque varies
only slightly with the interference value. For practical rea-
sons however too high interference value may plasticize the
laminations (which is, a priori, not desirable) in the vicinity
of the shaft during assembly. As expected, the transmitted
torque naturally decreases as the angular speed of the rotor
is increased, since the contact pressure between the rotor core
and the shaft is lowered.

When turning to the synchronous reluctance machine with
flux barriers, the finite element model shows that the distance
between the innermost barrier and the shaft-rotor interface is
a critical design parameter for ensuring the integrity of the
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Fig. 4. Contact pressure of two geometrical configurations of the flux-
barriers type laminations at rest (0 RPM), as well as at maximum operating
speed. The distance between the innermost barrier and the shaft-rotor
interaface is doubled (resp. tight to large band).
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Fig. 5. Level of von-Mises along the radial (central) bridges for rotor
geometries with various distance between the first flux barrier and the shaft
(resp. tight and large band).

structure. Reducing this parameter leads to a drastic lowering
of contact pressure (close to zero) as the speed is increased,
see Fig. 4. Indeed, the distortions induced by the centrifugal
loading reduce the effective interference with in turns reduces
the maximum transmissible torque. Improvements to the
mechanical model make it possible to account for these
effects and ensure the shaft to be in contact with the rotor
core across the entire speed range. The numerical experiments
gathered here highlight the relevance of using an accurate
contact model for the design optimization of the synchronous
reluctance machine.

It can also be observed that central bridges experience
an increase in von-Mises level when the distance between
the first flux barrier and the shaft decreases, see Fig. 5.
This increase in von-Mises level is even more important for
the bridges closest to the shaft and exceeds a limit value
considered for the design. Since decreasing this distance
increases the overall level of von-Mises, this increase is also
observed along the tangential ribs (close to the airgap), but
still remains under the yield stress criterion, see Fig. 6.

It can be shown that the more flux barriers are used,
the higher the average torque of the machine and the lower
its ripple level. However, this leads to a decrease in the
distance between the innermost barrier and the shaft, thus
leading to a considerable decrease in contact pressure, see
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Fig. 6. Level of von-Mises along the tangential bridges for rotor geometries
with various distance between the first flux barrier and the shaft (resp. tight
and large band).
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Fig. 7. It also leads to an increase in the level of von-Mises
along the central bridges, see Fig. 8. A compromise must
therefore naturally be made between magnetic performance
and mechanical integrity of the structure.
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Fig. 8. Level of von-Mises along the central bridges of the rotor core with
2, 3 and 4 flux barriers. The distance between the innermost barrier and the
shaft is lowered with the number of flux barriers.

V. ELECTRO-MECHANICAL OPTIMIZATION

The goal of the optimization is to design flux barriers
in the rotor of the synchronous machine so as to achieve
the same level of average torque and ripples as those in



the reference induction motor. With regard to mechanical
robustness, the purpose is twofold. The level of mechanical
stress (von-Mises) must be kept below acceptable limits in
the most sensitive areas (central and tangential ribs). On the
other hand, the contact pressure between the shaft and the
rotor core must be high enough to avoid the loosening of
the lamination package, and ensure torque transmission to
the shaft over the whole speed range. In order to speed up
the design process, an accurate life fatigue assessment is not
performed, but we rather limit ourselves to two operating
points: one at maximum speed (4800 rpms) and the other
at overspeed (5760 rpm, which is about 20% higher than
maximum speed).

The design problem is formulated as a constrained op-
timization problem aiming at determining the thickness of
radial and tangential bridges, based on the level of von-
Mises evaluated only at these bridges. In the same way,
the positioning of the innermost barrier is also determined
by the stress level at a point between this barrier and the
shaft interface. The design space also includes the load angle,
the spring stiffnesses (geometrical parameters that define the
barriers) and the number of barriers (a discrete parameter
ranging from 1 to 5). From a magnetic point of view, the
constraints have been chosen to match those of the reference
induction machine, using the same stator in both. The stator
currents and the technical limits (bounds) of the various
performance functions are thus chosen to be identical to that
of the reference induction machine, i.e., the target value for
the average torque is 1500 Nm with 10% ripples. For the
mechanical part, the level of von-Mises should be less than
(or equal to) 75% of the elastic limit at maximum speed
(350 MPa); whereas it is imposed to be kept lower than (or
equal to) 85% of the elastic limit at overspeed. A series of
degrees of freedom have been fixed a priori: the current value
(nominal value of the induction machine, 217A), fillet radii,
positioning and number of radial bridges (only 1 radial bridge
per barrier), value of the interference between rotor and shaft
(mid-range) for shrink-fitting model.

The computational chain is based on Gmsh [34] for the
CAD model and meshing, and GetDP [35] for the nonlinear
magnetostatic computation. Two further in-house software
are considered. On the one hand, MORFEO [33], a finite
element analysis software with processes simulation (eg.
machining and welding) and crack analysis capabilities; and
on the other MINAMO, an advanced optimization platform
based on the use of surrogate models [36].
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Fig. 9. Optimized rotor geometries considering one operating speed (O1
left) and two operating speeds (O2 right).
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Fig. 10. Level of von-Mises along the radial (central) bridges for rotor
geometries resulting from an optimization based on a single operating speed
(O1), as well as two operating speeds (O2).
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Fig. 11. Contact pressure along the shaft-rotor interface at nominal speed
and spinned at over 20% of the maximum speed, for rotors resulting from
both a single operating speed (O1) based optimization and two operating
speeds (O2) optimization.

The optimization resulted in a design with four flux barri-
ers, see Fig. 9. A similar result is also obtained by considering
a single operating point at maximum speed. Both of them
exhibit average torque about 20% lower than the induction
machine fed with the same stator current, with less than 5%
torque ripples. The differences lie mainly in the level of von-
Mises along the central bridges, see Fig. 10 (the stress levels
everywhere else in the rotor are well below the maximum
stress criterion). The design obtained by considering a single
operating frequency exceeds the yield criterion at overspeed,
whereas the design considering both speeds is acceptable
over the whole range of speeds, and is therefore suitable
for manufacturing. For both designs, the contact pressure
is above the prescribed limit at both operating speeds, see
Fig. 11.

The consistency of the optimization is confirmed by
obtaining the critical speeds by a simplified Jeffcott model
(rotor is assumed mounted on rigid bearings with rigid disk,
while the shaft is considered elastic and massless). The first
eigenfrequency

√
k/M is the ratio between the stiffness k of

the shaft in flexion and the disc mass M . The polar moment
of inertia (stiffness) decreases much less (0.3 kgm2) than
the rotor mass (19.6 kg) when moving from the induction
machine to the optimized synchronous machine. This results
altogether in an increase of the first natural frequency. Since
the reference induction machine had no vibration problems,
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the optimized synchronous machine should not have any
either.

The optimized reluctance machine is also compared to
the induction machine through the torque-speed curve (see
Fig. 12 for the case of traction operation where the data are
normalized to the induction machine). The idea is to make
the best use of the reluctance machine while imposing a
limit on the current norm (thermal limitation). This yields
two cases based on the level of current norm: (i) identical
to that of the induction machine, and (ii) a higher one (by
≈ 62%) in order to obtain a level of torque similar to that
of the induction machine without defluxing). In the phase
without defluxing (MTPA), more current must be fed to the
synchronous machine to obtain the same level of torque as
the induction machine due to the lowered power factor, while
in defluxing phase (MTPV) torque decreases as the square of
inverse of speed instead of the inverse of speed.

VI. CONCLUDING REMARKS

This paper has studied the tight interplay between me-
chanical and magnetic issues when designing a reluctance
motor rotor with magnetic flux barriers. We have shown in
particular the strong impact of mechanical stresses due to the
assembly process on the structural integrity of the rotor, and a
contact model based on finite element calculations has been
implemented to cover that issue in the optimisation. It has
also been demonstrated that several operating points should
be considered in the optimization to reach a design acceptable
over the full range of working points of the motor. Eventually,
our optimisation process delivered a valid design, achieving
the expected torque levels for the given supply conditions,
and ensuring structural integrity regarding centrifugal forces
and torque transmission to the shaft.
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in 2000, both at the University of Liège in Belgium. He then spent 4 years at
the Katholieke Universiteit Leuven and 6 years at the Institut f ür Elektrische
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neering in 2017, from the Université Catholique de Louvain (UCLouvain),
Louvain-la-Neuve, Belgium. He is currently a research assistant at the
Mechatronic, Electrical Energy, and Dynamic Systems (MEED) division,
UCLouvain. His research interests include the design and the optimization
of electromagnetic devices, with a focus on synchronous reluctance machines
and magnetic gears.
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