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SUMMARY 
This paper deals with the use of a Jiles-Atherton vector hysteresis model included in 2D finite element modelling. The 
hysteresis model is only valid for isotropic materials. It is implemented with the vector potential formulation in 2D along with 
electric circuit equations to account for a possible external circuit. The Newton-Raphson algorithm is used with a relaxation 
procedure, whereby at each iteration, the relaxation coefficient is sought so as to minimize the Euclidean norm of the residual 
of the finite element nonlinear system of equations. We have simulated several numerical examples with the proposed 
approach. First, simulations on a square domain were carried out so as to validate the model. We have further simulated a T-
shaped magnetic circuit (exhibiting rotating flux) and a three-phase three-limb transformer model. For these two cases, the 
eddy current losses in the laminations are taken into account by a low-frequency model. We have finally performed 
simulations on the TEAM workshop problem 32 which consists of a three-limb transformer with two windings, for which 
current and local magnetic flux density measurements are available. We obtained a good agreement between computed and 
measured results. 
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1. INTRODUCTION 

In this paper, the 2D magnetic vector potential formulation is used with the finite element 
(FE) method, the Newton-Raphson (NR) method and the implicit Euler scheme for time 
stepping. Loss computation accounting for magnetic hysteresis and eddy currents in the 
lamination stacks of electrical devices, such as transformers and rotating machines, is often 
performed with a posteriori loss models, i.e. after the resolution. However, when accurate 
power balance and/or global electrical quantities are sought, e.g.0 when a circuit coupling 
exists, this a posteriori approach may not be sufficient anymore and the hysteresis model must 
be included directly in the FE equations. 

Such hysteresis models can be either scalar or vectorial [1]. A scalar hysteresis model has a 
scalar input u(t) and a scalar output f(t). For magnetic materials, a scalar hysteresis model 
would compute for instance the x-component of the flux density b as a function of the x-
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component of the magnetic field h. A vector hysteresis model is a model which has a vector 
input u(t) and a vector output f(t), for instance h(t) and b(t) respectively. A scalar hysteresis 
model is not directly usable for a FE simulation of electric devices such as transformers, 
actuators or rotating machines as the magnetic field has an a priori unknown direction. More 
importantly, in some areas of the magnetic circuit of these devices, such as in T-joints of 
transformers or in the stator yoke of rotating machines, the field is rotating. Therefore a vector 
hysteresis model is needed. Such vector models apply to either anisotropic magnetic materials 
or only isotropic ones. According to the FE formulation used for the governing magnetic 
equations, the hysteresis model is either direct, when the magnetic field h is the input 
variable, or inverse, when the flux density b is the input variable. 

The Jiles-Atherton (JA) hysteresis model [2] is widely employed, because of its small 
number of parameters, its relative ease of implementation in FE software and its low 
computational cost compared to other models such as Preisach’s [1] [3-5]. Multiple variants 
of the JA hysteresis model have been proposed, e.g. in [2] [6-16]. A scalar inverse JA model 
is described in [6]. The vector extension of the scalar direct JA model has first been proposed 
in [7] for anisotropic materials. Then, the authors of [8] [9] proposed an inverse vector model, 
based on [6] [7]. A direct vector model has subsequently been developed and used in 3D 
simulations in [10-12]. Reference [9] deals with the inrush currents of a transformer using the 
JA inverse vector hysteresis model of [8] with anisotropic materials in its core, so the 
remanence is taken into account in this part. A direct and inverse JA vector hysteresis model 
implemented with the NR method and valid only for isotropic magnetic materials is proposed 
in [13] [14]. 

Alternatives to the Preisach and JA hysteresis models which are well-suited for FE 
implementation have also been proposed in the literature. A model based on a chemical 
reaction analogy is presented in [17] and can be direct or inverse, scalar or vector, and usable 
for anisotropic materials. An intrinsically vector model is proposed in [18] for isotropic 
magnetic materials and relies on a consistent thermodynamic formulation. The original model 
is direct; its inversion is developed in [18]. Other intrinsically vector models are based on 
vector play operators for isotropic magnetic materials [19] [20]. Models from [18-20] have 
mathematical similarities with those used in mechanics, in particular for kinematic hardening 
plasticity. 

Note that the identification of the hysteresis models is widely discussed in the literature e.g. 
in [21] [22] for JA parameters or in [23] for identification of the Bouc–Wen hysteresis model. 
The methods for the identification of the JA parameters are not discussed in the following of 
this paper. 

In the present paper, we consider the vectorized JA model proposed in [13] [14] together 
with a 2D magnetic vector potential (MVP) formulation, which requires the inversion of the 
hysteresis model.  

In the case of non-linear non-hysteretic materials, the choice of the NR method is obvious, 
as it offers a quadratic convergence rate near the solution. However, in the presence of 
hysteretic materials, the use of the NR is somewhat less evident because convergence is less 
often reached. The fixed-point method is often used with a hysteresis material, where the 
convergence is ensured in most cases but is linear [15]. The authors of [6] [8-12] [16] use the 
differential permeability technique instead of the NR one to solve the FE nonlinear system of 
equations. However, they report in [11] [12] stability and convergence problems with the 
direct JA vector hysteresis model and propose some procedures to overcome them: restarting 
at several previous time steps and time step reduction. In this paper, we explore to use NR 
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method, because of its quadratic convergence and because we have experience with it in our 
respective FE software. To our knowledge, a vector JA hysteresis model implemented with 
the NR method is only proposed in [13] [14]. The novelty of the present paper consists in 
using the hysteresis model of [13] [14] with an algorithm to determine the relaxation factor at 
each iteration of the NR algorithm presented in [24], to ensure the NR convergence in most 
cases. 

The paper is organized as follows. First, the numerical aspects of the method are recalled. 
Then, the method is applied to the simulation of several numerical examples: one relative to a 
three-phase transformer taking into account the eddy current losses in the laminations with a 
low-frequency model and a three-limb transformer with two windings for which experimental 
data (currents and local magnetic flux density measurements) is available. 

2. NUMERICAL METHOD 

2.1. Magnetic vector potential formulation 

We consider a simply-connected domain Ω in the xOy plane. We use the 2D MVP 
formulation. The magnetic vector potential a has only one non-zero z-component orthogonal 
to the xOy plane defined by: 

 acurlb = , (1) 

where b is the magnetic flux density. Applying Green’s formulas to Ampère’s law curl h = j,  
where h is the magnetic field and j the current density, and considering the boundary 
conditions, the weak form of the MVP formulation is obtained: 

 Ω⋅=Ω⋅ ∫∫ ΩΩ
dd jWhWcurl , (2) 

where W is a test function associated with a. Faraday’s law dt/dbecurl −= allows to write 
the electric field e as follows: 

  V
dt

d
grad

a
e −−= , (3) 

where V is the electric scalar potential. In 2D, the xOy plane is an equipotential of V in each 
conductor section. The constitutive material laws are accounted for:  

 b = b(h) or h = h(b)  and  j = σe, (4) 

where σ is the conductivity (which is supposed scalar and constant). 
The domain Ω is discretized with nodal finite elements. The magnetic vector potential is 

expanded in terms of the vector shape functions Wi, i.e. Wi=(0,0,wi)
t with wi the scalar shape 

functions and ai the associated values at the np nodes: 
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 ∑
=

=
pn

1i
ii aWa . (5) 

The residuals Ri are obtained from equation (2) taking into account the shape functions Wi. 
The non-linear system of equations to solve consists of the np residuals Ri set to zero: 

 ( ) piii ni1,dR ≤≤Ω⋅−⋅= ∫Ω jWhWcurl  (6a) 

 .0Ri =  (6b) 

The coupling with an external circuit is described in [25]. Herein the additional unknowns 
are the integrated-in-time electric potentials ψ at nodes of the circuit and the currents in the 
coils: 

 ( ) ( )∫ =
=ψ

t

0't
'dt'tVt , (7) 

where V is the electric potential. 
The coils and the solid conductors are taken into account with the other components of the 

circuit, by adding circuit equations to the magnetic system of equations (6b). To impose a 
zero net current in a solid conductor, a circuit equation is added to system (6b) which 
corresponds to the solid conductor fed by a current source with a zero imposed current: 

 0Id c
c

==Γ⋅∫Γ nj , (8) 

where n is the normalized Oz-direction vector, and Γc the section of the solid conductor. 
 
 
2.2. Jiles-Atherton vector hysteresis model 

We recall in this part the JA inverse vector hysteresis model described in [13] [14]. This 
model corresponds to the vector extension of the scalar one presented in [7] but limited to the 
isotropic case. The model is a true vector one, because it computes the magnetic field h(t), i.e. 
the three components of h(t), function of the magnetic flux density b(t), i.e. the three 
components of b(t). Some vector JA hysteresis models have been proposed for instance by [7] 
[8] [10-12] for anisotropic materials. These models need 5 parameters for each direction (x, y, 
and z) of the Euclidean space, with a total of 15 parameters. The model proposed by [13] [14] 
and recalled in this paper is a model only for isotropic materials, with the same five parameter 
values for the x-, y-, and z-directions. These five parameters are commonly denoted by ms, a, 
k, c and αj, see e.g. [2]. 

The total magnetization m consists of a reversible part mrev added to an irreversible part 
mirr: 

 irrrev mmm += . (9) 
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An effective field he is defined, which is the field seen by the magnetic domains as 
explained in [2]: 

 mhh je α+= . (10) 

The anhysteretic magnetization man is supposed in the same direction as the effective field 
he, with magnitude man: 

 ( )
e

e
eanan h

hm
h

m = , (11) 

where man is defined by the Langevin function: 

 ( ) 







−






=
e

e
sean h

a

a

h
cothmhm , (12) 

with notation X = |X| for the norm of a vector quantity X. Note that equation (12) supposes 
that the considered material is isotropic. We obtain the differential anhysteretic susceptibility 
dman/dhe: 

 ( ) ( )
ee2

ee

ean
ee2

e
ean

ee

an

h

1

dh

hdm

h

1
hm

h

1

d

d
hhhh1

h
m

+













−= , (13) 

where 1 is the unit tensor and hehe the dyadic square of he. According to [7], we consider a 
force χf’ which impedes the wall displacements due to the pinning sites. This force is in the 
direction of man−mirr: 

 ( )irranf k

1
' mmχ −= . (14) 

According to [7], the irreversible magnetization changing dmirr is considered in the 
direction of χf’, so: 

 '

'

d

d

f

f

irr

irr

χ

χ

m
m = . (15) 

The vector dmirr is proportional to χf’ ⋅dhe and is zero when χf’ ⋅dhe is negative or null. So, 
dmirr is written as follows: 

 ( )+⋅= ef
f

f
irr d'

'

'
d hχ

χ

χ
m , (16) 

with the notation of [7]: (x)+ = x if x > 0, (x)+ = 0 if x ≤ 0. We see that: 
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 irran
irran

irran

f

f mmm
m
m

mm
mm

χ

χ
−==

−
−= δ

δ
δ

where,
'

'
. (17) 

In the case where dhe⋅χf’ > 0, the change in irreversible magnetization is expressed as 
follows: 

 ( )eirr d
k

1
d hm

m
m

m ⋅δ
δ
δ= , (18) 

thus: 

 m
mm

h
m

δ
δδ=

k

1

d

d

e

irr . (19) 

In the case where dhe⋅χf’ ≤ 0, the change in irreversible magnetization is considered to be 
zero: 

 0
d

d

e

irr =
h

m
. (20) 

The equation which corresponds to the bulge of a wall for small displacement is: 

 ( )irranrev c mmm −= . (21) 

By combining (9) and (21), the total magnetization is obtained: 

 . (22) 

Irreversible magnetization is expressed in terms of the total magnetization and the 
anhysteretic magnetization: 

 c1

c an
irr −

−
=

mm
m . (23) 

We get: 

 






 α+==
h
m

1
m
m

m
m

m
m

m
m

d

d

d

d

d

d

d

d

d

d
j

e

ane

e

anan , (24) 

 






 α+==
h
m

1
m
m

m
m

m
m

m
m

d

d

d

d

d

d

d

d

d

d
j

e

irre

e

irrirr . (25) 

Finally, we obtain the following equation which governs the model: 

( ) anirr cc1 mmm +−=
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 [ ] ( ) .
d

d
c

d

d
c1with

d

d

e

an

e

irr1
j h

m
h

m
χχχ1

h
m +−=⋅α−= −

 (26) 

As ( )mhb +µ= 0 , the differential permeability tensor is computed with: 

 






 +µ=
h
m

1
h
b

d

d

d

d
0 . (27) 

The differential permeability tensor (27) is a 2×2 real matrix, which can easily be inverted. 
Doing so, we obtain the differential reluctivity tensor dh/db: 

  

1

d

d

d

d −







=
h
b

b
h

. (28) 

We use the implicit Euler scheme to solve the time-domain finite element system of 
equations. Let ∆t be the time step, t the previous instant and t+∆t the current instant. We know 

the state at the previous instant (ht, bt) and the flux density at the current instant bt+∆t. The 

field ht+∆t at the current instant, is then obtained with: 

 ∫
∆+

∆+ 






+=
tt

tttt dt
dt

d

d

d
'

'
b

b
h

hh . (29) 

Relation (29) is computed at the level of the material law, i.e. at each Gauss integration 
point during the integration and assembling of the FE system of equations (see subsection 2.4 
below). The integral of (29) is computed by a time stepping procedure with a discretisation of 
10 steps in the interval [t,t+∆t]. 

The JA model presented in this subsection is already available in the GetDP software [26] 
and has been recently implemented in the Flux® software [27]. The implementations of the 
methods and simulations of the numerical examples that follow have been done with Flux® 
software. 

As stated by [7], the equation (29) is implicit because the sign of dhe⋅χf’ changes the 
expressions to compute h. To overcome this difficulty, we have chosen the following strategy. 
First we compute h, supposing dhe⋅χf’ > 0. Then we compute the actual dhe⋅χf’ and if it is 
negative, h is recomputed with dmirr/dhe = 0. 

The hysteresis model computes ht+∆t, with given bt+∆t, bt and ht. For hysteresis models in 
general, the differential reluctivity and permeability tensors depend on the present state (h,b) 
of the material as well as on its “history”. In the JA vector model presented in this subsection, 
the history is simply contained in the magnetic field at the previous instant ht. It is then 

necessary to store the magnetic field ht+∆t computed by the model at the end of a time step, 
because it becomes the magnetic field ht at the next step. We have chosen to store this 
quantity for each Gauss integration point used for the integrals of (6a). 

As with JA hysteresis models in general, this vector hysteresis model does not lead to 
closed minor loops (centered or not centered), as reported e.g. by [7]. Some papers propose 
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modifications of JA scalar models which represent accurately the minor loops, e.g. [16]. 
Unfortunately, to our knowledge, no paper proposes vector models with this improvement. 

 
 

2.3. Low frequency lamination model  

In the 2D finite element model, it is possible to take into account the eddy current losses in 
a laminated core of the magnetic circuit due to the in-plane flux density [3]. For the sake of 
simplicity, we assume a unitary stacking factor. We consider the case where the frequency is 
low, i.e. the skin effect is assumed to be negligible. So the flux density is approximately 
constant over the thickness of a lamination. From dt/dbecurl −= , j = σlame, curl h = j, we 
can find the following expression: 

 ( ) ( ) ,
dt

d

12

d
tt a

2
lam

as
b

hh
σ+=  (30) 

where hs is the magnetic field at the surface of a lamination, ha and ba the average magnetic 
field and flux density respectively, d the thickness of the lamination, and σlam their 
conductivity (assumed scalar and constant). The fields ha and ba are linked by the hysteresis 
model presented in subsection 2.2, with ha = h and ba = b. 

The total power density supplied to the lamination p(t) [W/m3] reads: 

 ( )
dt

d
t)t(p a

s
b

h ⋅= . (31) 

The eddy current loss density pcl(t) [W/m3], usually referred to as “classical losses”, 
corresponds to the second term of the right hand side (RHS) of (30): 

 ( )
2

a
2

lam
cl dt

d

12

d
tp 







σ= b
. (32) 

And the power ph(t) [W/m3], usually referred to as “hysteresis losses” corresponds to the 
first term of the RHS of (30): 

 ( ) ( )
dt

d
ttp a

ah
b

h ⋅= . (33) 

In case of time-periodic supply of fundamental frequency f, to obtain total average loss 
density pm (averaged over a time period), the total power density (31) is integrated over one 
fundamental period T = 1/f: 

 ( )∫ ⋅=
T

0
a

sm dt
dt

d
t

T

1
p

b
h . (34) 

Applying the implicit Euler scheme, (30) becomes: 
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 ( )
ttt aa

2
lam

ttatts t12

d
bbhh −

∆
σ

+= ∆+∆+∆+ , (35) 

with tta ∆+h  given by (29). 

To introduce the lamination model in the FE model, the h(b) law is modified, from ha(ba) 
given by (29) to hs(ba) given by (35). The differential reluctivity tensor is modified as well 
from dha/dba given by (28) to dhs/dba: 

 1
b
h

b
h

t12

d

d

d

d

d 2
lam

a

a

a

s

∆
σ+= . (36) 

 
2.4. Newton-Raphson method and time stepping 

The NR method is applied to solve the non-linear FE system [13] [14] with the implicit 
Euler scheme for time stepping. The extension to the generalized θ-method (with 0.5 ≤ θ ≤ 1) 
does not present any difficulty. The circuit equations are not considered here explicitly for 
sake of simplicity, but they are implemented in the software. The k-th NR iteration, k=1,2,…, 
produces the k-th approximation: 

  
( ) ( ) ( )k1kk

tttttt ∆+∆+∆+ ∆α+=
−

aaa , (37) 

where the increment 
( )k

tt ∆+∆a  follows from linearization of the system of equations (6b) 

around the (k-1)-th solution 
( )1k

tt
−
∆+a , with α the relaxation factor. The iterative scheme is 

initialized with 
( )

ttt
0

aa =∆+ . To obtain the linearized system of equations, the residuals Ri 

given by (6a) are derived with respect to the nodal values aj (1≤j≤np): 

 
( ) RaJ −=∆ ∆+
k

tt , (38) 

with 

 ( )1k
tt

d

d tt
−
∆+








= ∆+

aa
R

J   and   ( )( )1k
tttt

−
∆+∆+= aRR , 

where a, ∆a and R are the vector of the nodal values aj, the vector of the increments ∆aj and 
the vector of the residuals Ri respectively. The Jacobian matrix J and RHS –R are function of 

the (k-1)-th solution 
( )1k

tt
−
∆+a . The (i,j) entry in the matrix J is [28]: 
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 ( ) ( )∫Ω Ω
























⋅−








⋅=

−
∆+

−
∆+

d
ad

d
ad

d
J

1k
tt

j
1k
tt

j a
i

a
iij

j
W

h
Wcurl . (39) 

By using the chain rule and  (1), (3), (4) and (5), the 
jda

dh
 and 

jda

dj
 terms are written:

 

 ( ) ( )

( )

( ) ( ) j

a

1k
tt

a 1k
tt

1k
tt,j

1k
tt

1k
tt,j

d

d

da

d

d

d

da

d
Wcurl

b
hb

b
hh

bb
⋅







=













⋅







=







−
∆+

−
∆+

−
∆+

−
∆+

−
∆+

 (40) 

 

( ) ( )

( )

( )

( )

( )

j

a

t
1k
tt

a

1k
tt

a t
1

da

t
d

da

d

d
d

da
d

1k
tt,j

1k
tt,j

1k
tt

1k
tt,j

W

aa

e
e
jj

e
σ

∆
−=



































∆
−

σ−=













⋅







=








−
∆+

−
∆+

−
∆+

−
∆+

−
∆+

−
∆+

 (41) 

The final expression of the (i,j) entry of the Jacobian matrix J and RHS –R is thus: 

 ∫Ω Ω
















⋅σ⋅
∆

+⋅






⋅=

∆+

d
t

1

d

d
J jijiij

tt

WWWcurl
b
h

Wcurl
b

, 

 ( )∫Ω ∆+∆+ Ω⋅−⋅=− dR ttittii hWcurljW . (42) 

In (42), if the lamination model is not used, ht+∆t is given by (29) and ( )
tt

d/d
∆+

bbh  is 

given by (28). Otherwise, ht+∆t is given by (35) and ( )
tt

d/d
∆+

bbh  by (36). The magnetic flux 

density is given by (1) and the current density jt+∆t by (3) and (4c). The magnetic field tt,a ∆+h  

and the differential reluctivity tensor ( )
tt,aaa d/d

∆+bbh  are computed by the JA vector model 

presented in subsection 2.2. In (42), the magnetic field tt,a ∆+h  is function of ( )1k
tt,a

−
∆+b , t,ah  and 

t,ab , and the differential reluctivity tensor ( )
tt,aaa d/d

∆+bbh  is function of ( )1k
tt,a

−
∆+h , ( )1k

tt,a
−

∆+b , 

t,ah  and t,ab . It is necessary to store the magnetic field ( )k
tt,a ∆+h  computed by the JA model at 

the end of a k-th NR iteration, because it becomes the magnetic field ( )1k
tt,a

−
∆+h  at the next NR 

iteration, which is necessary to compute ( )
tt,aaa d/d

∆+bbh . We store this magnetic field for 

each Gauss point. 
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2.5. Optimal relaxation coefficient method 

In order to ensure the convergence of the NR method with the hysteresis model in most 
cases, a relaxation factor α is employed, which is calculated with the method described in 
[24]. This relaxation factor α is the same for all the unknowns and intervenes in (37). It is 
determined at the k-th NR iteration so as to minimize the square total residual W(k) of the 
linearized system of equations: 

 
( )( ) ( )∑

=
=α

p

i

n

1i

2)k(k RW . (43) 

We have to search for the optimal relaxation factor αopt which minimizes W(k), with 

0 < αopt ≤ 1. W(k) is function of α, as the )k(
i

R  are functions of α as well. A possibility is to 

use the binary search method, the golden section one or another minimum function searching 
method, but it would be too computationally expensive as mentioned in [24]. Finding an 
accurate value of αopt is not needed, as the aim is to ensure the NR convergence and to reduce 
the whole CPU time of the simulation. So another strategy, proposed in [24], consists in 
trying consecutive integer powers of ½: 

 ( ) ( )max
m m,...,1,0m,2/1m ==α . (44) 

Notice that the obtained value of α is not the optimal value αopt (cf. figure 1). The objective 
function W(k) is computed with an iterative procedure starting with m = 0. At each iteration, 
the residuals must be computed, i.e. the RHS of the linearized system of equations must be 
integrated and assembled, which takes a certain CPU time. The process is stopped when the 
objective function starts to increase at the m-th current iteration, such as (cf. figure 1): 

 
( ) ( )( ) ( ) ( )( )mW1mW kk α>+α , 
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Figure 1. Example of a W(k)(α) curve obtained at the 1
st
 NR iteration of a test-case. The value of m found by the 

algorithm is m = 2, so α = 0.25. 

and the m-th relaxation coefficient is adopted for the current k-th NR iteration, i.e. 

( ) m2/1m =α . We have tuned the maximum number of iterations mmax solving some 
numerical examples with the hysteresis model presented in subsection 2.2 and adopted 
mmax = 12. Numerical tests with an alternative minimum function searching method 
(“Residual Minimization” [29]) exhibited a lack of robustness in terms of convergence. 

With the relaxation procedure (44) presented in this subsection, the NR algorithm has 
converged for every time step of all the numerical examples presented in this paper. This 
procedure is time consuming, because in some 2D practical cases with the JA hysteresis 
model, the computation time taken by this procedure can be 60 % of the total computation 
time of the solving process. However, without this procedure, the convergence is not 
achieved. 

3. NUMERICAL EXAMPLES 

3.1. Square region example 

We have first tested the method on a simple case: a square domain (1 m side) with 
unidirectional pulsating or rotating field described in [14]. The JA model coefficients used for 
this study are those found in [14] and correspond to some electrical steel (FeSi): 
ms = 1.1455×106 A/m, a = 59 A/m, k = 99 A/m, c = 0.55 and αj = 1.3×10-4. We have verified 
that in the case of a pulsating field, the JA vector model gives the same results as the scalar 
one, according to the theory [7]. In the rotational case, the b and h loci are circular as 
expected. 

We have also analyzed the number of time steps per period on the square domain test-case 
with pulsating imposed flux density, with two materials: 

− 1st material: the electrical steel of [14], and 
− 2nd material: car body steel with JA model coefficients ms = 1.5441×106 A/m, 

a = 672.919 A/m, k = 1138.68 A/m, c = 0.78054 and αj = 1.0648×10-3. 
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The mesh of the square domain consists of 1016 second order triangular elements. We 
performed simulations with 200, 300, 400, 800 and 1600 time steps per period of the imposed 
field. In the case of the first material, the convergence of the NR algorithm was achieved for 
all the time steps of all the simulations and the results were the same. In the case of the second 
material, we observed some convergence problems of the NR algorithm with the relaxation 
technique for the simulation with 200 time steps per period. With the other simulations, i.e. 
with a number of time steps per period greater or equal to 300, the convergence was reached 
for all the time steps and the results were the same. 

 
 
3.2. T-joint and three-phase transformer 

We have then performed simulations of two test cases concerning a three-phase transformer 
described in [3] operating at 50 Hz: 

− a T-joint with imposed sinusoidal phase-shifted currents in two coils with Imax = 0.01A or 
Imax = 0.2A (cf. figure 2), and  

− the whole three-phase transformer described in [3] operating at no load at 100 Vrms or 
230 Vrms (cf. figure 3). 

The coils have 220 turns in both test cases. The JA model coefficients used correspond to 
non-oriented M330-50A steel sheet [21]: ms = 1.28×106 A/m, a = 26.1 A/m, k = 52.3 A/m, 
c = 0.13 and αj = 7.45×10-5. A 1 s time interval, i.e. 50 periods, have been simulated, with 200 
time steps per period by default. Simulations with 400 and 800 time steps per period produce 
the same results. So we concluded that 200 time steps per period were sufficient. The 
amplitude of the imposed currents or voltages are smoothly increased from 0 s until 0.8 s by a 
smoothed step function sf(t) so as to reduce the whole simulation time to reach the steady 
state and to converge at every time step (sf(t) = 0.5 – 0.5cos(πt/trelax) if 0 ≤ t ≤ trelax, sf(t) = 1 
if t > trelax, trelax = 0.8 s). On the three-phase transformer, we have tried to impose the 100 V 
or 230 V voltage at the beginning of the simulation, without smoothly increasing it by a 
smoothed step function, with 200 time steps per period and without the lamination model. For 
the simulation at 100 V, the convergence is reached at all the time steps and we did not 
observe high inrush currents. For the simulation at 230 V, the algorithm diverges after 0.0038 
s, probably due to high inrush currents. At the beginning of the simulation, i.e. at t = 0s, the 
magnetic field h and the flux density b are set to 0 in the whole regions where the hysteresis 
model is set, i.e. in the magnetic circuit. The simulation of several periods is necessary to 
obtain the periodic steady state. The curves depicted in the figures 4 and 5 of this subsection 
3.2 are plotted for the 50th and last period, corresponding to time interval [0.98 s; 1 s]. 
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Imax⋅sf(t)⋅cos (ωt) Imax⋅sf(t)⋅cos (ωt+2π/3) 

az = 0 

 
Figure 2. T-joint geometry and mesh. 
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Magnetic 
circuit 

Phase C 
coil 

Phase B coil 
 

Figure 3. Three-limb transformer. 

Both test cases have been simulated in two cases: 
− Case 1: without the lamination model. 
− Case 2: with the lamination model. A lamination is 0.5 mm thick and has a 

conductivity of 2.03×106 S/m. 
With the T-joint test case, we have also taken into account eddy currents in the z-direction by 
considering that the magnetic circuit is solid, i.e. not laminated, with a 500 S/m conductivity 
and a zero net current (referred to as case 3 in the following). 

In average 7 and 8 NR iterations are performed per time step for the transformer at 
100 Vrms and 230 Vrms respectively. 

With a current of 0.01A (peak value) in the coils of the T-joint and with the transformer at 
100 V, a drift of flux density and also a drift of magnetic field, however to a lesser extent, are 
observed after 0.7 s in cases 1 and 2. It is much reduced in case 3 (with massive magnetic 
circuit) of the T-joint, but with also very different results. With a current of 0.2 A in the coils 
of the T-joint and with the transformer at 230 V, the simulation results do not exhibit any drift 
of flux density in time. An explanation may be that, in these cases, most of the points of the 
magnetic circuit are saturated and this contributes to stabilize the model. 
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Figure 4 shows the baxhsx- and bayhsy-loops obtained at point 1. The appearance is almost the 
same as the loops of figure 14 of [3]. However, the materials of laminations are not exactly 
the same: M330-50A for present paper and V330-50A in [3]. 

 

 

Figure 4. baxhsx- and bayhsy-loops at point 1 of the transformer for a voltage of 230 V with the lamination model. 
Top: with the approach of the present paper. Bottom: figure 14 of [3]. 

 
Figure 5 shows currents in the three phases as a function of time at the last period of 

simulation, with and without the lamination model. The amplitude of the current is slightly 
greater with the lamination model than without, as expected, because of the greater loss and 
supplied power in the case of the lamination model. 
 

-1.5

-1

-0.5

0

0.5

1

1.5

-200 -150 -100 -50 0 50 100 150 200ba
(T

)

hs (A/m)

-200 -100 0 100 200

-1

0

1

B

a

[T]

H

s

[A/m]

x

y

x 

y 



16      C. GUERIN ET AL. 

 

Figure 5. Transformer phase currents for a voltage of 230 V. Dashed line: without the lamination model, 
continuous line: with the lamination model. 

 
3.3. TEAM workshop problem 32 

We have also performed a 2D simulation of the TEAM workshop problem 32 described in 
[30]. The device consists of a single-phase 3-limb transformer with the windings placed on 
the outer limbs (cf. figure 6). The ferromagnetic core consists of five 0.48 mm thick non-
oriented laminations. This workshop problem comprises four different cases. As in [12], we 
have simulated the CASE3 (so denoted in [30]). The two windings are fed by 14.5 V (peak) 
voltage sources with a phase shift of 90° at a frequency of 10 Hz (cf. figure 7). So the 
magnetic field and flux density are rotating in the T-joints. A vector hysteresis model is 
therefore necessary.  
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Figure 6. Problem 32 transformer: geometry with dimensions (in mm) and positions of the pick-up coils. Pick-up 
coils C1-C2 and C3-C4 described in [30] correspond to points P1 and P2 respectively. 
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Second coil 
R = 0.32 Ω 

First coil 
R = 0.32 Ω 

R2 = 11.1 Ω R1 = 11.1 Ω 
V1 = V0 sin(ωt) V2 = V0 cos(ωt) 

 

Figure 7. External circuit (V0 = 14.5V, f = 10 Hz). 

 In [30], the data of the ferromagnetic material measurements, i.e. h and b for several 
centered loops, are provided in all directions. A different magnetic behavior in the vertical 
(rolling direction, RD) and in the horizontal direction (transverse direction, TD) is observed. 
Using an optimizing procedure, the authors of [12] have found the JA model coefficients in 
the RD and in the TD from the data of the ferromagnetic material measurements provided in 
[30]. However, as the hysteresis model described in the present paper is only valid for 
isotropic magnetic materials, we have adopted the same hysteresis data in both directions. We 
took the JA coefficients corresponding to the RD found in [12], i.e. ms = 1.33×106 A/m, 
a = 172.856 A/m, k = 232.652 A/m, c = 0.652 and αj = 417×10-6. As the frequency is low, the 
lamination model has not been used. The relaxation procedure is necessary for the simulation. 
With it, the NR algorithm converges for all the time steps. Without it, the convergence is not 
reached at the first time step. In average 5 NR iterations are performed per time step on this 
numerical example. We have simulated 4 periods with 200 time steps per period. The steady 
state is reached at the second period. The simulation lasted one hour and 23 minutes on a PC 
with Intel® i7-3740QM at 2.7 GHz CPU with 8 cores. 

 

 
Figure 8. Currents in the two coils versus time. 

 
Figure 8 shows the measured and computed currents in the two coils. Results exhibit an 

excellent agreement. We notice that the currents are almost sinusoidal functions of time. The 
RMS value error on the current is 3.9 % and 4.9 % in the first coil and in the second coil 
respectively. 
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Figure 9. x-components of b function of time at point P1 (pick-up coils C1-C2). 
 

 

Figure 10. z-components of b versus time at point P1 (pick-up coils C1-C2). 
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Figure 11. bxbz-locus at point P1 (pick-up coils C1-C2). 

In figures 9-11 and 12-14, the flux density at points 1 and 2 respectively is depicted. The 
measured and computed curves have the same shapes and a small difference between 
computed results and measurements is observed. This validates our model and our approach, 
though it is valid for isotropic materials only. The authors of [12] used an anisotropic 
hysteresis model, which explains the smaller error there.   

 

 

Figure 12. x-component of b versus  time at point P2 (pick up coils C3-C4). 
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Figure 13. z-components of b versus time at point P2 (pick up coils C3-C4). 

 

Figure 14. bxbz-locus at point P2 (pick up coils C3-C4). 

5. CONCLUSIONS 

We have simulated a square domain test case and two 2D transformer models using an 
inverse JA vector model for isotropic magnetic materials. On the square domain test case, we 

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1B
z 

(T
)

time (s)

Measured Bz
Computed Bz

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8B
z 

(T
)

Bx (T)

Measurements
Computations



C. Guérin et al.: Using a vector Jiles-Atherton hysteresis model     21 

Copyright © 2016 John Wiley & Sons, Ltd  Int. J. Numer. Model. (2016) 
  DOI: 

have analyzed the number of time steps per period. A number of 200 time steps per period has 
been determined as the minimum to reach the convergence with the relaxation procedure used 
with the NR algorithm. Good convergence has been observed with the other test cases with 
the proposed approach. We have simulated a three-phase transformer on which we computed 
the currents in the three phases and the b(h) loop at a point in the T-joint area, where the fields 
are rotating. At reduced voltage, an unstable behavior has been observed with the hysteresis 
model: a drift of the flux density function of time is observed. This drift is not present at rated 
voltage, where almost the whole magnetic circuit is saturated, which contributes to stabilize 
the model. We have validated the model on another numerical example, the TEAM workshop 
problem 32. We computed the currents in the coils and the magnetic flux density function of 
time at two points in the T-joint area. On this numerical example, we obtained a good 
agreement between computed and measured results. We think that the JA vector model is well 
adapted to the simulation of electrical devices such as transformers or electromechanical 
actuators, with a supply of only one frequency, i.e. without harmonics, as this model does not 
lead to closed minor loops. We think that this JA model is well adapted to simulate the 
transient operation of fast-acting electromechanical actuators, accounting for remanence in 
the ferromagnetic parts, which will be the subject of a further paper. In a future work, 
instability problems of the hysteresis model with reduced currents and voltages must be 
overcome. Extensions to 3D analysis and anisotropic materials are also envisaged. 
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