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SUMMARY

This paper deals with the use of a Jiles-Athertentar hysteresis model included in 2D finite elememdelling. The
hysteresis model is only valid for isotropic maaési It is implemented with the vector potentiahfialation in 2D along with
electric circuit equations to account for a possiskternal circuit. The Newton-Raphson algorithraded with a relaxation
procedure, whereby at each iteration, the relarat@efficient is sought so as to minimize the Eledin norm of the residual
of the finite element nonlinear system of equatio®e have simulated several numerical examples thiéh proposed
approach. First, simulations on a square domairme warried out so as to validate the model. We lantber simulated a T-
shaped magnetic circuit (exhibiting rotating flla)d a three-phase three-limb transformer model.tfkese two cases, the
eddy current losses in the laminations are takeéa actcount by a low-frequency model. We have finglerformed
simulations on the TEAM workshop problem 32 whidnsists of a three-limb transformer with two wingln for which
current and local magnetic flux density measuremang¢ available. We obtained a good agreement bateemputed and
measured results.
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1. INTRODUCTION

In this paper, the 2D magnetic vector potentiahfolation is used with the finite element
(FE) method, the Newton-Raphson (NR) method andirti@icit Euler scheme for time
stepping. Loss computation accounting for magnhktisteresis and eddy currents in the
lamination stacks of electrical devices, such aasformers and rotating machines, is often
performed with a posteriori loss models, i.e. aftex resolution. However, when accurate
power balance and/or global electrical quantities sought, e.g.0 when a circuit coupling
exists, this a posteriori approach may not be cefit anymore and the hysteresis model must
be included directly in the FE equations.

Such hysteresis models can be either scalar oonalcfl]. A scalar hysteresis model has a
scalar input u(t) and a scalar output f(t). For neg materials, a scalar hysteresis model
would compute for instance the x-component of fln& fiensityb as a function of the x-
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component of the magnetic fiekd A vector hysteresis model is a model which hasaor
input u(t) and a vector output(t), for instanceh(t) andb(t) respectively. A scalar hysteresis
model is not directly usable for a FE simulationedéctric devices such as transformers,
actuators or rotating machines as the magnetid fiak an a priori unknown direction. More
importantly, in some areas of the magnetic cirafithese devices, such as in T-joints of
transformers or in the stator yoke of rotating nuaes, the field is rotating. Therefore a vector
hysteresis model is needed. Such vector modely &pglther anisotropic magnetic materials
or only isotropic ones. According to the FE formigda used for the governing magnetic
equations, the hysteresis model is either dire¢terwthe magnetic fieldh is the input
variable, or inverse, when the flux denditys the input variable.

The Jiles-Atherton (JA) hysteresis model [2] is &lyd employed, because of its small
number of parameters, its relative ease of impléatem in FE software and its low
computational cost compared to other models sudPra@isach’s [1] [3-5]. Multiple variants
of the JA hysteresis model have been proposedire[g] [6-16]. A scalar inverse JA model
is described in [6]. The vector extension of thalacdirect JA model has first been proposed
in [7] for anisotropic materials. Then, the authot$8] [9] proposed an inverse vector model,
based on [6] [7]. A direct vector model has subsetly been developed and used in 3D
simulations in [10-12]. Reference [9] deals witle thrush currents of a transformer using the
JA inverse vector hysteresis model of [8] with afrigpic materials in its core, so the
remanence is taken into account in this part. &diand inverse JA vector hysteresis model
implemented with the NR method and valid only &otropic magnetic materials is proposed
in [13] [14].

Alternatives to the Preisach and JA hysteresis msoddnich are well-suited for FE
implementation have also been proposed in theatitee. A model based on a chemical
reaction analogy is presented in [17] and can bectlor inverse, scalar or vector, and usable
for anisotropic materials. An intrinsically vectanodel is proposed in [18] for isotropic
magnetic materials and relies on a consistent tbéymamic formulation. The original model
Is direct; its inversion is developed in [18]. Qthetrinsically vector models are based on
vector play operators for isotropic magnetic malsr{19] [20]. Models from [18-20] have
mathematical similarities with those used in meatgrn particular for kinematic hardening
plasticity.

Note that the identification of the hysteresis nmisde widely discussed in the literature e.qg.
in [21] [22] for JA parameters or in [23] for idéfidation of the Bouc—Wen hysteresis model.
The methods for the identification of the JA partareare not discussed in the following of
this paper.

In the present paper, we consider the vectorizednddel proposed in [13] [14] together
with a 2D magnetic vector potential (MVP) formutatj which requires the inversion of the
hysteresis model.

In the case of non-linear non-hysteretic materihis,choice of the NR method is obvious,
as it offers a quadratic convergence rate nearsttetion. However, in the presence of
hysteretic materials, the use of the NR is someudsa evident because convergence is less
often reached. The fixed-point method is often usgtth a hysteresis material, where the
convergence is ensured in most cases but is [[@&arThe authors of [6] [8-12] [16] use the
differential permeability technique instead of thR one to solve the FE nonlinear system of
equations. However, they report in [11] [12] stépilnd convergence problems with the
direct JA vector hysteresis model and propose gmmeedures to overcome them: restarting
at several previous time steps and time step riegudn this paper, we explore to use NR
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method, because of its quadratic convergence acalibe we have experience with it in our
respective FE software. To our knowledge, a vedfohysteresis model implemented with
the NR method is only proposed in [13] [14]. Thevelty of the present paper consists in
using the hysteresis model of [13] [14] with ancaithm to determine the relaxation factor at
each iteration of the NR algorithm presented in|,[24 ensure the NR convergence in most
cases.

The paper is organized as follows. First, the nucakaspects of the method are recalled.
Then, the method is applied to the simulation ¥esa numerical examples: one relative to a
three-phase transformer taking into account the/ eddrent losses in the laminations with a
low-frequency model and a three-limb transformehwivo windings for which experimental
data (currents and local magnetic flux density measents) is available.

2. NUMERICAL METHOD

2.1. Magnetic vector potential formulation

We consider a simply-connected dom&nin the xOy plane. We use the 2D MVP
formulation. The magnetic vector potentgahas only one non-zero z-component orthogonal
to the xOy plane defined by:

b=curla, 1)

whereb is the magnetic flux density. Applying Green’srfarlas to Ampere’s lawurl h =j,
where h is the magnetic field angl the current density, and considering the boundary
conditions, the weak form of the MVP formulatioroistained:

churlwmdQ:ijv[de, 2)

whereW is a test function associated wahFaraday’'s lawcurl e = —db /dt allows to write
the electric fielce as follows:

_ _da_
e= pm gradV, 3)

where V is the electric scalar potential. In 20e #Oy plane is an equipotential of V in each
conductor section. The constitutive material lawsaccounted for:

b =b(h) orh =h(b) andj = oe, (4)

whereo is the conductivity (which is supposed scalar emalstant).

The domainQ is discretized with nodal finite elements. The metic vector potential is
expanded in terms of the vector shape functidhsi.e. W;=(0,0,w)" with w; the scalar shape
functions and @he associated values at th@ades:
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"p
aZEWi g . (5)

The residuals Rare obtained from equation (2) taking into accdhetshape functiond/;.
The non-linear system of equations to solve cosisisthe gresiduals Rset to zero:

Ri :IQ(curIWi h-W; )dQ,1<i<n, (6a)

The coupling with an external circuit is described25]. Herein the additional unknowns

are the integrated-in-time electric potentigilsat nodes of the circuit and the currents in the
coils:

t
w(t)= [ V(). @)
where V is the electric potential.

The coils and the solid conductors are taken istmant with the other components of the
circuit, by adding circuit equations to the magnetystem of equations (6b). To impose a
zero net current in a solid conductor, a circuitigepn is added to system (6b) which
corresponds to the solid conductor fed by a cursentce with a zero imposed current:

Jr imdrg=1=0, ®)

wheren is the normalized Oz-direction vector, dndhe section of the solid conductor.

2.2. Jiles-Atherton vector hysteresis model

We recall in this part the JA inverse vector hysses model described in [13] [14]. This
model corresponds to the vector extension of théasone presented in [7] but limited to the
isotropic case. The model is a true vector oneabse it computes the magnetic field), i.e.
the three components df(t), function of the magnetic flux density(t), i.e. the three
components ob(t). Some vector JA hysteresis models have beguogsal for instance by [7]
[8] [10-12] for anisotropic materials. These modet®d 5 parameters for each direction (x, v,
and z) of the Euclidean space, with a total of A&ameters. The model proposed by [13] [14]
and recalled in this paper is a model only forrigpic materials, with the same five parameter
values for the x-, y-, and z-directions. These fdagameters are commonly denoted hy am
k, c anda;, see e.qg. [2].

The total magnetizatiom consists of a reversible part, added to an irreversible part
Mirr-

M =Mygy+ M - (9)
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An effective field heis defined, which is the field seen by the magnetomains as
explained in [2]:

he=h+ajm. (10)
The anhysteretic magnetizatiomy, is supposed in the same direction as the effefigle
he, with magnitude g,

h
Man= man(he)h_z , (11)

where mpis defined by the Langevin function:
h a
he) =mg| coth—= |— |,
Mar(he) ms[ r{aj hJ (12)
with notation X =X| for the norm of a vector quanti¥. Note that equation (12) supposes

that the considered material is isotropic. We abthe differential anhysteretic susceptibility
dm,/dhe:

dmg, _ 1 1 dmy(he) 1
=~ man(he) 1-——=h g |[+—enlle) = pp

wherel is the unit tensor anid:he the dyadic square df.. According to [7], we consider a
force Xy which impedes the wall displacements due to timmipg sites. This force is in the
direction ofmg—miy:

2= (M=)
f K an™ 'irr /- (14)

According to [7], the irreversible magnetizationaolging dn;, is considered in the
direction ofys’, so:

dmpy :X_f" 15
‘dmirr‘ ‘Xf" (15)

The vector dhy, is proportional togs [dhe and is zero wheRy [dhe is negative or null. So,
dmiy, is written as follows:

iy :% (xf )", (16)

with the notation of [7]: (x*) =xifx>0, (x)+ =0if x< 0. We see that:
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At —""an i ZQ,Wheredn:man_mirr . (17)

In the case wherehdXy > 0, the change in irreversible magnetizationeipressed as
follows:

_1dm

My —Em(am [he), (18)
thus:
dmirr zgémém
dhe K [om (19)

In the case wherehd){;’ < 0, the change in irreversible magnetization issaigred to be
Zero:

Ay -0.
che (20)

The equation which corresponds to the bulge of lafarasmall displacement is:
Myey=C(Man=Mi). (21)
By combining (9) and (21), the total magnetizai®obtained:
m=(1-¢)my, +cmyp,. (22)

Irreversible magnetization is expressed in termsthed total magnetization and the
anhysteretic magnetization:

 _Mm-cmyy
Mirr 1 (23)
We get:
dMap _ dMgp dMe _ dman(:“_a : d_mj
dn  dme dn  dmg . Jdch)’ (24)
dmyy _ dmpy dme _ diyy (14_0(_@}_
dn  dme dm  dme "’ dh (25)

Finally, we obtain the following equation which gas the model:
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dmiry c dMan _
dhe  dhg (26)

dm -1 .

—=[1-q; with y =(1-c¢c

ah [ JX] B4 X ( )
As b= uo(h +m), the differential permeability tensor is computeith:

@— 1+d_m
ah Pt ) (27)

The differential permeability tensor (27) is a 2€2al matrix, which can easily be inverted.
Doing so, we obtain the differential reluctivitynsor d/db:

dh_(do)™
do \dh) (28)
We use the implicit Euler scheme to solve the tdoeiain finite element system of
equations. Left be the time step, t the previous instant arxt the current instant. We know

the state at the previous instaht, ;) and the flux density at the current instagaty.. The
field hi+at at the current instant, is then obtained with:

et dh db ) |,
N =y +J't (%Ejdt : (29)

Relation (29) is computed at the level of the matdaw, i.e. at each Gauss integration
point during the integration and assembling offResystem of equations (see subsection 2.4
below). The integral of (29) is computed by a tistepping procedure with a discretisation of
10 steps in the interval [t At].

The JA model presented in this subsection is ajreadilable in the GetDP software [26]
and has been recently implemented in the Flux®so# [27]. The implementations of the
methods and simulations of the numerical examgias follow have been done with Flux®
software.

As stated by [7], the equation (29) is implicit base the sign of ld¥; changes the
expressions to compule To overcome this difficulty, we have chosen tbkofving strategy.
First we computé, supposing dgXs > 0. Then we compute the actudi s and if it is
negativeh is recomputed withm;,/dhe = 0.

The hysteresis model computasa:, with givenbiat, by andh;. For hysteresis models in
general, the differential reluctivity and permedbpitensors depend on the present staib)(
of the material as well as on its “history”. In th& vector model presented in this subsection,
the history is simply contained in the magnetiddfiat the previous instart;. It is then

necessary to store the magnetic fibjgh; computed by the model at the end of a time step,
because it becomes the magnetic fibjdat the next step. We have chosen to store this
quantity for each Gauss integration point usedHerintegrals of (6a).

As with JA hysteresis models in general, this vedttgsteresis model does not lead to
closed minor loops (centered or not centered)gepsrted e.g. by [7]. Some papers propose

Copyright © 2016 John Wiley & Sons, Ltd Int. J. Numer. Mode(2016)
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modifications of JA scalar models which represertuaately the minor loops, e.g. [16].
Unfortunately, to our knowledge, no paper propagesor models with this improvement.

2.3. Low frequency lamination model

In the 2D finite element model, it is possible a&e into account the eddy current losses in
a laminated core of the magnetic circuit due toithplane flux density [3]. For the sake of
simplicity, we assume a unitary stacking factor. vdasider the case where the frequency is
low, i.e. the skin effect is assumed to be nedigilso the flux density is approximately
constant over the thickness of a lamination. Framle =—db/dt, | = 0jame, curl h =j, we

can find the following expression:

O1amd? db
hg(t)=halt) + =7—=2. (30)

whereh; is the magnetic field at the surface of a lamorath, andb, the average magnetic
field and flux density respectively, d the thickeesf the lamination, and,, their
conductivity (assumed scalar and constant). THdsfie, andb, are linked by the hysteresis
model presented in subsection 2.2, vintk h andb, = b.

The total power density supplied to the laminafi¢) [W/m’] reads:

p(t) = hs(t)BdSTa- 31)

The eddy current loss density(p [W/m?], usually referred to as “classical losses”,
corresponds to the second term of the right hashel (HS) of (30):

pei(t) 12 |\ at

(32)

And the power gt) [W/m?, usually referred to as “hysteresis losses” apomds to the
first term of the RHS of (30):

pn(t) = ha(t) . (33)

dt

In case of time-periodic supply of fundamental freqcy f, to obtain total average loss

density p, (averaged over a time period), the total powersidgr{31) is integrated over one
fundamental period T = 1/f:

1T by
Pm =;jo hs(t)%dt- (34)

Applying the implicit Euler scheme, (30) becomes:
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2
Ojamd

h at+At +W( at+At _bat)’ (35)

st+at =N

with hy,, A given by (29).

To introduce the lamination model in the FE moded h(b) law is modified, fromhy(bs)
given by (29) tohg(bs) given by (35). The differential reluctivity tensis modified as well
from dhy/db, given by (28) to Hy/dby;

dhy _dh, o 0°
= + 1. (36)
do, db, 12At

2.4. Newton-Raphson method and time stepping

The NR method is applied to solve the non-linearsygtem[13] [14] with the implicit
Euler scheme for time stepping. The extension éogémeralize®-method (with 0.5 0 < 1)
does not present any difficulty. The circuit eqaas are not considered here explicitly for
sake of simplicity, but they are implemented in soéware. The k-th NR iteration, k=1,2,...,
produces the k-th approximation:

(k) (k-1) (k)

ag+at =g+t T Dagipts (37)

k
where the incremem&at(J,)At follows from linearization of the system of eqoats (6b)
k-1
around the (k-1)-th solutiorat(+At), with a the relaxation factor. The iterative scheme is
0
initialized with at(+)m =a; . To obtain the linearized system of equations, rémduals R
given by (6a) are derived with respect to the nedhles a(l<j<n,):
k) —
38aldy =R, (38)

with

dR ¢+t j = (k-1)
J=| At and R=R a ,

t+At

wherea, Aa andR are the vector of the nodal valugsthe vector of the increments, and
the vector of the residuals Rspectively. The Jacobian matdxand RHS R are function of

k-1
the (k-1)-th solutiorat(+m). The (i,j) entry in the matrid is [28]:

Copyright © 2016 John Wiley & Sons, Ltd Int. J. Numer. Mode(2016)
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= e
J'J CUI" W [E ] i [Eda]aj(k_l) dQ. (39)

t+At t+At
dh dj
By using the chain rule and (1), (3), (4) and (B%d_aj andd_aj terms are written:
(k-1)
(s (s 456 (o
a (k-1 k-1 a
aj At b t+At ag,ktllgt At
alia ~a
di di delkd) I m 1
(3) (3] getd) el At
da ) (x-1) de )(k-1) “da (k-1) da At
&) teat t+AL i, tAt
L _a(k_l)

j,t+At

The final expression of the (i,j) entry of the Jaiem matrixJ and RHS R is thus:

5= [ curtw, [ﬁﬁj Eurl Wi + =W, W | dQ,
Q db ), At
t+At
R :IQ (Wi Otent —curl W Dht+At)dQ' (42)

In (42), if the lamination model is not usdd,;x; is given by (29) anc(dh/db)b is
t+At

given by (28). Otherwiséy. is given by (35) anddh /db), by (36). The magnetic flux
t+At

density is given by (1) and the current dengity; by (3) and (4c). The magnetic field, 1,z
and the differential reluctivity tensdth, /db,),  are computed by the JA vector model

presented in subsection 2.2. In (42), the magfiieft h,, . is function ofbg(t_f)m, h,t and

b,¢, and the differential reluctivity tensc(nlha/dba)ba’t+At is function ofhgt+)At, bg‘t—f)&,

h,t andb,;. Itis necessary to store the magnetic fibﬁfﬂrm computed by the JA model at

the end of a k-th NR iteration, because it becothesmagnetic fleld](aﬁ)At at the next NR
iteration, which is necessary to compL(ttha/dba)b - We store this magnetic field for

each Gauss point.
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2.5. Optimal relaxation coefficient method

In order to ensure the convergence of the NR methitid the hysteresis model in most
cases, a relaxation factaris employed, which is calculated with the meth@satibed in
[24]. This relaxation factoo is the same for all the unknowns and intervene@M). It is
determined at the k-th NR iteration so as to mimenihe square total residual"Wof the
linearized system of equations:

Np
W(k)(d) ] izl(REk) )2 ' (43)

We have to search for the optimal relaxation faagy which minimizes WP, with
0 <0< 1. W is function ofa, as theR™) are functions ofr as well. A possibility is to

use the binary search method, the golden sectierooanother minimum function searching
method, but it would be too computationally expeasas mentioned in [24]. Finding an
accurate value af, is not needed, as the aim is to ensure the NRergence and to reduce
the whole CPU time of the simulation. So anotheatsyly, proposed in [24], consists in
trying consecutive integer powers of %%:

a(m)=2/2", (m= 0,1,...,Mpay) - (44)

Notice that the obtained value @fis not the optimal value, (cf. figure 1). The objective
function W¥ is computed with an iterative procedure startinthnwn = 0. At each iteration,
the residuals must be computed, i.e. the RHS ofitlearized system of equations must be
integrated and assembled, which takes a certain @R& The process is stopped when the
objective function starts to increase at the meitrent iteration, such as (cf. figure 1):

Wk (a(m+1) > wlk)(a(m)),

Copyright © 2016 John Wiley & Sons, Ltd Int. J. Numer. Mode(2016)
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W
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Figure 1. Example of a W(O() curve obtained at théINR iteration of a test-case. The value of m fobpdhe
algorithm is m = 2, sa = 0.25.

and the m-th relaxation coefficient is adopted fbe current k-th NR iteration, i.e.

O((m):1/2m. We have tuned the maximum number of iterationgayrs0lving some
numerical examples with the hysteresis model ptegem subsection 2.2 and adopted
Mmax= 12. Numerical tests with an alternative minimuimction searching method
(“Residual Minimization” [29]) exhibited a lack ebbustness in terms of convergence.

With the relaxation procedure (44) presented iis gbsection, the NR algorithm has
converged for every time step of all the numerigghmples presented in this paper. This
procedure is time consuming, because in some 2btigah cases with the JA hysteresis
model, the computation time taken by this procedizme be 60 % of the total computation
time of the solving process. However, without tipgocedure, the convergence is not
achieved.

3. NUMERICAL EXAMPLES
3.1. Square region example

We have first tested the method on a simple cassquare domain (1 m side) with
unidirectional pulsating or rotating field descub@ [14]. The JA model coefficients used for
this study are those found in [14] and correspond sbme electrical steel (FeSi):
ms = 1.1455x10A/m, a = 59 A/m, k = 99 A/m, ¢ = 0.55 ang = 1.3x10". We have verified
that in the case of a pulsating field, the JA veah@del gives the same results as the scalar
one, according to the theory [7]. In the rotatiomake, the b and h loci are circular as
expected.

We have also analyzed the number of time steppgrévnd on the square domain test-case
with pulsating imposed flux density, with two maaés:

- 1%material: the electrical steel of [14], and

2" material: car body steel with JA model coefficientn = 1.5441x10A/m,
a=672.919 A/m, k = 1138.68 A/m, ¢ = 0.78054 and 1.0648x10.
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The mesh of the square domain consists of 1016ndeoader triangular elements. We
performed simulations with 200, 300, 400, 800 a6d0Ltime steps per period of the imposed
field. In the case of the first material, the comence of the NR algorithm was achieved for
all the time steps of all the simulations and #&®utts were the same. In the case of the second
material, we observed some convergence problentiseoNR algorithm with the relaxation
technique for the simulation with 200 time steps period. With the other simulations, i.e.
with a number of time steps per period greaterquakto 300, the convergence was reached
for all the time steps and the results were theesam

3.2. T-joint and three-phase transformer

We have then performed simulations of two test&as@acerning a three-phase transformer
described in [3] operating at 50 Hz:
— a T-joint with imposed sinusoidal phase-shiftedrents in two coils withJ,,= 0.01A or
Imax= 0.2A (cf. figure 2), and
- the whole three-phase transformer described irop@rating at no load at 100 Vrms or
230Vrms (cf. figure 3).
The coils have 220 turns in both test cases. Thenddel coefficients used correspond to
non-oriented M330-50A steel sheet [21]; #1.28x16A/m, a = 26.1 A/m, k = 52.3 A/m,
¢ =0.13 andy, = 7.45x10. A 1 s time interval, i.e. 50 periods, have beemutated, with 200
time steps per period by default. Simulations wWifi® and 800 time steps per period produce
the same results. So we concluded that 200 times sper period were sufficient. The
amplitude of the imposed currents or voltages areashly increased from 0 s until 0.8 s by a
smoothed step function sf(t) so as to reduce thelavhimulation time to reach the steady

state and to converge at every time step (sf(tp=00.5c0s(t/t;elay) If O <t <trelax Sf(t) =1

if t > trelax trelax= 0.8 S). On the three-phase transformer, we kréae to impose the 100 V
or 230 V voltage at the beginning of the simulati@nthout smoothly increasing it by a
smoothed step function, with 200 time steps peiodeand without the lamination model. For
the simulation at 100 V, the convergence is readdtedll the time steps and we did not
observe high inrush currents. For the simulatioB3t V, the algorithm diverges after 0.0038
s, probably due to high inrush currents. At theifr@igg of the simulation, i.e. at t = 0s, the
magnetic fieldnh and the flux densitp are set to O in the whole regions where the hgsier
model is set, i.e. in the magnetic circuit. The dation of several periods is necessary to
obtain the periodic steady state. The curves degbict the figures 4 and 5 of this subsection
3.2 are plotted for the 50th and last period, @poading to time interval [0.98 s; 1 s].

Copyright © 2016 John Wiley & Sons, Ltd Int. J. Numer. Mode(2016)
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Figure 2. T-joint geometry and mesh.

Magnetic
circuit
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A coil Phase C

coil

Phase B coil

Figure 3. Three-limb transformer.

Both test cases have been simulated in two cases:

— Case 1: without the lamination model.

— Case 2: with the lamination model. A lamination @5 mm thick and has a

conductivity of 2.03x10S/m.
With the T-joint test case, we have also taken atcount eddy currents in the z-direction by
considering that the magnetic circuit is solid, net laminated, with a 500 S/m conductivity
and a zero net current (referred to as case ifotlowing).

In average 7 and 8 NR iterations are performed tpee step for the transformer at
100 Vrms and 230 Vrms respectively.

With a current of 0.01A (peak value) in the coifglte T-joint and with the transformer at
100 V, a drift of flux density and also a drift mfagnetic field, however to a lesser extent, are
observed after 0.7 s in cases 1 and 2. It is madhbcaed in case 3 (with massive magnetic
circuit) of the T-joint, but with also very diffeméresults. With a current of 0.2 A in the coils
of the T-joint and with the transformer at 230 Ne tsimulation results do not exhibit any drift
of flux density in time. An explanation may be thiat these cases, most of the points of the
magnetic circuit are saturated and this contribtdestabilize the model.
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Figure 4 shows theafhs and Qyhs-loops obtained at point 1. The appearance is dlthes
same as the loops of figure 14 of [3]. However, riegerials of laminations are not exactly
the same: M330-50A for present paper and V330-50[3].

= : : : : , :
&200  -150  -100 Q 0 100 150  |200
| Ba [T] ¥
. )
04 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
g
77777777777777777 ‘ H, [A/H?]
200 100 100 200

Figure 4. hhs- and Qyhs~loops at point 1 of the transformer for a voltag30 V with the lamination model.
Top: with the approach of the present paper. Batfagnre 14 of [3].

Figure 5 shows currents in the three phases as\@idan of time at the last period of
simulation, with and without the lamination mod&he amplitude of the current is slightly
greater with the lamination model than without,eapected, because of the greater loss and
supplied power in the case of the lamination model.

Copyright © 2016 John Wiley & Sons, Ltd Int. J. Numer. Mode(2016)
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Figure 5. Transformer phase currents for a volt#g230 V. Dashed line: without the lamination mqdel
continuous line: with the lamination model.

3.3. TEAM workshop problem 32

We have also performed a 2D simulation of the TEAbtkshop problem 32 described in
[30]. The device consists of a single-phase 3-linamsformer with the windings placed on
the outer limbs (cf. figure 6). The ferromagnetarec consists of five 0.48 mm thick non-
oriented laminations. This workshop problem congwifour different cases. As in [12], we
have simulated the CASE3 (so denoted in [30]). filee windings are fed by 14.5 V (peak)
voltage sources with a phase shift of 90° at auregy of 10 Hz (cf. figure 7). So the
magnetic field and flux density are rotating in thgoints. A vector hysteresis model is
therefore necessary.

20.5 28. '
51 fI 30
) § Py v )
P f
P>
o NN \
F|r§|t |RD Second
col coil
D o )
30
V4
l « 30,4225 30, 4225, 30
y

Figure 6. Problem 32 transformer: geometry withehisions (in mm) and positions of the pick-up cdfliek-up
coils C1-C2 and C3-C4 described in [30] correspmngoints i and B respectively.
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V1 = Vgsin(wt =
1=Vosin@) o _gyqg V2= Vocos) o 104
\/ I \/ L]
First coil ﬂ @ Second coil
R =0.320Q E R = 0.32Q

Figure 7. External circuit (y= 14.5V, f = 10 Hz).

In [30], the data of the ferromagnetic materialasw@ements, i.e. h and b for several
centered loops, are provided in all directions. ifiedent magnetic behavior in the vertical
(rolling direction, RD) and in the horizontal ditem (transverse direction, TD) is observed.
Using an optimizing procedure, the authors of [h@ye found the JA model coefficients in
the RD and in the TD from the data of the ferronegnmaterial measurements provided in
[30]. However, as the hysteresis model describedhen present paper is only valid for
isotropic magnetic materials, we have adopted a@ineeshysteresis data in both directions. We
took the JA coefficients corresponding to the RDirfd in [12], i.e. = 1.33x16A/m,
a=172.856 A/m, k = 232.652 A/m, c = 0.652 and 417x10. As the frequency is low, the
lamination model has not been used. The relaxatiooedure is necessary for the simulation.
With it, the NR algorithm converges for all the @mteps. Without it, the convergence is not
reached at the first time step. In average 5 NRitittns are performed per time step on this
numerical example. We have simulated 4 periods 2@ time steps per period. The steady
state is reached at the second period. The siranl&sted one hour and 23 minutes on a PC
with Intel® i7-3740QM at 2.7 GHz CPU with 8 cores.

1.5 -
———-Measured current of 1st coi

———-Measured current of 2nd cajl

Computed current of 1st coil

Computed current of 2nd cai
' A ' | AFime (s
0.04 0.06 ofime (sl 1

Current (A)
o
o ol

©
o

1
[N
1

-1.5
Figure 8. Currents in the two coils versus time.

Figure 8 shows the measured and computed curnertteeitwo coils. Results exhibit an
excellent agreement. We notice that the curremsabnost sinusoidal functions of time. The
RMS value error on the current is 3.9 % and 4.%he first coil and in the second coil
respectively.
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Figure 9. x-components of b function of time atrpid?, (pick-up coils C1-C2).
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Figure 10. z-components of b versus time at poirfplek-up coils C1-C2).
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Figure 11. kb,-locus at point P(pick-up coils C1-C2).

In figures 9-11 and 12-14, the flux density at peih and 2 respectively is depicted. The
measured and computed curves have the same shagea amall difference between
computed results and measurements is observedvaligstes our model and our approach,
though it is valid for isotropic materials only. @hauthors of [12] used an anisotropic
hysteresis model, which explains the smaller dtrere.
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Figure 12. x-component of b versus time at pojnpitk up coils C3-C4).
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Figure 13. z-components of b versus time at poirfplek up coils C3-C4).
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0.8
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Figure 14. kb,-locus at point P(pick up coils C3-C4).

5. CONCLUSIONS

0.1

We have simulated a square domain test case an@bwtvansformer models using an
inverse JA vector model for isotropic magnetic mats. On the square domain test case, we
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have analyzed the number of time steps per peiladimber of 200 time steps per period has
been determined as the minimum to reach the coameggwith the relaxation procedure used
with the NR algorithm. Good convergence has beesemied with the other test cases with
the proposed approach. We have simulated a thraseghansformer on which we computed
the currents in the three phases and the b(h)doappoint in the T-joint area, where the fields
are rotating. At reduced voltage, an unstable biehdnas been observed with the hysteresis
model: a drift of the flux density function of tini® observed. This drift is not present at rated
voltage, where almost the whole magnetic circugasurated, which contributes to stabilize
the model. We have validated the model on anotherenical example, the TEAM workshop
problem 32. We computed the currents in the caits the magnetic flux density function of
time at two points in the T-joint area. On this rarival example, we obtained a good
agreement between computed and measured resulthivehat the JA vector model is well
adapted to the simulation of electrical deviceshsas transformers or electromechanical
actuators, with a supply of only one frequency, without harmonics, as this model does not
lead to closed minor loops. We think that this JAdel is well adapted to simulate the
transient operation of fast-acting electromechdracaéuators, accounting for remanence in
the ferromagnetic parts, which will be the subjetta further paper. In a future work,
instability problems of the hysteresis model widduced currents and voltages must be
overcome. Extensions to 3D analysis and anisotnopiterials are also envisaged.
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