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a Department of Mathematical Analysis, Ghent University, Ghent, Belgium
b Department of Electrical Engineering and Computer Science, Montefiore Institute, University of Liege, Liege, Belgium

Received 28 October 2016; received in revised form 2 March 2017; accepted 30 March 2017
Available online 25 April 2017

Abstract

We derive and analyze a mathematical model for induction hardening. We assume a nonlinear relation between the magnetic
field and the magnetic induction field. For the electromagnetic part, we use the vector–scalar potential formulation.

The coupling between the electromagnetic and the thermal part is provided through the temperature-dependent electric
conductivity and the joule heating term, the most crucial element, considering the mathematical analysis of the model. It acts
as a source of heat in the thermal part and leads to the increase in temperature. Therefore, in order to be able to control it, we apply
a truncation function.

Using Rothe’s method, we prove the existence of a global solution to the whole system. The nonlinearity in the electromagnetic
part is handled by the theory of monotone operators. To supplement our theoretical results we provide a numerical simulation using
real physical constants.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

There are many papers dealing with mathematical models of the induction hardening process. Some of them
provide various numerical schemes e.g. [1–6]. But they omit mathematical or numerical analysis of their models
and numerical schemes. Other papers deal with the well-posedness of the problem and provide theoretical results
e.g. [7–11]. The topic of induction hardening has been broadly covered in papers [12,13] and [14]. However, all
manuscripts tackling the theoretical side of the induction hardening phenomena present mathematical models with
linear dependency between magnetic and magnetic induction field. The papers [15,16] studied a mathematical model
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Fig. 1. Illustration of the domain.

with a nonlinear relation between those two vectorial fields (which better reflects the reality), but the study was
restricted just to a conductor, i.e. the domain had only one component. The authors proved solvability for a formulation
with either magnetic induction or magnetic field as unknown. We present the vector–scalar potential formulation for
a nonlinear setting including conducting and non-conducting parts, i.e. the domain consists of multiple components.
This means that material coefficients may have jumps across the interfaces. To our best knowledge nothing similar
has been done before.

1.1. Derivation of a mathematical model

We work only with a simplified model of induction hardening process (see Fig. 1). The time frame is denoted by
[0, T ]. Let Ω be a bounded sphere in R3. The workpiece and the coil are represented by Σ and T , respectively. Both
Σ and T are closed subsets of Ω and the following holds

Σ ∩ T = ∅, and ∂Σ , ∂T, ∂Ω are of class C1,1. (1)

Conductors are affected by temperature, hence we separate them from the rest of the domain Ω by denoting π = Σ∪T .
Current in the coil is modeled via an interface condition on Γ . By ν we denote the standard outer normal unit vector
associated with surfaces of materials under consideration.

We start deriving our mathematical model with introducing the classical Maxwell equations (for reference,
see [17])

∇ · D = ρ, (2)

∇ · B = 0, (3)

∇ × E = −∂t B, (4)

∇ × H = ∂t D + J. (5)

Here, D stands for displacement current and ρ is the density of electrical charge. The magnetic induction field, the
electrical field and the magnetic field are denoted with B,E and H, respectively. At last, J indicates the source current.
For the clarity, we note that equations above are true in the whole domain Ω .

In models dealing with eddy currents, the time variation of displacement current is insignificant, therefore we
neglect it. We present the nonlinear relation between H and B in the following form:

H := µM(B) =
1
µ∗

m(|B|)B. (6)
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Magnetic permeability µ =
1
µ∗ might behave differently in the workpiece and in the air, therefore, we specify it as a

split function

µ(x) =

{
µπ (x), if x ∈ π̄ ,

µA(x), if x ∈ Ω \ π̄ . (7)

Both µπ and µA are strictly positive and bounded. There is no jump in the tangential component of H along the
boundaries between different materials, i.e.

[µM(∇ × A) × ν]∂π = 0.

The vectorial field M is supposed to be potential and its potential is denoted ΦM, i.e. ∇ΦM = M, cf. [18]. Moreover,
we assume that M is strictly monotone and Lipschitz continuous. Furthermore, we introduce Ohm’s law

J = σE. (8)

Function σ represents the electric conductivity and it is defined as follows

σ (u(x, t)) =

{
σπ (u(x, t)), if x ∈ π , t ∈ [0, T ],
0, if x ∈ Ω \ π , t ∈ [0, T ], (9)

where u(x, t) is a function of temperature in the workpiece and the coil. We consider σ to be continuous, bounded
and strictly positive in π . Since Ω is a simply-connected domain and (3) is true in the whole Ω , we use ([19, Theorem
3.6]) to obtain exactly one magnetic vector potential A ∈ H(curl ;Ω ) with the following properties:

B = ∇ × A, ∇ · A = 0, A × ν = 0 on ∂Ω . (10)

Substituting (10) into (4) we get

∇ × (E + ∂t A) = 0 in Ω . (11)

Using (11), we apply ([19, Theorem 2.9]) to acquire a unique scalar potential φ ∈ H 1(Ω )/R such that:

E + ∂t A = −∇φ. (12)

Taking into account the insignificance of ∂t D and using (12), (10), (8), (6), (5) we arrive at the following boundary
value problem for vector potential A:

σ∂t A + ∇ × µM(∇ × A) + σχT ∇φ = 0 for a.e. (x, t) ∈ Ω × (0, T ) := QT ,

A × ν = 0 for a.e. (x, t) ∈ ∂Ω × (0, T ),
A(0) = A0 for x ∈ Ω , t = 0.

(13)

Characteristic function χT has value 1, if x ∈ T and 0 otherwise. We use it, because the external source of the current,
which is defined by the gradient of the scalar potential, is present only in the coil (T , see Fig. 1).

Combination of (8) and (12) gives us an expression for the total current density J

J = −σ∂t A − σ∇φ.

The impressed part Jsource = −σ∇φ is caused by an external source and the induced part Jinduced = −σ∂t A is caused
by the magnetic induction field B in the coil. Demanding that the continuity equation holds for the source current
Jsource, i.e.

∇ · Jsource = 0

we define the scalar potential φ by the following elliptic equation with homogeneous Neumann boundary condition
on ∂T and interface condition on Γ , cf. [12]:

−∇ · (σπ∇φ) = 0 for a.e. (x, t) ∈ T × (0, T ),

−σπ
∂φ

∂ν
= 0 for a.e. (x, t) ∈ ∂T × (0, T ),[

−σπ
∂φ

∂ν

]
Γ

= j for a.e. (x, t) ∈ Γ × (0, T ).

(14)
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External source current density is represented by function j(x, t), which is assumed to be Lipschitz continuous in
time. Jump across interface Γ is indicated by [·]Γ .

Eddy currents generated in the workpiece raise temperature by a significant amount. This phenomenon is called
Joule heat and it is expressed as

J · E (8)
= σπ |E|

2 (12)
= σπ

⏐⏐∂t A + χT ∇φ
⏐⏐2. (15)

This term is crucial and causes numerous troubles during mathematical treatment (unboundedness). Therefore, we
introduce a cut-off function and work with truncated Joule-heating term

Rr (x) :=

⎧⎨⎩r > 0 if x > r,
x if |x | ⩽ r,

−r if x < −r.
(16)

Evolution of temperature in the workpiece and the coil (π , see Fig. 1) is characterized by the following parabolic
nonlinear equation with the homogeneous Neumann boundary condition:

∂tβ(u) − ∇ · (λ∇u) = Rr

(
σπ (u)

⏐⏐∂t A + χT ∇φ
⏐⏐2) for a.e. (x, t) ∈ π × (0, T ),

−λ
∂u
∂ν

= 0 for a.e. (x, t) ∈ ∂π × (0, T ),

u(0) = u0 for x ∈ π , t = 0.

(17)

Continuous function λ(x, t) is supposed to be strictly positive and bounded. The nonlinear function β is of a linear
growth and its derivative is bounded from below by a positive constant.

Eqs. (13), (14) and (17) model the process of induction hardening in our simplified domain Ω . They are tied
together through terms ∇φ, σ and ∂t A. One could ask, whether the artificial intervention in the form of cut-off
function was correct. In real applications of induction hardening, there is always a switch-off button, which is used
to prevent the workpiece from thermal deformations. When the temperature reaches a certain degree, this button is
turned-off, the stream of electric current is stopped and the workpiece is cooled down. Therefore, applying the cut-off
function on Joule-heating term in (17), is actually a simulation of this switch-off button and indeed, necessary to be
done.

2. Functional setting

2.1. Variational formulation

Let us start with some basic notations. Through the whole paper we adopt notation (·, ·)Ω for the standard
inner product in L2(Ω ) or L2(Ω ). Norm induced by this inner product is indicated as ∥·∥L2(Ω). Set of functions
k : [0, T ] → Y equipped with the norm maxt∈[0,T ] ∥·∥Y is denoted as C([0, T ]; Y ). In a case when p > 1, norm in

L p((0, T ); Y ) is defined as
(∫ T

0 ∥·∥
p
Y dt

) 1
p
. Set of all functions φ+ c, where φ ∈ H 1(T ) and c is a constant is marked

as φc.
Considering the vector potential A, we introduce the Hilbert space

XN ,0 = {ϕ ∈ H(curl ;Ω ); ∇ · ϕ = 0, and ϕ × ν = 0 on ∂Ω},

where H(curl ;Ω ) = {ϕ ∈ L2(Ω ) : ∇ × ϕ ∈ L2(Ω )}. Using Friedrichs’ inequality for vectorial fields (cf.
[19, Lemma 3.4] or [20, Cor. 3.51]) we see that we may furnish XN ,0 with norm ∥ϕ∥XN ,0

:= ∥∇ × ϕ∥L2(Ω). Taking
into account (1), we use [19, Theorem 3.7] or [21, Theorem 2.12] to conclude that XN ,0 is a closed subspace of
H1(Ω ).1 Multiplying (13) by a test function ϕ ∈ XN ,0, integrating over Ω and using Green’s theorem, we obtain the

1 The relation XN ,0 ⊂ H1(Ω ) is crucial for our mathematical approach. We would like to point out that the same inclusion is valid also for
convex domains (with non smooth boundary). In such a case one can rely on the [21, Theorem 2.17]. All presented results hold true also for convex
domains.
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Fig. 2. Dissection of T .

variational formulation for vector potential A:

(σπ∂t A,ϕ)π + (µM(∇ × A),∇ × ϕ)Ω + (σπ∇φ,ϕ)T = 0 ∀ϕ ∈ XN ,0. (18)

To obtain the variational formulation for (14), we split T in two separate parts T1 and T2. Flux of the scalar
potential on the new interface Γ∗ is supposed to be continuous. Moreover, Γ∗ ∩ Γ = ∅ and T1 ∩ T2 = Γ∗ ∪ Γ (see
Fig. 2). Now, we multiply (14) by a test function ξ ∈ H 1(T )/R and integrate in T1 and T2. Using Green’s theorem,
boundary condition (14) and continuous condition on Γ∗, we arrive to the following variational formulation for scalar
potential φ:

(σπ∇φ,∇ξ)T + ( j, ξ)Γ = 0 ∀ξ ∈ H 1(T )/R. (19)

The choice of the test space H 1(T )/R is just to obtain a unique solvability.

Lemma 1. There are positive constants c1 and c2 such that:

c1∥φc∥
2
H1(T )/R ⩽ ∥∇φ∥

2
L2(T ) ⩽ c2∥φc∥

2
H1(T )/R.

Proof. Norm in H 1(T )/R is defined as ∥φc∥H1(T )/R := infφ∈φc ∥φ∥H1(T ). This norm is minimal for c = −
1

|T |

∫
T φ dx .

Indeed, let us take a closer look.

0 =
d
dc

(∫
T

(φ + c)2
+ |∇φ|

2 dx
)

= 2
∫

T
φ dx + 2

∫
T

c dx H⇒ c = −
1

|T |

∫
T
φ dx .

Now, we write ∥φc∥H1(T )/R =

φ −
1

|T |

∫
T φ dx


H1(T )

. Using Poincaré-Wirtinger inequality, cf. [22] we conclude the
following:

∥φc∥
2
H1(T )/R =

φ −
1

|T |

∫
T
φ dx

2

L2(T )
+ ∥∇φ∥

2
L2(T ) ⩽ cPW ∥∇φ∥

2
L2(T ) + ∥∇φ∥

2
L2(T )

= (cPW + 1)∥∇φ∥
2
L2(T ),

where cPW is a positive constant. Taking c2 = 1 and c1 =
1

1+cPW
, the proof is completed. □

For Eq. (17) we follow identical steps as above, using ψ ∈ H 1(π ) as a test function, which brings us to the
variational formulation for function u:

(∂tβ(u), ψ)π + (λ∇u,∇ψ)π =

(
Rr

(
σπ
⏐⏐∂t A + χT ∇φ

⏐⏐2) , ψ)
π

∀ψ ∈ H 1(π ). (20)

Norm in H 1(π ) is defined as ∥ψ∥
2
H1(π ) := ∥ψ∥

2
L2(π)

+ ∥∇ψ∥
2
L2(π)

.
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2.2. Assumptions

To achieve better clarity and readability of our paper, we list all assumptions altogether:

(a1) 0 < µπ∗ ⩽ µπ (x) ⩽ µπ
∗ < ∞ ∀x ∈ Σ ,

(a2) 0 < µA∗ ⩽ µA(x) ⩽ µ∗

A < ∞ ∀x ∈ Ω \ Σ ,
(b) µ∗ = min {µπ∗, µA∗} , µ

∗
= max

{
µπ

∗, µ∗

A

}
(c1) µ ∈ H 1(π )
(c2) µ ∈ H 1(Ω \ π )
(d) 0 < σ∗ ⩽ σ (u(x, t)) ⩽ σ ∗ < ∞ ∀(x, t) ∈ π × (0, T ),

(e1) 0 < λ∗ ⩽ λ(x, t) ⩽ λ∗ < ∞ ∀(x, t) ∈ π × (0, T ),
(e2) |λ(x, t2) − λ(x, t1)| ⩽ Cλ |t2 − t1| Cλ > 0,∀x ∈ π ,∀t2, t1 ∈ [0, T ]

(f) | j(x, t2) − j(x, t1)| ⩽ C j |t2 − t1| C j > 0,∀x ∈ Γ ,∀t2, t1 ∈ [0, T ],

(g) j ∈ L2((0, T ); H−1/2(Γ )),
∫
Γ

j dΓ = 0,

(h) u0 ∈ H 1
0 (π ),

(i) A0 ∈ xN ,0,

(j) β is continuous, β(0) = 0,
|β(x)| ⩽ Cβ(1 + |x |), 0 < β∗ ⩽ β ′(x) Cβ > 0,∀x ∈ R,

(k1) (M(x) − M(y)) · (x − y) ⩾ cM |x − y|2 cM > 0,∀x, y ∈ R3,

(k2) |M(x) − M(y)| ⩽ CM |x − y| CM > 0,∀x, y ∈ R3,

(k3) M(0) = 0.

(21)

Following [18, Theorem 5.1], we see that potential ΦM of vectorial field M with properties (k1)–(k3), is strictly convex.
Applying [18, Theorem 8.4], we get

M(x) · (x − y) ⩾ ΦM(x) − ΦM(y) ∀x, y ∈ R3. (22)

Thanks to (k1) and (k2), we bound ΦM from below

ΦM(x) =

∫ 1

0
M(xp) · x dp =

∫ 1

0
M(xp) · (xp)p−1 dp

⩾
∫ 1

0
cM |xp|

2 p−1 dp =
cM

2
|x|

2.

(23)

We get

ΦM(x) ⩽
CM

2
|x|

2 (24)

from (k2) in the same way.

3. Existence of a weak solution

3.1. Time discretization scheme and a priori estimates

In this section we discretize the time interval [0, T ] and solve a system of steady-state differential equations on each
time step. Afterwards, we construct piece-wise constant and piece-wise linear in time functions and show convergence
of sub-sequences of these functions in appropriate functional spaces to the weak solution. This approach is called
Rothe’s method [23,24]. Consider a number of time steps n ∈ N. We introduce a time discretization of [0, T ] in the
following sense:

[0, T ] =

⋃
0⩽i⩽n−1

[ti , ti−1], where ti = iτ, 0 ⩽ i ⩽ n, nτ = T .

The value of any function f at ti is denoted as fi . To approximate the time derivative of f at ti we use the explicit
Euler method, i.e.

∂t f (ti ) := δ fi =
fi − fi−1

τ
.
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Applying this method to the system (18), (20), (19) we are able to approximate it at every time step ti , for i =

1, . . . , n (
σπ (ui−1)∇φci ,∇ξ

)
T + ( ji , ξ)Γ = 0 for any ξ ∈ H 1(T )/R, (25)

(σπ (ui−1)δAi ,ϕ)π + (µM(∇ × Ai ),∇ × ϕ)Ω +
(
σπ (ui−1)∇φci ,ϕ

)
T = 0 for any ϕ ∈ XN ,0, (26)

(δβ(ui ), ψ)π + (λi∇ui , ψ)π −

(
Rr

(
σπ (ui−1)

⏐⏐δAi + χT ∇φci

⏐⏐2) , ψ)
π

= 0 for any ψ ∈ H 1(π ). (27)

Remark 1. In system (25)–(27) we use ui−1 as an argument for function σ . The reason to take this action is to be able
to decouple the whole system. As we will see in the sequel, this small adjustment does not affect convergence results.

To prove the solvability at each time step we use the theory of monotone operators (for more details, see [18,25]).

Lemma 2. Assume that (21) holds. Then, for any i = 1, . . . , n, there exists a uniquely determined triplet
φci ∈ H 1(T )/R, Ai ∈ X N ,0 and ui ∈ H 1(π ) solving system (25)–(27).

Proof. Let us define operators: Fσ : XN ,0 → (XN ,0)∗ and Gλ : H 1(π ) → (H 1(π ))∗

⟨Fσ (A),ϕ⟩ :=

(
σ

A
τ
,ϕ

)
π

+ (µM(∇ × A),∇ × ϕ)Ω ,

⟨Gλ(u), ψ⟩ :=

(
β(u)
τ
, ψ

)
π

+ (λ∇u,∇ψ)π .

We need to show that these operators are hemicontinuous, strictly monotone and coercive.
Hemicontinuity follows from continuity of M and β. To show the strict monotonicity of the first operator we use

the strongly monotone character of M (which also implies strict monotonicity). We write for some positive constant
C and τ ∈ (0, 1)

⟨Fσ (A1) − Fσ (A2),A1 − A2⟩ =

(σ
τ
(A1 − A2) ,A1 − A2

)
π

+ (µ (M(∇ × A1) − M(∇ × A2)) ,∇ × (A1 − A2))Ω

⩾
σ∗

τ
∥A1 − A2∥

2
L2(π)

+ µ∗∥∇ × (A1 − A2)∥
2
L2(Ω)

⩾C∥A1 − A2∥
2
xN ,0

> 0

for any A1,A2 ∈ XN ,0, A1 ̸= A2. In other words the operator Fσ is strictly monotone. To show that also Gλ is strictly
monotone we take into account the properties of scalar potential β and use the mean value theorem. Then we write
for τ ∈ (0, 1) and for some positive constants C and η ∈ (0, 1)

⟨Gλ(u1) − Gλ(u2), u1 − u2⟩ =

(
β ′[u1 + η(u2 − u1)]

τ
, |u1 − u2|

2
)
π

+ (λ (∇u1 − ∇u2) ,∇u1 − ∇u2)π

⩾
β∗

τ
∥u1 − u2∥

2
L2(π)

+ λ∗∥∇u1 − ∇u2∥
2
L2(π)

⩾ C∥u1 − u2∥
2
H1(π ) > 0

for any u1, u2 ∈ H 1(π ), u1 ̸= u2. Coercivity of these operators is guaranteed since M(0) = 0 and β(0) = 0. We
have

⟨Fσ (A),A⟩ =

(σ
τ

A,A
)
π

+ (µ (M(∇ × A) − M(0)) ,∇ × A − 0)Ω ⩾ C∥A∥
2
XN ,0

,

⟨Gλ(u), u⟩ =

(
β(u) − β(0)

τ
, u − 0

)
π

+ (λ∇u,∇u)π ⩾ C∥u∥
2
H1(π ).

Thus

lim
∥A∥XN ,0 →∞

⟨Fσ (A),A⟩

∥A∥XN ,0

⩾ +∞ and lim
∥u∥H1(π )→∞

⟨Gλ(u), u⟩

∥u∥H1(π )
⩾ +∞.

We have shown the strict monotonicity, coercivity and hemicontinuity of operators Fσ and Gλ.
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Rest of the proof serves as a guideline for obtaining a solution-triplet at every time step t = ti , for i = 1, . . . , n.
Applying Lax–Milgram lemma (see [20, Lemma 2.21]) to (25) we obtain a unique solution φci ∈ H 1(π )/R at a time
step t = ti (ui−1 is known at this time step).

To obtain a unique solution Ai at a time step ti we have to solve the following identity:⟨
Fσπ (ui−1)(Ai ),ϕ

⟩
=

(
σπ (ui−1)

Ai−1

τ
,ϕ

)
π

−
(
σπ (ui−1)∇φci ,ϕ

)
T .

Since the right-hand side (RHS) is known and the operator Fσπ (ui−1) is hemicontinuous, strictly monotone and coercive
we use [18, Theorem 18.2] to provide the solution. The basic idea of this theorem is to replace the original equation
by finite-dimensional approximate equations and then prove the convergence of this approximation scheme. Such
technique is called the Galerkin method. Now, we involve the same theorem again to acquire a unique solution
ui ∈ H 1(π ) of the setting below (taking into account that the RHS is known)⟨

Gλi (ui ), ψ
⟩
=

(
β(ui−1)
τ

, ψ

)
π

+

(
Rr

(
σπ (ui−1)

⏐⏐δAi + χT ∇φci

⏐⏐2) , ψ)
π
.

This provides us with the solution-triplet {φci ,Ai , ui } at a time step t = ti , for i = 1, . . . , n. □

To wrap everything together we state a pseudo-scheme for obtaining the solution-triplet {φci ,Ai , ui } for every time
step t = ti :

1. Let i be given and assume that ui−1, ji and λi are known
2. Find φci from:(
σπ (ui−1)∇φci ,∇ξ

)
T + ( ji , ξ)Γ = 0

3. Find Ai from:(
σπ (ui−1)

Ai

τ
,ϕ

)
π

+ (µM(∇ × Ai ),∇ × ϕ)Ω =

(
σπ (ui−1)

Ai−1

τ
,ϕ

)
π

−
(
σπ (ui−1)∇φci ,ϕ

)
T

4. Find ui from:(
β(ui )
τ

, ψ

)
π

+ (λi∇ui ,∇ψ)π =

(
β(ui−1)
τ

, ψ

)
π

+

(
Rr

(
σπ (ui−1)

⏐⏐δAi + χT ∇φci

⏐⏐2) , ψ)
π

5. Set i = i + 1 and repeat the process.

(28)

Before we proceed to the main theorem, we have to derive some basic energy estimates for φci ,Ai and ui . They are
covered by the following lemmas.

Lemma 3. Assume (21). Then there exists a positive constant C such that
n∑

i=1

∇φci

2
L2(T )τ ⩽ C.

Proof. Take ξ = φci τ in (25) and sum it up for i = 1, . . . , l ⩽ n to get

l∑
i=1

(
σπ (ui−1)∇φci ,∇φci

)
T τ = −

l∑
i=1

(
ji , φci

)
Γ
τ.

We bound the left-hand side (LHS) from below

σ∗

l∑
i=1

∇φci

2
L2(T )τ ⩽

l∑
i=1

(
σπ (ui−1)∇φci ,∇φci

)
T τ.

Using Cauchy–Schwarz’s and Young’s inequalities, we bound the RHS

l∑
i=1

(
ji , φci

)
Γ
τ ⩽

1
2ε

l∑
i=1

∥ ji∥2
H−1/2(Γ )τ +

ε

2

l∑
i=1

φci

2
H1/2(Γ )τ ⩽ Cε + ε

l∑
i=1

φci

2
H1/2(Γ )τ,
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where ε > 0. Since H 1(T )/R ⊂ H 1/2(Γ ) we use Lemma 1 to write
l∑

i=1

φci

2
H1/2(Γ )τ ⩽ C

l∑
i=1

∇φci

2
L2(T )τ.

Now fixing a sufficiently small ε we conclude the proof. □

Lemma 4. Assume (21). Then there exists a positive constant C such that

(i)
∑n

i=1∥δAi∥
2
L2(π)

τ + max1⩽l⩽n∥∇ × Al∥
2
L2(Ω) ⩽ C

(ii)
∑n

i=1∥∇ × (µM(∇ × Ai ))∥2
L2(π)

τ ⩽ C.

Proof. (i) Taking ϕ = δAiτ in (26) and summing up for i = 1, . . . , l ⩽ n yields
l∑

i=1

(σπ (ui−1)δAi , δAi )πτ +

l∑
i=1

(µM(∇ × Ai ),∇ × Ai − ∇ × Ai−1)Ω = −

l∑
i=1

(
σπ (ui−1)∇φci , δAi

)
T τ.

Using Lemma 3, Cauchy–Schwarz’s and Young’s inequalities, we bound the first term on the LHS and the term on
the RHS as follows

σ∗

l∑
i=1

∥δAi∥
2
L2(π)

τ ⩽
l∑

i=1

(σπ (ui−1)δAi , δAi )πτ,

−

l∑
i=1

(
σπ (ui−1)∇φci , δAi

)
T τ ⩽

σ ∗

2ε

l∑
i=1

∇φci

2
L2(T )τ +

εσ ∗Cπ

2

l∑
i=1

∥δAi∥
2
L2(π)

τ

⩽ C
σ ∗

2ε
+
εσ ∗Cπ

2

l∑
i=1

∥δAi∥
2
L2(π)

τ.

.

To estimate the second term on the LHS, we take into account (23) and (24)
l∑

i=1

∫
Ω

µ {M(∇ × Ai ) · (∇ × Ai − ∇ × Ai−1)} dx

⩾
l∑

i=1

∫
Ω

µ(ΦM(∇ × Ai ) − ΦM(∇ × Ai−1)) dx

=

∫
Ω

µΦM(∇ × Al) dx −

∫
Ω

µΦM(∇ × A0) dx

⩾
cMµ∗

2
∥∇ × Al∥

2
L2(Ω)

−
CMµ

∗

2
∥∇ × A0∥

2
L2(Ω)

.

We relocate the terms to get(
σ∗ −

ε

2
σ ∗Cπ

) l∑
i=1

∥δAi∥
2
L2(π)

τ +
cMµ∗

2
∥∇ × Al∥

2
L2(Ω)

⩽ C
σ ∗

2ε
+

CMµ
∗

2
∥∇ × A0∥

2
L2(Ω)

.

Fixing ε ∈

(
0, 2σ∗

σ∗Cπ

)
and assuming that A0 ∈ XN ,0, we obtain

l∑
i=1

∥δAi∥
2
L2(π)

τ + ∥∇ × Al∥
2
L2(Ω)

⩽ C.

This is valid for any 1 ⩽ l ⩽ n, which concludes the proof of (i).
(ii) Take ϕ ∈ C∞

0 (π ). It holds

(σπ (ui−1)δAi ,ϕ)π +
(
σπ (ui−1)∇φci ,ϕ

)
T = −(µM(∇ × Ai ),∇ × ϕ)Ω

Green′s theorem
= −(∇ × (µM(∇ × Ai )) ,ϕ)Ω .
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Based on Lemmas 3 and 4(i) we see that the LHS can be seen as a linear bounded functional in L2((0, T ); L2 (π)).
According to the Hahn–Banach theorem the same holds true for the RHS, i.e.

n∑
i=1

∥∇ × (µM(∇ × Ai ))∥2
L2(π)

τ ⩽ C. □

Lemma 5. Let (21) be fulfilled. Then there exists a positive constant Cr , depending only on parameter r of truncation
function Rr , such that

(i)
n∑

i=1

∥δui∥
2
L2(π)

τ +

n∑
i=1

∥∇ui − ∇ui−1∥
2
L2(π)

+ max
1⩽i⩽n

∥∇ui∥L2(π) ⩽ Cr ,

(ii) max
1⩽i⩽n

∥ui∥
2
L2(π)

⩽ Cr ,

(iii) max
1⩽i⩽n

∥δβ(ui )∥2
(H1(π ))

∗ ⩽ Cr .

Proof. (i) Take ψ = δuiτ in (27) and sum it up for i = 1, . . . , l ⩽ n to have
l∑

i=1

(δβ(ui ), δui )πτ +

l∑
i=1

(λi∇ui ,∇ui − ∇ui−1)π

=

l∑
i=1

(
Rr

(
σπ (ui−1)

⏐⏐δAi + χT ∇φci

⏐⏐2) , δui

)
π
τ.

Utilizing the mean value theorem and (21), we bound the first term on the LHS
l∑

i=1

(δβ(ui ), δui )πτ =

l∑
i=1

(
β ′(η)(ui − ui−1), δui

)
π
⩾ β∗

l∑
i=1

∥δui∥
2
L2(π)

τ.

For the term on the RHS we use Cauchy’s and Young’s inequalities
l∑

i=1

(
Rr

(
σπ (ui−1)

⏐⏐δAi + χT ∇φci

⏐⏐2) , δui

)
π
τ ⩽

C2
r

2ε
|π | T +

ε

2

l∑
i=1

∥δui∥
2
L2(π)

τ

= Cr,ε +
ε

2

l∑
i=1

∥δui∥
2
L2(π)

τ.

Thanks to Lipschitz continuity of λ in time, we bound the last term as follows (cf. [26])
l∑

i=1

(λi∇ui ,∇ui − ∇ui−1)π =
1
2

∫
π

λl |∇ul |
2 dx +

1
2

l∑
i=1

∫
π

λi |∇ui − ∇ui−1|
2 dx

−
1
2

∫
π

λ1|∇u0|
2 dx −

1
2

l∑
i=1

∫
π

(λi+1 − λi )|∇ui |
2 dx

⩾
λ∗

2
∥∇ul∥

2
L2(π)

+
λ∗

2

l∑
i=1

∥∇ui − ∇ui−1∥
2
L2(π)

−
Cλ

2

l−1∑
i=0

∥∇ui∥
2
L2(π)

τ −
λ∗

2
∥∇u0∥

2
L2(π)

.

Collecting all estimates above, taking ε ∈ (0, 2β∗) and using Grönwall’s lemma we obtain (i).
(ii) This part follows readily from (i) and

ul = u0 +

l∑
i=1

δuiτ H⇒ ∥ul∥L2(π) ⩽ ∥u0∥L2(π) +

l∑
i=1

∥δui∥L2(π) τ ⩽ Cr

for any 0 ⩽ l ⩽ n.
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(iii) Norm in (H 1(π ))∗ is defined as

∥u∥(H1(π ))∗ := sup
ψ ̸=0ψ∈H1(π )

⏐⏐(u, ψ)π ⏐⏐
∥ψ∥H1(π )

.

Thus, deducing from (27) and using estimates above we write⏐⏐(δβ(ui ), ψ)π
⏐⏐ ⩽ ⏐⏐⏐(Rr

(
σπ (ui−1)

⏐⏐δAi + χT ∇φci

⏐⏐2) , ψ)
π

⏐⏐⏐+ ⏐⏐(∇ui ,∇ψ)π
⏐⏐

⩽ Cr

√
|π | ∥ψ∥L2(π) + ∥∇ui∥L2(π) ∥∇ψ∥L2(π)

⩽
{

Cr

√
|π | + ∥∇ui∥L2(π)

}
∥ψ∥H1(π )

⩽ Cr ∥ψ∥H1(π ) ,

therefore

∥δβ(ui )∥(H1(π ))∗ ⩽ Cr ,

for any i = 1, . . . , n. □

3.2. Convergence

The existence of a weak solution-triplet {A, φ, u} of (18)–(20) is shown in this section. We construct Rothe’s
functions and prove that they converge towards a weak solution of our system. Before we state the main theorem
where the existence of a weak solution is proven we introduce 2 propositions.

In the first proposition we use well known results from the functional analysis valid in parabolic partial differential
equations containing Gelfand’s triple, cf. [23,27]. In this manner we obtain the convergence results for the
approximate solution of temperature.

In the second proposition we use the monotone character of vector field M and the technique of Minty–Browder,
cf. [28,29] to overcome the nonlinearity when passing to the limit.

We start by introducing Rothe’s functions. They are piece-wise constant and piece-wise linear in time functions
and are constructed in the following way for i = 1, . . . , n (where n denotes the number of time steps)

φn(t) = φci for t ∈ (ti−1, ti ],

An(t) = Ai An(t) = Ai−1 + (t − ti−1)δAi for t ∈ (ti−1, ti ] An(0) = An(0) = A0,

un(t) = ui un(t) = ui−1 + (t − ti−1)δui for t ∈ (ti−1, ti ] un(0) = un(0) = u0,

βn(t) = β(ui ) βn(t) = β(ui−1) + (t − ti−1)δβ(ui ) for t ∈ (ti−1, ti ] βn(0) = βn(0) = β(u0),

jn(t) = ji λn(t) = λi σπn (t) = σπ (ui ) for t ∈ (ti−1, ti ].

For better interpretation we include a simple example of Rothe’s functions for a general function f (t) in Fig. 3.
Now, using these new notations we rewrite (25)–(27) in a continuous sense for the whole time interval [0, T ],
i.e. (

σπn (t − τ )∇φn,∇ξ
)

T +
(

jn, ξ
)
Γ

= 0 for any ξ ∈ H 1(T )/R, (29)(
σπn (t − τ )∂t An,ϕ

)
π

+
(
µM(∇ × An),∇ × ϕ

)
Ω

+
(
σπn (t − τ )∇φn,ϕ

)
T = 0 for any ϕ ∈ XN ,0, (30)

(∂tβn, ψ)π +
(
λn∇un, ψ

)
π

−

(
Rr

(
σπn (t − τ )

⏐⏐∂t An + χT ∇φn
⏐⏐2) , ψ)

π
= 0 for any ψ ∈ H 1(π ). (31)

Proposition 1. Suppose (21). Moreover assume that σ is globally Lipschitz continuous. Then there exist a scalar
function u ∈ C([0, T ]; L2 (π))∩L∞((0, T ); H 1

0 (π )) with ∂t u ∈ L2((0, T ); L2 (π)) and a sub-sequence of un (denoted
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Fig. 3. Rothe’s functions of a general function f (t).

by the same symbol again) such that

(i) un → u in C
(
[0, T ]; L2 (π)

)
,

un(t) ⇀ u(t) in H 1(π ), ∀t ∈ [0, T ],
un → u in L2((0, T ); L2 (π)),

(ii) σπn → σπ (u), σπn (t − τ ) → σπ (u) in L2((0, T ); L2 (π)),
(iii) βn − βn → 0 in C

(
[0, T ]; (H 1(π ))∗

)
,

(iv) βn → β(u) in L2((0, T ); L2 (π)),
(v) jn → j in L2((0, T ); H−1/2(Γ ))

holds true for n → +∞.

Proof. (i) Using Lemma 5, we have ∂t un ∈ L2((0, T ); L2 (π)) and un ∈ C([0, T ]; H 1(π )). Now, since H 1(π ) is
compactly embedded in L2 (π), we apply well-known [23, Lemma 1.3.13] to conclude the first two statements of (i).
To prove the last one we only need to show that un and un have the same limit in L2((0, T ); L2 (π)). We may write∫ T

0
∥un − un∥

2
L2(π)

dt =

n∑
i=1

∫ ti

ti−1

∥ui − ui−1 − (t − ti−1)δui∥
2
L2(π)

dt

=

n∑
i=1

∫ ti

ti−1

∥δui (τ − t + ti−1)∥2
L2(π)

dt

⩽ τ 2
n∑

i=1

∥δui∥
2
L2(π)

τ ⩽ Crτ
2 n→∞

−→ 0.

(ii) Since σ is supposed to be globally Lipschitz continuous and un converges strongly to u in L2((0, T ); L2 (π)),
we conclude that σπn → σ (u) in the same space as well. The only thing left to be done is to show that σπn (t − τ ) and
σπn (t) share the same limit in L2((0, T ); L2 (π)). It holds∫ T

0

σπn (t) − σπn (t − τ )
2

L2(π)
dt =

n∑
i=1

∥σ (ui ) − σ (ui−1)∥2
L2(π)

τ

Lipschit z
⩽ Cσ

n∑
i=1

∥ui − ui−1∥
2
L2(π)

τ

= Cσ τ
2

n∑
i=1

∥δui∥
2
L2(π)

τ ⩽ CσCrτ
2 n→∞

−→ 0.

(iii) Results from Lemma 5 let us write⏐⏐(βn − βn, ψ
)⏐⏐ ⩽ τ ∥∂tβn∥(H1(π ))∗ ∥ψ∥H1(π ) ⩽ τCr ∥ψ∥H1(π )

and therefore
βn − βn


(H1(π ))∗ ⩽ τCr

n→∞
−→ 0.
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(iv) Taking into account the continuity of β and the fact that un converges strongly towards u, allow us to use
Lebesgue’s dominated convergence theorem to conclude that βn → β(u) in L2((0, T ); L2 (π)).

(v) Assuming that j is Lipschitz continuous in time, we write∫ T

0

 jn − j
2

H−1/2(Γ ) dt =

n∑
i=1

∫ ti

ti−1

∥ j(ti ) − j(t)∥2
H−1/2(Γ ) dt ⩽ Cτ 2 n→∞

→ 0. □

Proposition 2. Suppose that all assumptions of Proposition 1 are satisfied. Then there exist a vector potential
A ∈ L2((0, T ); X N ,0) with ∂t A ∈ L2((0, T ); L2 (π)) and a sub-sequence of An (denoted by the same symbol again)
such that

(i) An ⇀ A, ∇ × An ⇀ ∇ × A in L2((0, T ); L2 (Ω)),
µM(∇ × An) ⇀ µM(∇ × A) in L2((0, T ); L2 (Ω \ π)),
An → A in C

(
[0, T ]; L2 (π)

)
,

An(t) ⇀ A(t), An(t) ⇀ A(t) in H1(π ), ∀t,
∂t An ⇀ ∂t A in L2((0, T ); L2 (π)),

(ii) M(∇ × An) ⇀ M(∇ × A) in L2((0, T ); L2 (π)),

(iii) ∇ × An → ∇ × A in L2((0, T ); L2 (π)),
M(∇ × An) → M(∇ × A) in L2((0, T ); L2 (π))

holds true for n → +∞.

Proof. (i) Lemma 4 yields∫ T

0

An
2

XN ,0
dt ⩽ C.

The reflexivity of L2((0, T ); XN ,0) gives for a sub-sequence that An ⇀ A in that space. One can easily see that

An ⇀ A, ∇ × An ⇀ ∇ × A in L2((0, T ); L2 (Ω)),

due to the density of C∞

0 (Ω ) in L2(Ω ), see [30, Thm. 2.6.1]. Take now ϕ ∈ C∞

0 (Ω \ π ). Using µ ∈ H 1(Ω \ π ) we
have ∫ T

0

(
µM(∇ × An),ϕ

)
Ω

dt =

∫ T

0

(
µ∇ × An,ϕ

)
Ω

dt =

∫ T

0

(
An,∇ × (µϕ)

)
Ω

dt.

Passing to the limit for n → ∞ we get

lim
n→∞

∫ T

0

(
µ∇ × An,ϕ

)
Ω

dt =

∫ T

0
(A,∇ × (µϕ))Ω dt =

∫ T

0
(µ∇ × A,ϕ)Ω dt.

Using the density argument of C∞

0 (Ω \ π ) in L2(Ω \ π ) we have

µM(∇ × An) = µ∇ × An ⇀ µ∇ × A = µM(∇ × A) in L2((0, T ); L2 (Ω \ π)).

Lemma 4 together with XN ,0 ⊂ H1(Ω ) (cf. [19, Theorem 3.7]) imply∫ T

0
∥∂t An∥

2
L2(π)

dt ⩽ C,
An


H1(π ) ⩽

An


H1(Ω) ⩽ C.

Employing [23, Lemma 1.3.13] we get for a sub-sequence that

An → A in C
(
[0, T ]; L2 (π)

)
An(t) ⇀ A(t), An(t) ⇀ A(t) in H1(π ), ∀t
∂t An ⇀ ∂t A in L2((0, T ); L2 (π)).

(ii) The sequence M(∇ × An) is bounded in L2((0, T ); L2 (Ω)). Therefore, there exists p from L2((0, T ); L2 (Ω))
such that M(∇ × An) ⇀ p in that space (for a sub-sequence). Now, we involve the remarkable Minty–Browder
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technique, cf. [31,18]. The general idea is based on monotone character of the vectorial field M. Let us investigate the

following inequality

0 ⩽
∫ T

0

(
M(∇ × An) − M(b), ψµ

(
∇ × An − b

))
Ω

dt = I1 + I2 + I3 + I4, (32)

where

I1 =

∫ T

0

(
M(∇ × An), ψµ∇ × An

)
Ω

dt, I2 =

∫ T

0

(
M(b), ψµ∇ × An

)
Ω

dt,

I3 =

∫ T

0

(
M(∇ × An), ψµb

)
Ω

dt, I4 =

∫ T

0
(M(b), ψµb)Ω dt.

This inequality holds true for any b ∈ L2((0, T ); L2 (Ω)) and any non-negative ψ ∈ C∞

0 (π ). We want to pass to the

limit for n → ∞ in (32). We do it for each term in (32) separately.

It holds

I1 =

∫ T

0

(
M(∇ × An), ψµ∇ × An

)
Ω

dt

=

∫ T

0

(
M(∇ × An), ψµ∇ ×

(
An − A

))
Ω

dt +

∫ T

0

(
M(∇ × An), ψµ∇ × A

)
Ω

dt

=

∫ T

0

(
∇ ×

[
ψµM(∇ × An)

]
,An − A

)
Ω

dt +

∫ T

0

(
M(∇ × An), ψµ∇ × A

)
Ω

dt

=

∫ T

0

(
ψ∇ ×

[
µM(∇ × An)

]
,An − A

)
Ω

dt +

∫ T

0

(
∇ψ ×

[
µM(∇ × An)

]
,An − A

)
Ω

dt

+

∫ T

0

(
M(∇ × An), ψµ∇ × A

)
Ω

dt.

We know that An → A in C
(
[0, T ]; L2 (π)

)
and ∂t An is bounded in L2((0, T ); L2 (π)). Therefore also An → A in

C
(
[0, T ]; L2 (π)

)
. Thus, using µ ∈ H 1(π ), it is not difficult to see that

lim
n→∞

I1 =

∫ T

0
(p, ψµ∇ × A)Ω dt.

Clearly

lim
n→∞

I2 =

∫ T

0
(M(b), ψµ∇ × A)Ω dt

lim
n→∞

I3 =

∫ T

0
(p, ψµb)Ω dt

lim
n→∞

I4 =

∫ T

0
(M(b), ψµb)Ω dt.

Assembling these auxiliary results we arrive at

lim
n→∞

∫ T

0

(
M(∇ × An) − M(b), ψµ

(
∇ × An − b

))
Ω

dt =

∫ T

0
(p − M(b), ψµ (∇ × A − b))Ω dt ⩾ 0.
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Since b was taken as an arbitrary element of L2((0, T ); L2 (Ω)) we choose it as b = ωq + ∇ × A, where
q ∈ L2((0, T ); L2 (Ω)) and ω > 0. Using this substitution in the equation above we obtain∫ T

0
(p − M(∇ × A + ωq), µψ (−ωq))Ω dt ⩾ 0 / ·

1
ω
,∫ T

0
(p − M(∇ × A + ωq), µψ (−q))Ω dt ⩾ 0 / ω → 0,∫ T

0
(p − M(∇ × A), µψ (−q))Ω dt ⩾ 0 / q is arbitrary, hence we choose q = −q,∫ T

0
(p − M(∇ × A), µψ (−q))Ω dt ⩽ 0.

The conclusion is that
∫ T

0 (p − M(∇ × A), µψq)Ω dt = 0 for any non-negative ψ ∈ C∞

0 (π ) and every q ∈

L2((0, T ); L2 (Ω)). Hence p = M(∇ × A) a.e. in (0, T ) × π and M(∇ × An) ⇀ M(∇ × A) in L2((0, T ); L2 (π)).
(iii) Analogously as in (ii) using the strong monotonicity of M (k1) we conclude

0 = lim
n→∞

∫ T

0

(
M(∇ × An) − M(∇ × A), µψ

(
∇ × An − ∇ × A

))
Ω

dt

⩾ lim
n→∞

cM

∫ T

0

(
µψ,

⏐⏐∇ × An − ∇ × A
⏐⏐2)

Ω
dt ⩾ 0.

Therefore limn→∞

∫ T
0

(
µψ,

⏐⏐∇ × An − ∇ × A
⏐⏐2)

Ω
dt = 0 for every 0 ⩽ ψ ∈ C∞

0 (π ), which implies ∇ × An →

∇ × A in L2((0, T ); L2 (π)). Vectorial field M is also Lipschitz continuous, hence M(∇ × An) → M(∇ × A) in
L2((0, T ); L2 (π)) as well. □

Now, we are in a position to state our main result.

Theorem 1. Suppose that all assumptions of Proposition 1 are satisfied. Then there exist a solution-triplet {φ,A, u}

where φ ∈ L2((0, T ); H 1(T )/R), A ∈ L2((0, T ); X N ,0) with ∂t A ∈ L2((0, T ); L2 (π)) and u ∈ C([0, T ]; L2 (π)) ∩

L∞((0, T ); H 1
0 (π )) with ∂t u ∈ L2((0, T ); L2 (π)) and a sub-sequences of φn, An and un (denoted by the same

symbol again) such that

(i) φ and u solve (19)
(ii) ∇φn → ∇φ in L2((0, T ); L2 (T ))

(iii) φ, u and A solve (18)
(iv) ∂t An → ∂t A in L2((0, T ); L2 (π))
(v) φ, u and A solve (20)

holds true for n → +∞.

Proof. (i) Existence of a potential φ ∈ H 1(T )/R such that ∇φn ⇀ ∇φ in L2((0, T ); L2 (T )) follows from the
reflexivity of L2((0, T ); L2 (T )). The function φ has in fact a zero mean over T , cf. proof of Lemma 1.

Take ξ ∈ H 1(T )/R in (29) and integrate in time∫ ζ

0

(
σπn (t − τ )∇φn, ξ

)
T dt +

∫ ζ

0

(
jn, ξ

)
Γ

dt = 0.

Thanks to Proposition 1(ii) and (v), we pass to the limit for n → ∞ to get∫ ζ

0
(σπ (u)∇φ, ξ)T dt +

∫ ζ

0
( j, ξ)Γ dt = 0.

Now, differentiating with respect to time, we see that φ and u solve (19).



J. Chovan et al. / Comput. Methods Appl. Mech. Engrg. 321 (2017) 294–315 309

(ii) It holds

0 ⩽ σ∗

∫ T

0

∇ [φn − φ
]2

L2(T ) dt

⩽
∫ T

0

(
σπn (t − τ )∇

[
φn − φ

]
,∇

[
φn − φ

])
T dt

=

∫ T

0

(
σπn (t − τ )∇φ,∇φ

)
T dt +

∫ T

0

(
σπn (t − τ )∇φn,∇φn

)
T dt

− 2
∫ T

0

(
σπn (t − τ )∇φn,∇φ

)
T dt

(29)
=

∫ T

0

(
σπn (t − τ )∇φ,∇φ

)
T dt −

∫ T

0

(
jn, φn

)
Γ

dt

− 2
∫ T

0

(
σπn (t − τ )∇φn,∇φ

)
T dt.

Passing to the limit, we conclude

0 ⩽ lim
n→∞

σ∗

∫ T

0

∇ [φn − φ
]2

L2(T ) dt ⩽ −

∫ T

0
(σπ (u)∇φ,∇φ)T dt −

∫ T

0
( j, φ)Γ dt

(i)
= 0.

Therefore, ∇φn → ∇φ in L2((0, T ); L2 (T )).
(iii) We integrate (30) in time∫ ζ

0

(
σπn (t − τ )∂t An,ϕ

)
π

dt +

∫ ζ

0

(
µM(∇ × An),∇ × ϕ

)
Ω

dt +

∫ ζ

0

(
σπn (t − τ )∇φn,ϕ

)
T dt = 0.

Using Proposition 1(ii), Proposition 2 and Theorem 1(ii), we pass to the limit for n → ∞ to see∫ ζ

0
(σπ (u)∂t A,ϕ)π dt +

∫ ζ

0
(µM(∇ × A),∇ × ϕ)Ω dt +

∫ ζ

0
(σπ (u)∇φ,ϕ)T dt = 0.

Thus, φ, u and A solve (18).
(iv) The strong convergence of ∇ × An → ∇ × A in L2((0, T ); L2 (π)) is guaranteed by Proposition 2(iii). Let us

take any ζ ∈ [0, T ] such that ∇ × An(ζ ) → ∇ × A(ζ ) in L2 (π). This set is dense in [0, T ]. Take any non-negative
ψ ∈ C∞

0 (π ). We use the positiveness of σ to estimate the following

0 ⩽ σ∗

∫ ζ

0

∫
π

ψ |∂t An − ∂t A|
2 dx dt ⩽

∫ ζ

0

∫
π

ψσπn (t − τ )|∂t An − ∂t A|
2 dx dt

= −2
∫ ζ

0

(
ψσπn (t − τ )∂t An, ∂t A

)
π

dt +

∫ ζ

0

(
ψσπn (t − τ )∂t A, ∂t A

)
π

dt

+

∫ ζ

0

(
ψσπn (t − τ )∂t An, ∂t An

)
π

dt.

We use Lebesgue’s dominated convergence theorem combined with Proposition 1(ii) and Proposition 2(i) to pass to
the limit for n → ∞ in the first two terms

lim
n→∞

−2
∫ ζ

0

(
ψσπn (t − τ )∂t An, ∂t A

)
π

dt = −2
∫ ζ

0
(ψσπ (u)∂t A, ∂t A)π dt,

lim
n→∞

∫ ζ

0

(
ψσπn (t − τ )∂t A, ∂t A

)
π

dt =

∫ ζ

0
(ψσπ (u)∂t A, ∂t A)π dt.
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We assume that ζ ∈ (t j−1, t j ] and use variational formulation (30) to rewrite the third term as∫ ζ

0

(
ψσπn (t − τ )∂t An, ∂t An

)
π

dt = −

∫ ζ

0

(
µM(∇ × An),∇ × (ψ∂t An)

)
Ω

dt

−

∫ ζ

0

(
σπn (t − τ )∇φn, ψ∂t An

)
T dt

= −

∫ ζ

0

(
ψµM(∇ × An),∇ × ∂t An

)
Ω

dt −

∫ ζ

0

(
µM(∇ × An),∇ψ × ∂t An

)
Ω

dt

−

∫ ζ

0

(
σπn (t − τ )∇φn, ψ∂t An

)
T dt

=: R1 + R2 + R3.

Let us rewrite the first term on the RHS and examine it closely

R1 = −

∫ t j

0

(
ψµM(∇ × An),∇ × ∂t An

)
Ω

dt +

∫ t j

ζ

(
ψµM(∇ × An),∇ × ∂t An

)
Ω

dt

= −

t j∑
i=1

∫
Ω

ψµM(∇ × Ai ) · (∇ × Ai − ∇ × Ai−1)) dx

+

∫ t j

ζ

(
∇ ×

(
ψµM(∇ × An)

)
, ∂t An

)
Ω

dt

(22)
⩽ −

t j∑
i=1

∫
Ω

ψµ {ΦM(∇ × Ai ) − ΦM(∇ × Ai−1)} dx

+

∫ t j

ζ

(
∇ψ ×

(
µM(∇ × An)

)
, ∂t An

)
Ω

dt +

∫ t j

ζ

(
ψ∇ ×

(
µM(∇ × An)

)
, ∂t An

)
Ω

dt

= −

∫
Ω

ψµΦM(∇ × A j ) dx +

∫
Ω

ψµΦM(∇ × A0) dx

+

∫ t j

ζ

(
∇ψ ×

(
µM(∇ × An)

)
, ∂t An

)
Ω

dt +

∫ t j

ζ

(
ψ∇ ×

(
µM(∇ × An)

)
, ∂t An

)
Ω

dt

= −

∫
Ω

ψµΦM(M(∇ × An(ζ )) dx +

∫
Ω

ψµΦM(∇ × A0) dx

+

∫ t j

ζ

(
∇ψ ×

(
µM(∇ × An)

)
, ∂t An

)
Ω

dt +

∫ t j

ζ

(
ψ∇ ×

(
µM(∇ × An)

)
, ∂t An

)
Ω

dt.

Now, we are able to pass to the limit for n → ∞ to find

lim
n→∞

R2 = −

∫ ζ

0
(µM(∇ × A),∇ψ × ∂t A)Ω dt,

lim
n→∞

R3 = −

∫ ζ

0
(σπ (u)∇φ,ψ∂t A)T dt,

and

lim
n→∞

R1 ⩽ −

∫
Ω

ψµΦM(∇ × A(ζ )) dx +

∫
Ω

ψµΦM(∇ × A(0)) dx

= −

∫ ζ

0

∫
Ω

ψµ
dΦM(∇ × A)

dt
dx dt

= −

∫ ζ

0

∫
Ω

ψµM(∇ × A) · ∂t (∇ × A) dx dt

= −

∫ ζ

0
(µM(∇ × A), ψ∇ × (∂t A))Ω dt.
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Thus

lim
n→∞

R1 + R2 + R3 ⩽ −

∫ ζ

0
(µM(∇ × A),∇ × (ψ∂t A))Ω dt −

∫ ζ

0
(σπ (u)∇φ,ψ∂t A)T dt

(18)
=

∫ ζ

0
(ψσπ (u)∂t A, ∂t A)π dt.

Thus, collecting all estimates above, we see that

0 ⩽ lim
n→∞

∫ ζ

0

∫
π

ψ |∂t An − ∂t A|
2 dx dt ⩽ 0.

Please note that this is valid for any non-negative ψ ∈ C∞

0 (π ). Since the set of ζ ∈ [0, T ] for which ∇ × An(ζ ) →

∇ ×A(ζ ) in L2 (Ω) is dense in [0, T ], we achieve a strong convergence of ∂t An in L2((0, T ); L2 (π)) i.e. ∂t An → ∂t A
in L2((0, T ); L2 (π)).

(v) Take ψ ∈ H 1(π ) in (31) and integrate in time(
βn(t) − βn(0), ψ

)
π

+
(
βn(t) − βn(t), ψ

)
π

+

∫ t

0

(
λn∇un,∇ψ

)
π

ds

=

∫ t

0

(
Rr

(
σπn (s − τ )

⏐⏐∂t An + χT ∇φn
⏐⏐2) , ψ)

π
ds.

Using Lebesgue’s dominated convergence theorem, together with Proposition 1(ii), Theorem 1(ii) and (iv) enables
passing to the limit for n → ∞ in the RHS of the equation above

lim
n→∞

∫ t

0

(
Rr

(
σπn (s − τ )

⏐⏐∂t An + χT ∇φn
⏐⏐2) , ψ)

π
ds

=

∫ t

0

(
Rr

(
σπ (u)

⏐⏐∂t A + χT ∇φ
⏐⏐2) , ψ)

π
ds.

Proposition 1 let us pass to the limit for n → ∞ on the LHS. Note that term
(
βn(t) − βn(t), ψ

)
π

vanishes since
limn→∞

(
βn(t) − βn(t), ψ

)
π

= 0 for every t ∈ [0, T ]. Therefore gathering all results above brings us to

(β(u(t)) − β(u(0)), ψ)π +

∫ t

0
(λ∇u,∇ψ)π ds =

∫ t

0

(
Rr

(
σπ (u)

⏐⏐∂t A + χT ∇φ
⏐⏐2) , ψ)

π
ds.

The only thing left to be done to finish the proof is differentiating with respect to time. Thus, we see that φ, u and A
indeed solve (20). □

4. Numerical simulation

To support our proposed numerical scheme (28) obtained from the variational formulation (27), (26), (25) we
provide a numerical simulation of induction hardening process. The domain used in the simulation is reported in
Fig. 4. This domain is more complex than its simplified version in Fig. 1, but our theoretical results for this type hold
regardless, because the inclusion XN ,0 ⊂ H1(Ω ) holds true also for convex domains (without a smooth boundary),
cf. [21, Theorem 2.17]. Since we want our simulation to be realistic we use physical constants. Unknown functions
representing nonlinearities are chosen accordingly to satisfy (21)

σπ (u) = 2σc + σc

(
2 −

(
1 +

1
1 + u

)1+u
)
,

β(u) = βc
√

u,

M(∇ × A) =
(
1 + e−|∇×A|

)
∇ × A,

σc, βc, µ, λ H⇒ Physical constants,
T = 0.02, A0 = 0, u0 = 293 Kelvin.

We split the time interval [0, T ] in 1280 equidistant parts (τ = 1.5625e10−5) and use the open source finite element
environment Gmsh/GetDP [32,33], freely available online on http://www.onelab.info, to solve the system (26), (25)

http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
http://www.onelab.info
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Fig. 4. Meshed domain.

(a) Magnetic induction field. (b) Temperature.

Fig. 5. Reference solutions in time t = 0.015.

and (27) at each time step, after spatial discretization using Whitney finite elements on tetrahedra (edge elements
for the magnetic vector potential, nodal elements for the electric scalar potential and the temperature) [34]. The
Neumann boundary condition in (14) and (17) is simply treated by adding the corresponding surface term arising
from integration by parts in the weak formulation. The mesh contained 26 765 tetrahedra, leading to a total of 29 714
unknowns. We denote obtained solutions for the magnetic induction field and the temperature function as reference
solutions bre f and ure f , respectively. Typical solutions are plotted in Fig. 5.

To show that our scheme is converging to bre f and ure f we compute other numerical solutions for number of time
steps 10, 20, 40, 80, 160, 320 and 640 and compare them with bre f and ure f . We analyze these solutions in certain
measurement points of our domain (see Fig. 6) and at certain time steps, namely ti = 0.002i , where i = 1, . . . , 10.
Relative errors of a given numerical solution bn from the reference solution bre f and un from ure f are then calculated
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Fig. 6. Measurement points.

(a) Relative error of the magnetic induction field B with respect to a
decreasing time step τ .

(b) Relative error of the temperature function u with respect to a
decreasing time step τ .

Fig. 7. Logarithmically scaled plot of a decreasing time step τ and the relative errors.

in the following manner

⏐⏐bre f
⏐⏐ =

∑
P j ∈P

10∑
i=1

⏐⏐bre f (Pj , ti )
⏐⏐ ⏐⏐ure f

⏐⏐ =

∑
P j ∈P

10∑
i=1

⏐⏐ure f (Pj , ti )
⏐⏐

⏐⏐bre f − bn
⏐⏐ =

∑
P j ∈P

10∑
i=1

⏐⏐bre f (Pj , ti ) − bn(Pj , ti )
⏐⏐ ⏐⏐ure f − un

⏐⏐ =

∑
P j ∈P

10∑
i=1

⏐⏐ure f (Pj , ti ) − un(Pj , ti )
⏐⏐

rel bn =

⏐⏐bre f − bn
⏐⏐⏐⏐bre f

⏐⏐ rel un =

⏐⏐ure f − un
⏐⏐⏐⏐ure f

⏐⏐ ,

where P is the set of measurement points. Please bear in mind that the index n refers to the numerical solution
computed on a mesh with 2n−1

· 10 time steps. The evolution of these errors with increasing number of time steps can
be seen in Fig. 7.

If the error of a given numerical solution fτ from the exact solution f depends smoothly on a time step τ then
there exist an error coefficient D such that

fτ − f = Dτ p
+ O(τ p+1),
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where p represents the order of convergence. Using the fact that the difference of fτ − fτ/2 decays to zero with the
same speed as fτ − f we can estimate the order of convergence without knowing the exact solution f , i.e.

fτ − fτ/2
fτ/2 − fτ/4

=
Dτ p

− D(τ/2)p
+ O(τ p+1)

D(τ/2)p − D(τ/4)p + O(τ p+1)
= 2p

+ O(τ ),

which gives us

log2

(
fτ − fτ/2

fτ/2 − fτ/4

)
= p + O(τ ).

Applying the formula above to our numerical solutions we obtain an estimation for the order of convergence of bn

and un

pu ≈ 0.9830 and pb ≈ 1.0010.

This provides a strong indication that the convergence of our numerical scheme is linear.

5. Conclusion

We have provided a derivation of a mathematical model of induction hardening process with inclusion of a
nonlinear relation between the magnetic field and the magnetic induction field. We have also proven an existence
of a weak solution of our model.

To support the theoretical results we have coded the numerical scheme implied by a variational formulation and
ran few simulations. However, we did not have an analytic solution. Numerical solutions are therefore compared with
a numerical reference one computed on a fine reference mesh. Afterwards we have investigated how the numerical
solutions computed for the increasing number of time steps (starting at 10) were behaving according to the reference
solutions bre f and ure f . We have obtained an improving match with increasing number of time steps. Since we do not
have a proof of a unique solution of our model we could not prove the convergence of the scheme rigorously. However
the numerical experiments suggest that the scheme might really be convergent.

In the following work we would like to provide a proof of a unique solution. The coupling between the vector
potential equation and the heat equation in the form of the temperature dependent function σ (u) prevents us from
obtaining the desired energy estimates needed to prove the uniqueness of the solution and therefore it still remains an
open problem.
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