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Surface Impedance Boundary Condition with Circuit Coupling for
the 3D Finite Element Modeling of Wireless Power Transfer
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A light 3D finite element magnetodynamic a-v model of resonant wireless power transfer (WPT) coils using 3D surface impedance
boundary condition (SIBC) strongly coupled with an external circuit is proposed, reflecting the importance of external circuit
elements (notably capacitances) in the resonance phenomena at circuit and field levels. The computational gain ensuing from the use
of SIBC instead of massive conductor formulations is demonstrated on an academic example. The method is validated by comparing
the simulated and experimentally measured input impedance of a complete resonant WPT system, attesting the correct behavior of
the model while saving important computational resources.
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I. INTRODUCTION

THE wireless power transfer (WPT) is a trending topic.
Indeed, the recent progresses in power electronics have

paved the way to the implementation of resonant inductive
power transfer for energy-greedy applications, such as the
supply of electric vehicles [1]. Bringing significative infor-
mation, the 3D finite element (FE) modeling of the coils
used for resonant WPT as massive conductors is neverthe-
less submitted to important computational burden. The skin
and proximity effects appearing at the working frequency
level (tens of kHz for the transfer of high power) require
a high refinement of the conductors volume mesh, making
massive conductors formulations hardly applicable. The resorts
to stranded conductors [2] or homogenization technique [3]
have therefore been investigated. Here, profit is taken from
a 3D surface impedance boundary condition (SIBC) [4]-[5]
to avoid the volume mesh inside the conductors and relax
the computational constraints without using homogenization.
Reflecting the important influence of the external circuit on
the power transfer (through the resonant effect), a circuit
coupling needs to be applied in order to model the resonant
conditions at the circuit and field levels. The combination
of SIBC with a circuit-coupled t-φ formulation (with t the
electric vector potential and φ the magnetic scalar potential)
has already been addressed in [6]. Here, an a-v formulation
(with a the magnetic vector potential and v the electric scalar
potential) is considered. A natural strong circuit coupling
method for a-v formulation involving massive conductors has
been proposed in [7]. In this work, this last contribution is
adapted and extended to the use of SIBC, leading to a new
way to implement SIBC with circuit coupling.

Manuscript received November 20, 2016; revised January 7, 2017 and
January 29, 2017; accepted January 29, 2017. Date of publication July
10, 2015; date of current version July 31, 2015. Corresponding author: A.
Desmoort (e-mail: alexis.desmoort@umons.ac.be).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier (inserted by IEEE).

In section II, the magnetodynamic a-v weak formulation
is reminded, while the concept of SIBC and its introduction
in the a-v weak form are addressed. Section III presents
the methodology for implementing a strong circuit coupling
in a-v magnetodynamics involving SIBC, which is the main
contribution of this work. In section IV, the computational gain
afforded by the use of SIBC is highlighted on an academic
example. Finally, in section V, the method is validated by the
comparison of simulation and experimental results.

II. A-v FORMULATION WITH SIBC
A. Magnetodynamic problem and a-v weak formulation
A magnetodynamic problem is defined on a bounded do-

main Ω of the Euclidian space, including conducting parts Ωc.
By resorting to the magnetic vector potential a and to the
electric scalar potential v, the problem consists in finding a
∈ F1

a(Ω), of which uniqueness is ensured in this work by a
gauge condition presented in [8], and v ∈ F0

v(Ω), so that [9]:(
µ−1 curl a, curl a’

)
Ω

+ 〈n× h, a’〉Γh

+ (σ ∂ta, a’)Ωc
+ (σ grad v, a’)Ωc

= 0,

∀ a’ ∈ F1
a(Ω) (1)

and

〈n× h, grad v′〉Γh
+ (σ ∂ta, grad v′)Ωc

+ (σ grad v, grad v′)Ωc
= 0,

∀ v′ ∈ F0
v(Ω) (2)

where µ is the magnetic permeability, n is the unit normal
vector exterior to Ω, h is the magnetic field, Γh is the part
of the boundary of Ω concerned by Neumann’s or mixed
boundary conditions and σ is the electric conductivity. F1

a(Ω)
and F0

v(Ω) are, respectively, curl- and grad-conform function
spaces containing, respectively, the basis functions of a and of
v. (., .)Ω and 〈., .〉Γ denote respectively a volume integral in Ω
and a surface integral on Γ of the product of their arguments.
Solving (1) and (2) is similar to respectively solve curl h = j
in Ω and div j = 0 in Ωc in a weak sense.
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B. Surface impedance boundary condition

The conducting parts Ωc can be removed from Ω while
keeping the eddy currents effects into the problem. Indeed,
following from Snell’s law of refraction, the law relating the
tangential traces of the magnetic and electric fields on the
dielectric/conductor interface can be established. This relation
is assumed to be constant over the conductor’s surface (it is
independent from the position) and may thus act as a particular
local boundary condition applied on the conducting parts Γc
of boundary Γh. Assuming that the electromagnetic fields
are penetrating the conductor normally to its surface, their
tangential traces are related by the following equation:

n× h|Γc = Z−1
c n× (n× e) |Γc (3)

where e is the electric field. It can be intuitively understood
that the norms of the fields are linked through a coefficient
pertaining to an impedance at each point of the interface
surface, i.e., the conductor local surface impedance Zc. This
particular type of local boundary condition is thus called SIBC.
In the frequency domain, the surface impedance is approached
by an asymptotic expansion with respect to the skin depth δ
[4]-[5]. In this work, the frequency level is expected to be high
enough to neglect higher orders than the first one since the skin
depth is low enough in comparison with conductors dimension,
which is confirmed by the selection criteria presented in [10].
In this case and assuming σ � ωε in the conductors (with
ε the electric permittivity and ω the angular frequency), the
expression of the surface impedance is limited to:

Zc ≈
µω

2
(1 + j) δ =

(1 + j)

σδ
(4)

where j is the imaginary unit (so that ∂t ≡ jω). Equation (4)
is known as the Leontovich approximation and is rigorously
exact in the case of an infinite conducting plane (presenting
a finite conductivity). As additional information, it can be
noted that the second order approximation (i.e., the Mitzner
approximation) takes a possible curvature of the conducting
plane into account whereas the third order approximation (i.e.,
the Rytov approximation) allows the inclusion of the fields
tangential diffusion [4]-[5]. The SIBC expressed in terms of
the potentials a and v is introduced in the weak forms (1) and
(2) through the boundary term, as Γc ⊂ Γh, with:

〈n× h, e’〉Γc
=
〈
Z−1

c (n× (∂ta + grad v))× n, e’
〉

Γc

=
〈
Z−1

c n× (∂ta + grad v) ,n× e’
〉

Γc
(5)

where e’ is whether a’ or grad v′. The conductors are now
represented by their tubular skin only, and v is now only
defined on and supported by the boundary Γc.

III. CIRCUIT COUPLING

The methodology to achieve a strong circuit coupling con-
sists in adding constraints involving global quantities (i.e., the
voltage and the current of the conductors) to the SIBC mag-
netodynamic formulation (1)-(2)-(5). This approach extends
the methodology presented in [7], which focuses on massive
conductors only, to the use of SIBC.

A. Defining constraints involving global quantities

The coupling of the problem with an external circuit re-
quires to define constraints involving global quantities. It can
be achieved by locating an electromotive force between two
infinitely close cross-sections (representing the electrodes) of
each inductor i, with i ∈ C (see Fig. 1). As the conducting
parts have been removed from the domain, the persisting parts
of the electrodes are their contour exclusively. The thin tube
separating those contours is denoted Γig and extracted from
Ω. Let Vi and Ii be respectively the voltage between the
electrodes and the current across one of the electrode, whose
contour is denoted γig. One has:∫

γi

e · dl = Vi and
∫
γi

g

h · dl = Ii (6)

where γi is any path in Γig connecting the electrodes. In the
next subsections, the introduction of global quantities con-
straints is implemented in a-v magnetodynamics with SIBC.

Fig. 1: Electromotive force definition in the inductor i

B. Voltage as a strong global quantity

Until this point, the concepts have been established in
general terms, at the continuous level. Nevertheless, the tran-
sition to the discrete level is mandatory. If edge and nodal
elements are respectively used for a and v, the gradient of
v′ is included in the space of a’ [11] so that the weak form
(2) of div j = 0 is included in the weak form (1) of curl h
= j. As a consequence, the problem can be segmented into
two successive subproblems. The first subproblem consists
in determining the source surface electric scalar potentials
vi0,s, defined on Γic, corresponding to the application of a
unit voltage to each conductor i. This can be done by solving
electrokinetics problems for instance. Then, v is expressed as

v =
∑
i∈C

Vi v
i
0,s. (7)

However, in order to avoid the resort to another formulation,
a generalized source surface scalar potential can be defined as
the sum of the nodal basis functions of all the nodes located
on the contour γig modeling one of the electrode. As shown
on Fig. 2, its support is thus limited to a transition layer made
of the surface elements on Γic and adjacent to γig. It is then
equal to 1 on γig and decreases to 0 in the transition layer. This
reinterpretation appears to be an optimal choice as it avoids
a pre-computation and yields an improved band width in the
system of equations as discussed in [7].
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Fig. 2: Generalized source surface scalar potential vi0,s

The second subproblem consists in solving the weak form
(1) where the voltages Vi have replaced the potential v as un-
knowns using (7). Therefore, the voltage has been introduced
as a strong quantity in the problem, which leads to, after some
vector algebra operations:(
µ−1 curl a, curl a’

)
Ω

+ 〈n× h, a’〉Γh\Γc

+
〈
Z−1

c n× ∂ta,n× a’
〉

Γc
∀ a’ ∈ F1

a(Ω)

+
∑
i∈C

Vi
〈
Z−1

c n× grad vi0,s,n× a’
〉

Γi
c

= 0. (8)

Finally, the problem needs to be completed by defining as
many circuit relations (involving the current Ii) as there are
inductors in the problem.

C. Current as a weak global quantity and circuit relations

The current flowing into an inductor i is obtained by taking
a’ = grad vi0,s as test-function in the weak form (8). Indeed, as
curl grad vi0,s = 0, the volume term is 0. Then, the boundary
term affecting Γh \ Γc is decomposed into two terms using
vector algebra rules:〈

n× h, grad vi0,s
〉

Γh\Γc
=∫

Γh\Γc

n · curl
(
h vi0,s

)
dΓ−

∫
Γh\Γc

n · curl h vi0,s dΓ. (9)

The second term is always 0 since the vi0,s are only defined
on Γc. The Stokes theorem is applied on the first term, turning
the surface integral into a contour integral on the boundaries
of Γh \Γc. As the Γkg (k ∈ C) have been extracted from Ω, the
boundaries of Γh \ Γc are the contours of all the Γkg , i.e., the
contours of all the electrodes. The definition of Ii given by
(6) appears thereupon naturally, since vi0,s is equal to 1 on the
electrode contour γig and to 0 on the other electrodes contour:∫

∂(
⋃

k∈C Γk
g )

(
h vi0,s

)
· dl =

∫
γi

g

h · dl = Ii. (10)

This development yields the expected circuit relation of each
inductor i, linking its voltage Vi and its current Ii:

Ii +
〈
Z−1

c n× ∂ta,n× grad vi0,s
〉

Γi
c

+ Vi
〈
Z−1

c n× grad vi0,s,n× grad vi0,s
〉

Γi
c

= 0. (11)

IV. COMPARISON BETWEEN MASSIVE CONDUCTORS AND
SIBC FORMULATIONS

The computational gain ensuing from the use of SIBC
instead of a massive conductor formulations is assessed by
considering an academic example of two identical planar spiral
2 turns coils (with a 10 mm inner radius and made of AWG

11 wire) separated by 20 mm. A 2D FE axisymmetric model
with a highly refined mesh is used as reference. The coils
spiral shape is thus approximated by concentric tori which
are connected in series at the circuit level. The equivalent
3D system is obtained by extruding each torus section several
times. The resulting geometry is meshed so that the presence
of at least one element in the skin depth at the highest con-
sidered frequency is guaranteed. The problem is then solved
using the massive conductors formulation [7] and the proposed
SIBC formulation (with Zc limited to the first order) on the
same mesh (the volume mesh inside the conductors being
unemployed in the second case). Fig. 3 shows the relative error
on the evaluation of the resistance R and the self-inductance
L of one coil and the mutual inductance M between the coils.
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Fig. 3: Relative errors on R (without marker), L (dot) and M
(triangle) with SIBC (solid) and massive conductors (dashed)

A 3.9 GHz i7-HQ4910MQ computer with 32 Gb RAM
is used. Each operating point includes 314 381 degrees of
freedom (DoF), lasting 125 seconds, using massive conductors
against 142 065 DoF, lasting 30 seconds, using SIBC. The
computational and accuracy gains ensuing from the use of
SIBC appear clearly. On a concrete example, the accuracies
can be improved by using more extrusions to build the coils.

V. EXPERIMENTAL VALIDATION

The formulation (8)-(11) is validated experimentally on a
complete WPT system depicted by the schematic on Fig. 4.
The system is composed of two identical planar spiral coils,
each being connected to a capacitor C compensating their
self-inductance in order to strengthen the performances of
the transfer. As shown by preliminary tests, the capacitors
present a non-negligible series resistance RC , which has been
measured and inserted in the equivalent circuit. The load is a
pure resistance RL of 3.9 Ω. The coils are made of 7 turns of
AWG 11 wire spaced by 1.3 mm and present an inner radius
of 80 mm. The resonant frequency f0 is chosen around 200
kHz. The self-inductance of the coil is estimated analytically
to be 15.7 µH so that a 40 nF capacitance is required for
the capacitors. The proposed method is used for the 3D
FE modeling of the coils strongly coupled with the external
lumped elements. In order to lighten the geometry and the
mesh of the coils, the coils are approximated by an equivalent
set of 7 concentric tori connected in series. According to
the selection criteria [10], the Leontovich approximation is
sufficient downto 53 kHz.
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Fig. 4: Schematic of the validation example circuit

A. Results when coils are aligned and separated by 10 cm

The input impedance Zsys of the whole system when the
coils are aligned and separated by 10 cm is determined
numerically, and compared with the one measured experimen-
tally (with a network analyzer HP 4195A combined with an
impedance kit HP 41951A). Results are shown in terms of
modulus Z and phase φZ of Zsys with respect to the operating
frequency (with a focus on the resonance zone) on Fig. 5.
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Fig. 5: Modulus (left) and phase (right) of Zsys at 10 cm range

Each simulated frequency includes 266 625 DoF, lasting
65 seconds. One can see that the simulation results and the
measurements match. Slight differences are observable and are
imputed to uncertainties related with the non-ideal geometry
of the experimental coils, but also with the parameters of the
real electrical elements surrounding the coils.

B. Results when coils are aligned and separated by 5 cm

The same comparison is made when the coils are nearer
(see Fig. 6). Each simulated frequency includes 308 941 DoF,
lasting 100 seconds. In this situation, the system is said to be
overcoupled and presents a more complex behavior. Indeed,
the system is composed by two highly coupled resonators and
presents consequently two different resonances. In addition to
the uncertainties mentioned in the previous section, the larger
errors may be attributed to the high sensitivity of Zsys to the
coils coupling when the system is overcoupled. Besides, the
local error around the conductors due to the use of a low
order SIBC is more important as the coils are nearer. Finally,
edging the coils leads logically to a larger error on Zsys due
to the increase of the coils parasitic capacitance, which is
not modeled in magnetodynamics. This last phenomenon is
confirmed by the impedance patterns observed when even
closer configurations are considered. However, the transfer
range of applicative WPT devices has to be large, decreasing
the practical impact of those low range effects. Nevertheless,
our method is able to reproduce the general complex operation
of two coupled resonators.
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Fig. 6: Modulus (left) and phase (right) of Zsys at 5 cm range

VI. CONCLUSIONS

In this paper, a 3D FE formulation with SIBC and circuit
coupling suitable for WPT coils modeling has been proposed.
This technique enables the possibility to represent the eddy
current effects while avoiding the expensive computational
cost of the volume mesh inside the conductor at the concerned
frequency level. Regarding the crucial aspect of the resonance
in the WPT technology, a mandatory strong circuit coupling of
the 3D FE a-v formulation involving SIBC has been developed
and implemented. The computational gain ensuing from the
use of SIBC has been demonstrated on an academic example.
The model has been compared to experimental results and
the comparison has highlighted the correct behavior of the
circuit coupling while representing a WPT input impedance
pattern. The observable errors are attributed to uncertainties
related with the experimental circuit but also with the SIBC
approximation order. The formulation being validated, the
implementation of higher order SIBCs and the quantification
of the ensuing impact, if any, is proposed as further work.
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