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IMPROVED SWEEPING PRECONDITIONERS FOR DOMAIN DECOMPOSITION
ALGORITHMS APPLIED TO TIME-HARMONIC HELMHOLTZ AND MAXWELL

PROBLEMS ⇤, ⇤⇤

A. Vion and C. Geuzaine1

Abstract. Sweeping-type algorithms have recently gained a lot of interest for the solution of high-
frequency time-harmonic wave problems, in particular when used in combination with perfectly matched
layers. However, an inherent problem with sweeping approaches is the sequential nature of the process,
which makes them inadequate for efficient implementation on parallel computers. We propose several
improvements to the double-sweep preconditioner originally presented in [18], which uses sweeping as a
matrix-free preconditioner for a Schwarz domain decomposition method. Similarly, the improved pre-
conditioners are based on approximations of the inverse of the Schwarz iteration operator: the general
methodology is to apply well-known algebraic techniques to the operator seen as a matrix, which in turn
is processed to obtain equivalent matrix-free routines that we use as preconditioners. A notable feature
of the new variants is the introduction of partial sweeps that can be performed concurrently in order to
make a better usage of the resources. As these modifications still leave some unexploited computational
power, we also propose to combine them with right-hand side pipelining to further improve parallelism
and achieve significant speed-ups. Examples are presented on high-frequency Helmholtz and Maxwell
problems, in two and three dimensions, to demonstrate the properties of our improvements on parallel
computer architectures.

1. Introduction

Solving time-harmonic wave equations using finite element-type methods is a notoriously difficult problem,
especially in the high-frequency regime where the number of unknowns becomes so large that the direct solution
of the resulting linear system is computationally intractable. Iterative solvers based on a domain decomposition
method and a sweeping process over the subdomains appear as an interesting approach: these techniques use
direct solutions on slices of the domain, and propagate information across the slices using some transmission
condition, among which perfectly matched layers have recently deserved special attention [6, 7, 12, 14, 18]. The
sweeping process, which is linked to the symbolic block factorization of the problem, is inherently sequential:
each slice must be solved before the next one can be considered. So, although the number of iterations of the
iterative algorithm can be shown to be independent of frequency under some conditions, sweeping algorithms
do not scale on parallel computer architectures, as only the (direct) solution in each slice can be parallelized.
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Figure 1. Layered decomposition of the domain, without overlap.

The double-sweep preconditioner originally proposed in [18] introduced sweeping naturally as a matrix-free
preconditioner for a non-overlapping Schwarz domain decomposition method. Recasting the Schwarz domain
decomposition algorithm as the solution of a linear system, the main idea was to derive an explicit, approximate
inverse of the Schwarz iteration matrix in the case of a simple one-dimensional, layer-like decomposition of the
computational domain. This explicit inverse could be written recursively as the computation of two concurrent
sweeps across the subdomains, one in the forward direction and one backwards. While other sweeping approaches
directly precondition or solve the discrete wave equation problem, this approach preconditions the iteration
operator of the domain decomposition solver, leading to very small problem sizes (the unknowns are located
only on the interfaces between the subdomains). Provided that accurate approximations of the Dirichlet-
to-Neumann (DtN) operator exist on the boundaries between the subdomains (e.g. using high-order local
transmission conditions [3, 4, 8, 13] or perfectly matched layers [1, 2, 11]), an iteration count independent of
the number of subdomains and frequency is observed in practical numerical simulations. While this approach
possesses several advantages compared to competing sweeping techniques (notably its matrix-free nature and the
ease with which it can be integrated in existing simulation codes), each sweep is still a sequential process [12,17].

In this paper we investigate several variants of this preconditioner, by considering different approximations
of the inverse of the Schwarz iteration operator. Some of the new variants can be linked to well-known algebraic
techniques (Block-Jacobi, Gauss-Seidel); thanks to the introduction of cuts in the sweeping process, multiple sub-
sweeps can be performed concurrently and thus lead to enhanced scalability on parallel computer architectures.

The paper is organized as follows. Section 2 recalls the classical non-overlapping Schwarz algorithm for
a layered decomposition of the computational domain, and recasts it as the solution of a linear system of
equations. In Section 3 we take advantage of the matrix representation of the Schwarz iteration operator to
design a family of preconditioners, the original double-sweep preconditioner from [18] being a particular case.
An extension with shorter, concurrent sweeps is proposed, as well as two Gauss-Seidel variants. Section 4 then
presents a pipelining strategy to further improve parallelism when the new sweeping preconditioners are used
to solve problems with multiple right-hand-sides. Finally, numerical results on large acoustic (Helmholtz) and
electromagnetic (Maxwell) problems are presented in Section 5.

2. Non-Overlapping Schwarz Algorithm

Let us begin by describing the well-known non-overlapping Schwarz algorithm using operator notations.
This will be useful for describing the overall algorithm as the application of an iteration operator, represented
by a matrix, without detailing the underlying partial differential equations or the discretization scheme. The
sweeping preconditioners presented in Section 3 will be derived directly using this operator form. The numerical
results presented in Section 5 will use these preconditioners in combination with a finite element discretization
of both Helmholtz (scalar) and Maxwell’s (vector) equations: for a detailed presentation of the finite element
formulations and their implementation in the context of Schwarz domain decomposition methods, see [15].
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2.1. Layered Decomposition of the Domain

We consider a “layered”, non-overlapping decomposition of the domain ⌦ with boundary � (and exterior unit
normal n), where each subdomain ⌦i, i = 1, . . . , N , has at most two strictly non-adjacent neighbors and the
first and last subdomains are unconnected, as illustrated on Figure 1. Such one-dimensional decompositions
are naturally well suited for the sweeping methods that we are considering. (The case of “cyclic” decomposi-
tions where the first and last domains have a common boundary can be treated in a similar way.) For every
i = 1, . . . , N , we define �i = �

T
@⌦i; and for j = 1, . . . , N, j 6= i, we introduce the artificial interface (or

“transmission boundary”) ⌃i,j = ⌃j,i = @⌦i

T
@⌦j . For the considered layered decompositions, ⌃i,j 6= ; if

|i� j| = 1. We also denote by ni the unit exterior normal to the subdomain ⌦i.

2.2. Algorithm in Operator Form

A generic time-harmonic wave propagation problem with sources in the domain ⌦ and homogeneous boundary
conditions on � can be written in the form

Lu = f in ⌦,

Bu = 0 on �,
(1)

where L and B are linear operators. For example, for an acoustic wave problem with a Sommerfeld radiation
condition (the unknown scalar field u denoting the pressure), one would have L := (�+k2) (with k the acoustic
wavenumber) and B := (@n�ik). For an electromagnetic wave problem with a Silver-Müller absorbing boundary
condition (the unknown vector field u now denoting the electric field), one would have L := (curl curl � k2)
(with k the electromagnetic wavenumber) and B := (�t

ncurl+ ik�T
n ), with �t

n and �T
n respectively the tangential

and tangential component trace operators (�t
n : v 7! n ⇥ v and �T

n : v 7! n ⇥ (v ⇥ n)). Different sources and
more general boundary conditions can be considered without difficulty.

The additive Schwarz domain decomposition algorithm can be described as follows at iteration k+1, assuming
e.g. g(0)i,j = 0. For i = 1, . . . , N , compute u(k+1)

i solution to

Lu(k+1)
i = f in ⌦i,

Bu(k+1)
i = 0 on �i,

Bi,ju
(k+1)
i = g(k)i,j on ⌃i,j .

(2)

Then for i, j = 1, . . . , N such that |i� j| = 1, update the interface unknowns according to:

g(k+1)
j,i = Bj,iu

(k+1)
i on ⌃j,i. (3)

Detailed expressions for the operators Bi,j in the case of time-harmonic acoustic and electromagnetic wave
problems can be found in [15]: they are respectively of the general form Bi,j = @ni + S for acoustics, and
Bi,j = (�t

ni
curl + S) for electromagnetics, where S is called the transmission operator. The simplest, lowest

order transmission operator for acoustics is S := �ik, and S := ik�T
ni

= ik�T
nj

for electromagnetics. Physically,
the nonhomogeneous boundary conditions on the artificial interfaces ⌃i,j can be interpreted as (generalized)
impedance boundary conditions.

Thanks to the general form of the operators Bi,j , in the case of non-overlapping decompositions the update
relation (3) can be rewritten as

g(k+1)
j,i = Bj,iu

(k+1)
i = �g(k)i,j + 2Su(k+1)

i , (4)

since ni = �nj on ⌃i,j = ⌃j,i.
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Considering the full vector of unknowns g = [g1,2, g2,1, g2,3, . . . ]T made of all the interface unknowns gi,j , one
step of the above algorithm can be summarized as:

g(k+1)
= Ag(k) + b, (5)

for some right hand side b. Iteration (5) is a fixed-point iteration, the solution of which solves the linear system
that we will call the Schwarz problem:

Fg = (I �A)g = b. (6)

Letting aside the choice of a discretization method, the full algorithm can thus be decomposed into four steps
(see [15] for details):

1. Assemble and factorize the system matrix for each one of the subproblems (2);
2. Compute the right-hand side of the Schwarz problem (6), that contains the contributions of the (physical)

sources;
3. Solve the Schwarz problem (6) for the interface unknowns g;
4. Compute the solution ui in each of the subdomains ⌦i, based on g.

Steps 2–4 constitute the “online” part of the algorithm that must be repeated for any new right-hand side (step
1 can be performed once, offline). From a parallel computing perspective, the most challenging step is 3: all
the others are independent and can be carried out simultaneously without communication. In practice (6) is
solved using an iterative Krylov subspace method such as GMRES or ORTHODIR, which only requires the
application of the operator F on a given iterate. This application involves the solution of the subproblems, and
is thus usually made “matrix-free”, i.e. without explicitly constructing the associated matrix coefficients.

As will be explained in the next section, however, one can provide an abstract matrix representation by asso-
ciating transfer operators to the subproblem solves, that we will use later on to design a family of preconditioners
for that system.

2.3. Matrix Form of the Iteration Operator

For our layered decomposition of the domain, the unknown vector g of the Schwarz algorithm contains a total
of M = 2(N � 1) unknown fields, which is thus the size of the (continuous) Schwarz problem. We introduce the
forward and backward transfer operators Bf

i and Bb
i across ⌦i, defined by:

Bf
i : gi,i�1 7�! �2Sui(gi,i�1, 0)|⌃i,i+1

:= Bf
i gi,i�1,

Bb
i : gi,i+1 7�! �2Sui(0, gi,i+1)|⌃i,i�1

:= Bb
i gi,i+1,

(7)

where ui(gi,i�1, gi,i+1)|⌃ refers to the restriction on ⌃ of the solution to the subproblem Lui = f defined by
(2). Notice that the forward and backward transfer operators only involve the solution of subproblems with a
nonhomogeneous impedance boundary condition on one side only (left or right), since either gi,i�1 or gi,i+1 is
set to 0. We also define the self-coupling operators Ef

i and Eb
i , defined from an interface to itself:

Ef
i : gi,i�1 7�! gi,i�1 � 2Sui(gi,i�1, 0)|⌃i,i�1

= Ef
i gi,i�1;

Eb
i : gi,i+1 7�! gi,i+1 � 2Sui(0, gi,i+1)|⌃i,i+1

= Eb
i gi,i+1.

(8)

These operators correspond to the contribution on an interface of the part of a wave that travels through the
domain and that is reflected back to its interface of origin. These operators are illustrated on Figure 2.
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Bf
i

Ef
i

B⌃ui = gi,i�1 B⌃ui = 0

on ⌃i,i�1 on ⌃i,i+1

Lui = 0

in ⌦i

Figure 2. Illustration of the definition of the Bf
i and Ef

i operators. The source is placed on
the left interface and the outputs are respectively related to the solutions on the right and
left interfaces. The application of both operators can be obtained with a single solve of the
subdomain ⌦i for some impedance data gi,i�1; they can be seen as Green’s functions on these
interfaces. With the backward operators, the source is placed on the right interface.

With these definitions, the matrix corresponding to the Schwarz operator writes:

F(N) =

2

66666666666666664

I Ef
2 Bb

2

Eb
1 I 0 0

0 0 I Ef
3

. . .
Bf

2 Eb
2 I

. . .
. . .

Bb
N�1

0 0

0 0 I Ef
N

Bf
N�1 Eb

N�1 I

3

77777777777777775

, (9)

with I the identity operator. Horizontal and vertical lines have been added to emphasize the layered structure
of the matrix: for each additional domain, two lines and two columns are added, conserving the same pattern.
Therefore, that matrix can easily be constructed for an arbitrary number of subdomains. It is a banded matrix,
with a bandwidth of 5, although at most 3 elements are non-zero on a given line or column. This structure
illustrates well the local couplings between subdomains. Note that for the layered decomposition, the same
structure is kept in any dimension, as each subdomain (except the first and last ones) has only 2 neighbors; in a
cyclic decomposition extra-diagonal elements should be added to close the loop with the first and last domains.

If we now consider discretized interface functions gij , we can still obtain a matrix expression of the iteration
operator, with the same structure as (9). The major difference is that the transfer and self-coupling operators
B{f,b}
i and E{f,b}

i are replaced by dense numerical blocks B{f,b}
i and E{f,b}

i , that can be seen as the discrete
Green functions for the problems with single-sided impedance data, evaluated on the opposite and same interface
respectively. These blocks are very expensive to form, thus it is never done in practice. But if the full numerical
matrix was available, inverting it would solve the Schwarz problem; this inverse would however be quite dense,
making its storage, factorization and application rather expensive.

3. Sweeping Preconditioners

Sweeping preconditioners can be constructed by looking for approximate inverses of (9). The underlying
idea is to look for approximations that would involve the same subproblem solves than for the (direct) iteration
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operator: this way a fully matrix-free preconditioner can be obtained, whose application is carried out in a
similar fashion to the original Schwarz iteration, without any pre-calculation.

3.1. Double Sweep Preconditioner

Let us suppose that the shape of the domain and the transmission conditions used on the artificial interfaces
lead to no internal reflections. In that case, the self-coupling operators E{f,b} vanish and the Schwarz iteration
matrix (9) becomes [18]:

FA(N) =

2

66666666666666664

I Bb
2

I
I . . .

Bf
2 I

. . .
. . .

Bb
N�1

I

Bf
N�1 I

3

77777777777777775

, (10)

Compared to (9), the matrix has an even simpler structure, with half of its off-diagonal elements removed.
In particular, notice how the first and last columns are only made of identity blocks, and how the forward
and backward parts are totally independent from each other (lines and columns are made exclusively of either
forward or backward operators). This allows for the direct construction of its inverse:

F�1
A (N) =

2

66666666666666664

I �Bb
2 . . .

QN�1
i=2 (�Bb

i )

I

I . . .
QN�1

i=3 (�Bb
i )

�Bf
2 I ...

...
...

. . .
�Bb

N�1

I
Q2

i=N�1(�Bf
i )

Q3
i=N�1(�Bf

i ) . . . �Bf
N�1 I

3

77777777777777775

, (11)

with the general expressions for its coefficients:

F�1
A,mn(N) =

8
>>>>>><

>>>>>>:

I if m = n;
Qn+1

2

i=m+3
2

(�Bb
i ) if m,n = 1, 3, . . . and m < n;

Qn+2
2

i=m
2
(�Bf

i ) if m,n = 2, 4, . . . and m > n;

0 otherwise,

(12)

where the composition operator
Q

is defined as
Qb

i=a fi := fafa�1 · · · fb+1fb if a < b and
Qb

i=a fi := fafa+1 · · · fb�1fb
if a > b. The same transfer operators B{f,b}

i appear in the iteration matrix and in its inverse, though the structure
of the latter is more complex, with the operators being composed together. But we see that, as a consequence
of the repetitive structure of the matrix FA(N), a recursion formula can be found for forming its inverse for an
arbitrary number of subdomains.
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We now take advantage of this recurrence property to write the matrix-vector product g0 = F�1
A r (in the

context of right-preconditioned linear solvers, r denotes the residual) as follows:

g0i,i�1 = ri,i�1 +

i�1X

p=2

pY

q=i�1

(�Bf
q ) rp,p�1, i = 2, . . . , N ;

g0i,i+1 = ri,i+1 +

N�1X

p=i+1

pY

q=i+1

(�Bb
q) rp,p+1, i = 1, . . . , N � 1,

where any sum
Pb

p=a for which a > b should be ignored. Factoring these expressions, we rewrite them as:

g0i,i�1 = ri,i�1 � Bf
i�1

⇣
ri�1,i�2 � Bf

i�2

�
. . . (r3,2 � Bf

2 r2,1)
�⌘

, i = 2, . . . , N ;

g0i,i+1 = ri,i+1 � Bb
i+1

⇣
ri+1,i+2 � Bb

i+2

�
. . . (rN�2,N�3 � Bb

N�1rN�1,N )

�⌘
, i = 1, . . . , N � 1,

where the operators Bf
i with i  1 and Bf

i with i � N are not defined and should be ignored. This finally gives
the double recurrence relation:

g02,1 = r2,1;

g0i+1,i = ri+1,i � Bf
i g

0
i,i�1, i = 2, . . . , N � 1;

g0N�1,N = rN�1,N ;

g0i�1,i = ri�1,i � Bb
i g

0
i,i+1, i = N � 1, . . . , 2.

(13)

The first relation describes a forward sweep: we start from the first artificial interface ⌃1,2 and propagate the
information by solving a problem at each step to move to the next interface and incorporate its contribution. The
other relation describes the same procedure in the backward direction; because these sequences are independent
of each other (they act on distinct subsets of the unknowns), they can be done in parallel. We note that the
extreme subproblems (the first and the N -th) are not solved in any of the sequences, so each sweep has an
actual length of N � 2 steps.

Another convenient way of rewriting relations (13) is to use multi-indices Ik that are dense collections of
sorted subdomain indices belonging to the k-th group of Nk � 2 subdomains. (So far we worked with a single
group made of all subdomains (I1), but we will later subdivide them.) We also define I 0k, where the sequence
of indices is reversed. We now define the sweeps of length l > 0 in the k-th group as:

Sf
k (l) =

Ik(l+1)X

p=Ik(2)

0

@
pY

q=Ik(l+1)

�Bf
q

1

A rp,p�1;

Sb
k(l) =

I0
k(l+1)X

p=I0
k(2)

0

@
pY

q=I0
k(l+1)

�Bb
q

1

A rp,p+1,

with S{f,b}
k (0) = 0. Then we have the induction property for 1  l  Nk � 2:

Sf
k (l) = �Bf

Ik(l+1)

�
rIk(l+1),Ik(l) + Sf

k (l � 1)

�
;

Sb
k(l) = �Bb

I0
k(l+1)

�
rI0

k(l+1),I0
k(l)

+ Sb
k(l � 1)

�
,
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and the recurrence relations rewrite simply as:

g0i,i�1 = ri,i�1 + Sf
1 (i� I1(2)), i = I1(2), . . . , I

0
1(1) = 2, . . . , N ;

g0i,i+1 = ri,i+1 + Sb
1(I

0
1(2)� i), i = I 01(2), . . . , I1(1) = N � 1, . . . , 1.

(14)

In our numerical experiments with the double sweep (see [16, 18]), we have observed that, provided that
the approximation of the DtN map used in the transmission condition is sufficiently accurate, the precondi-
tioned Schwarz algorithm has the desirable properties of having a convergence rate virtually independent of
the wavenumber k and number of subdomains N , even in the case of a heterogeneous medium. For complex
heterogeneous media, the most accurate approximations of the DtN were obtained using Perfectly Matched
Layers [16, 18]. A detailed description of the various DtN approximations and their implementation in a finite
element context, for both acoustic and electromagnetic problems, is provided in [15].

Examining the double sweep algorithm, it is important to note that it only involves subproblem solutions that
are the same as the one performed in the main iteration, albeit with different right-hand-sides. In particular
this means that no specific preprocessing is required to build the standard double sweep preconditioner. In
total, the standard double sweep algorithm requires N +2(N � 2) = 3N � 4 subproblem solutions per iteration.

It is interesting to note that an equivalent algorithm can be derived by combining the application of the
preconditioner and the Schwarz operator: for right-preconditioning it gives

Fc = FF�1
A .

We denote the resulting algorithm as the combined double sweep preconditioner, which amounts to solve an
unpreconditioned problem:

Fcg = F�1
A b.

Applying Fc rather than its two factors allows to bring down the total number of subproblem solves to
2N � 2 [18] by skipping redundant subproblem solves. It also has the fully parallel step removed and only
performs sweeps, which will let us pipeline several right-hand sides as will be detailed in Section 4. Although
an apparent link with multiplicative Schwarz can be seen in this combined sweep procedure, we point out some
differences: simple multiplicative Schwarz sequentially solves all problem in an arbitrarily chosen direction,
while we do the sweeps in both directions (which is closer to a symmetrical Gauss-Seidel iteration); the way
information is exchanged and stored during the sweep is also different.

The main drawback of sweeping preconditioners is the sequential nature of the sweeps. If each CPU has a
single subdomain assigned to it, it will remain idle during most of the duration of the sweep, as illustrated on
Figure 4 (left). The next section introduces cuts in the sweeps in order to improve parallelism.

3.2. Block-Jacobi Preconditioners: Double Sweep with Cuts

If we introduce one or more cuts in the sweeping process, the resulting partial sweeps can be performed
independently and in parallel. This is akin to a block-Jacobi preconditioning strategy, improving parallelism at
the cost of a less accurate approximation of the inverse of FA.

The matrix corresponding to these reduced sweeps is derived from the full preconditioner matrix, where the
transmission operators corresponding to the cut domain is replaced by 0. As a consequence, communication
between the two groups of domains is forbidden and the preconditioner matrix has well separated blocks, that
correspond to the independent restricted double sweeps. Each block is the inverse of a Schwarz operator FAi

over the i-th portion of the domain consisting of a few adjacent domains, taken apart from the other portions.
For the situation of Figure 3, where portions 1 and 2 have multi-indices I1 = {1, 2, 3, 4} and I2 = {4, 5, 6, 7}
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⌦1 ⌦4b⌦2 ⌦3 ⌦4a ⌦5 ⌦6 ⌦7

Figure 3. Partial sweeps cover non-overlapping groups of domains, separated by the dashed
line. The position of the cut inside the domain is not important as the first and last domains
are not solved in our sweeps, as shown by the arrows.

respectively, the matrix is:

F�1
Acut

=

2

666666666664

2

6666664

I 0 �Bb
2 0 Bb

2B
b
3 0

0 I 0 0 0 0
0 0 I 0 �Bb

3 0
0 �Bf

2 0 I 0 0
0 0 0 0 I 0
0 Bf

3B
f
2 0 �Bf

3 0 I

3

7777775

2

6666664

I 0 �Bb
5 0 Bb

5B
b
6 0

0 I 0 0 0 0
0 0 I 0 �Bb

6 0
0 �Bf

5 0 I 0 0
0 0 0 0 I 0
0 Bf

6B
f
5 0 �Bf

6 0 I

3

7777775

3

777777777775

=


F�1

A1

F�1
A2

�
.

(15)

This is very much like a block-Jacobi preconditioner for the simplified Schwarz iteration operator. In the k-th
group of subdomains, we have the relations:

g0i,i�1 = ri,i�1 + Sf
k (i� Ik(2)), i = Ik(2), . . . , I

0
k(1)

g0i,i+1 = ri,i+1 + Sb
k(I

0
k(2)� i), i = I 0k(2), . . . , Ik(1).

(16)

In the ideal case where the exact DtN is used as transmission condition, the preconditioned operator has the
following structure:

FAF�1
Acut

=

2

66666666664

I 0 0 0 0 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0 0 0
0 0 0 0 I 0 Bb

4 0 �Bb
4B

b
5 0 Bb

4B
b
5B

b
6 0

0 0 0 0 0 I 0 0 0 0 0 0
0 0 0 0 0 0 I 0 0 0 0 0
0 Bf

4B
f
3B

f
2 0 �Bf

4B
f
3 0 Bf

4 0 I 0 0 0 0
0 0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 0 I

3

77777777775

, (17)

that is relatively close to an identity. Spectral analysis reveals that the eigenvalues are well clustered (�1,...,2N�2 =

1) but that it is defective, as is the unpreconditioned Schwarz operator. However, the number of missing eigen-
vectors is 2Nc instead of 2N � 4, if Nc is the number of cuts, which is a strong improvement if Nc << N .
Numerical experiments with this new version of the preconditioner confirm this analysis, with a convergence
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0.000 3.152 6.325

Time [sec]

1

6

11

16

#
su

bd
om

ai
n

0.000 1.203 2.421

Time [sec]

Figure 4. Introducing 2 cuts in the double sweep preconditioner (right) enables parallel exe-
cution of the partial sweeps, reducing the application time of the preconditioner without cuts
(left). The white diamonds indicate solves performed in the iteration operator; the black circles
and squares indicate solves in the forward and backward sweeps, respectively (we are thus in
the case of left preconditioning). These timelines were obtained for the COBRA test case of
Section 5.2, with 16 subdomains and cuts in subdomains 6 and 11.

rate that degrades as the number of cuts increases for a strongly guided problem, and plateaus appearing on the
convergence curve. This situation is to be compared with the behavior of the unpreconditioned DDM algorithm,
that corresponds to the limit case where a cut is placed in every other domain.

To illustrate the gain in application time and the improved parallelism of the double sweep with cuts, Figure
4 presents timelines of the solves performed during the application of the Schwarz iteration operator and the
double sweep preconditioner, with and without cuts. The timelines for the combined double sweep algorithm
mentioned at the end of Section 3.1 are illustrated on Figure 5. The combined application avoids redundant
solves, while not being faster in a fully parallel implementation. The main difference is in the flow of information
during the sweeps.

3.3. Symmetric Gauss-Seidel Preconditioners

Instead of simplifying the Schwarz operator in order to derive explicit expressions for its inverse like was
done for double sweep algorithms, standard preconditioning techniques could also be directly applied to the full
Schwarz operator. For example, a symmetric Gauss-Seidel (SGS) preconditioner M�1

SGS =

¯L�1
N

¯U�1
N ( ¯UN and ¯LN

are the upper and lower triangular parts, with a unit diagonal) can be considered for the full matrix FN (N),
as the factors can also be computed a priori with a recursion formula, e.g. for 5 subdomains:

¯L�1
N r =
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Figure 5. Illustration on timelines of the separate (left) and combined (right) application of
the double sweep with cuts and the Schwarz operator, right-preconditioning. Black squares
involve data on the right only (backward solves); black dots involve data on the left only
(forward solves); white diamonds involve data on both sides (standard operator or cut domains).
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The application of these factors to a vector is quite similar to the lower or upper parts of the standard double
sweep matrix (11), although they have roughly twice as many non-zero elements for the forward or backward
sweep. They give the recurrence relations for the applications g0 = ¯L�1

N r or g0 = ¯U�1
N r:

g02,1 = r2,1 � Eb
1r1,2;

g0i+1,i = ri+1,i � Eb
i ri,i+1 � Bf

i g
0
i,i�1, i = 2, . . . , N � 1;

g0N�1,N = rN�1,N � Ef
NrN,N�1;

g0i�1,i = ri�1,i � Ef
i ri,i�1 � Bb

i g
0
i,i+1, i = N � 1, . . . , 2.

(18)

Comparing these relations with (13), we observe that a new term has appeared, that corresponds to a source
on the same interface as the target interface. Consequently, the first solve can no longer be skipped, but the
total number of solves per sweep is only increased by 1; the presence of the additional term essentially indicates
that more information is incorporated in our sweeps, as we now account for reflections.

The recurrence relations can be written in the same form as (14), if the sweep definitions are slightly modified
with the induction property:

¯Sf
k (l) = �Eb

Ik(l+1)rIk(l+1),Ik(l+2) � Bf
Ik(l+1)

�
rIk(l+1),Ik(l) +

¯Sf
k (l � 1)

�
;

¯Sb
k(l) = �Ef

I0
k(l+1)rI0

k(l+1),I0
k(l+2) � Bb

I0
k(l+1)

�
rI0

k(l+1),I0
k(l)

+

¯Sb
k(l � 1)

�
,
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A significant difference with the standard double sweep is that the 2 sweeps are now performed sequentially
instead of being parallel, hence with an application time that is doubled. Although the additive relation
F�1

A = (

¯L�1
A +

¯U�1
A ) � I does not hold for FN , one can still design a preconditioner with the same additive

structure: M�1
SGSa = (

¯L�1
N +

¯U�1
N ) � I. It was observed experimentally that this modification does not result

in a significant degradation of the convergence rate, which makes it a better choice since its application time is
reduced by a factor of 2. Strictly speaking, a copy of the input vector should be kept since the sweeps otherwise
modify data that will be used by the other sweep after they have crossed. In practical implementations, it
is however more convenient to ignore this and modify the data in-place in a more “Gauss-Seidel-like” fashion,
which also resulted in faster convergence rates in our experiments. Compared to the standard double sweep
preconditioner, this variant has demonstrated a convergence rate that is roughly doubled in problems where
significant reflections occur, despite its very limited additional cost; this is especially true when less efficient
transmission conditions are used, as we will see in the examples of Section 5.

3.4. Other Variants

Any other standard preconditioning technique could also be investigated along the lines of SGS and SGSa.
For example, an SOR-like preconditioner with a relaxation factor ! could be constructed as follows:

M�1
SOR(!) = (2� !)

�
(D + !L) + (D + !U)

�
� !I. (19)

Our numerical experiments however concluded that the optimal relaxation parameter is actually ! = 1, which
reduces to SGSa. Incomplete LU factorizations could also be considered.

Introducing overlap in the (partial) sweeps would in turn lead to Additive Schwarz or Restricted Additive
Schwarz preconditioners... of the non-overlapping Schwarz domain decomposition method.

4. Additional Parallelization Strategies

The sequential nature of the sweeping process can be alleviated when problems with multiple right-hand sides
are considered, as is common in many geophysical exploration simulations, or in the electromagnetic simulation
of antenna arrays. We pointed out earlier that applying the combination of the Schwarz operator and the
sweeping preconditioner as a single routine has the effect of suppressing the “barrier” step where all subproblems
are solved simultaneously, as illustrated on Figure 5. This gives room for the simultaneous execution of several
sweeps acting on different right-hand sides in a pipelining fashion, see Figure 6, as a complementary way of
avoiding CPU idleness when coupled with the cuts of the previous Section. The number of right-hand sides
than can be efficiently pipelined depends on the length of the sweep, i.e. on the number of cuts.
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Figure 6. By pipelining multiple right-hand sides in the sweeps, CPU usage can be improved,
while not increasing the duration of an iteration, except the last one. Left: 1 iteration with
3 right-hand sides, without cut; right: usage is maximized by pipelining as many RHS as the
sweep length, here with 2 cuts. It is no coincidence that the same symbols (each corresponding
to a given RHS) appear simultaneously on the cut domains, where the partial sweeps converge
and for which one can solve a single problem.

We now study more in detail the algorithmic aspects of the combined double sweep with cuts. The application
of operator Fc on some residual vector r is illustrated below:
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Figure 7. Illustration of the flow of information in the combined sweeping algorithm, with a cut.

The diagonal blocks of the matrix are combined sweeps over the groups of domains; off-diagonal blocks are the
“bridges” between the groups (see Figure 7). We recall that the operators B{f,b}

i and E{f,b}
i actually correspond

to the same solve of subdomain ⌦i: the difference is simply in their target interface. Since the cut domain needs
to be solved with the same data in the forward and backward sweeps, a single solve must be performed with
non-zero data on both sides, as opposed to the interior domains of each group.

The generic update expressions read:

g0i,i�1 = ri,i�1 + Eb
i�1

⇣
ri�1,i + Sb

k

�
I 0k(1)� i

�⌘
� �i,Ik(2) S

f
k�1(Nk�1 � 1), i = 2, . . . , N ;

g0i,i+1 = ri,i+1 + Ef
i+1

⇣
ri+1,i + Sf

k

�
i� Ik(1)

�⌘
� �i,I0

k(2)
Sb
k+1(Nk+1 � 1), i = 1, . . . , N � 1.

The Kronecker symbol � determines whether the current domain is the last of the current sweep, in which case
the contribution from the next group should be added. In practice, the algorithm works in a similar way than
the preconditioner alone, by sweeping over the subdomains, while the flow of information is more complex:
instead of ignoring the reflections, this data is now “left behind”, as is materialized by the presence of the E{f,b}

operators in the expressions. It is illustrated on Figure 7, to be compared with Figure 3.
Looking at the timing diagram for an iteration with a single RHS with the combined algorithm (Figure 5,

right), one can observe long diagonals that are prolonged in the next iteration. This suggests that even in that
case, pipelining multiple RHS is possible with little interference (it is obviously not in the separate case). When
the sweeps cross each other, one should ideally be able to solve the same subproblem twice at the same time (a
forward and a backward), regardless of the number of pipelined RHS, as illustrated on Figure 6.

5. Numerical Results

The results presented in this section were obtained with the GetDDM1 framework [15], based on the open-
source finite element mesh generator Gmsh [10] and finite element solver GetDP [5,9].

5.1. Marmousi Model

The Marmousi model is a synthetic 2D acoustic model that reproduces the complex velocity profile of a
slice of earth. It features a wide range of speeds, from 1500 m/s to 5500 m/s, with several layers and faults
as depicted on Figure 8. It has become a classic test case for benchmarking seismic inversion codes [14]. We
simulate the propagation of time-harmonic acoustic waves produced by a point source located right below the
center of the top boundary (see Figure 9 for an illustration at a frequency of 40 Hz). Sommerfeld boundary
conditions are imposed on all sides. A typical GMRES convergence history for the unpreconditioned and
preconditioned domain decomposition algorithm is depicted on Figure 10 for a frequency of 400 Hz, with 352
subdomains. The finite element mesh is Cartesian, with about 750 million nodes, corresponding to 20 points
per (smallest) wavelength in the domain. Figure 11 compares the convergence of the proposed algorithms in

1
http://onelab.info/wiki/GetDDM

http://onelab.info/wiki/GetDDM
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Figure 8. Velocity profile of the Marmousi model. Dimensions (in meters) are [0, 9192]⇥ [0,�2904].

Figure 9. Solution of the Marmousi model at a frequency of 40 Hz, with a source located
right below the center of the top boundary. Sommerfeld conditions are used on all boundaries.

the same situation, when varying the length of the sweeps. For a single RHS, short sweeps of about 15 to 20
subdomains are clearly the best option.

The analysis of Figure 10 is interesting as it gives an idea of the actual speed-up that can be expected by
using the sweeping preconditioners and the pipelining. Solving for a single right-hand side without preconditoner
takes approximately 1000 time units (defined as the time for a subdomain solve). Solving the same problem
with the SGS preconditioner without cuts requires approximately 20 ⇤ 350 = 7000 time units, which clearly
shows the penalty due to CPU idleness during the sweeps. One should therefore use cuts to decrease the
iterations duration: Figure 11 shows that the number of iterations remains constant for sweep lengths as short
as 25 subdomains, leading to a duration of 20 ⇤ 25 = 500. Hence a speed-up of 2 can be expected for a single
right-hand side, while a significant amount of CPU idleness is still present.

Consider now the opposite situation where we want to solve for as many right-hand sides as there are
subdomains; using full pipelining without cuts, it would take N(2 ⇤ Nit + 4)

2 time units to complete, while
N ⇤ Nit ⇡ 350.000 time units would be necessary without preconditioner. The global speed-up is thus of the
order of half the ratio of iteration counts between the two methods, which is approximately 25 in our example.

2We break down the time consumption of the pipelined algorithm as follows: the computation of the right-hand sides F�1
N b for

the combined algorithm takes an application of the sweeps. As the sweeps overlap, two subproblems must be solved at each step
which doubles an iteration duration. Finally the roll-in and roll-out phases each take N/2 time units and once the problem is solved
the solution must be computed in volume for each right-hand side. In total we have a duration of 2⇤N ⇤ (Nit+1)+N/2+N/2+N
time units.
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Figure 10. Typical convergence history for the Marmousi model at a frequency of 400 Hz,
with or without preconditioning (352 subdomains, PML transmission condition).
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Figure 11. Number of GMRES iterations for the Marmousi model at a frequency of 400 Hz
vs. sweep length. IBC(0) denotes simple Sommerfeld conditions on the artificial interfaces [15].

We note that the speed-up potential of pipelining for many right-hand sides can be boosted by increasing the
number of subdomains, as the convergence rates of DS and SGS weakly depend on N , as opposed to the standard
algorithm.

5.2. COBRA Model

We now present results obtained on a 3D S-shaped cavity: the COBRA benchmark defined by the JINA98
workgroup (see Figure 12). We solve this benchmark for both acoustic and electromagnetic waves at k = 314⇡
with a normalized wave speed of c = 1 m/s, with N = 100 subdomains and a finite element mesh with 20
points per wavelength. Figure 13 illustrate typical acoustic and electromagnetic solutions (at a lower frequency
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Figure 12. Mesh and decomposition of the cobra model. Dimensions are 0.084m ⇥ 0.11m
(cross-section); the curvilinear length from one end to the other is 0.469m.

Figure 13. Acoustic solution (pressure isovalues, left) and electromagnetic solution (electric
field on a transverse plane in the middle of the cross-section, right) of the COBRA model at
k = 30⇡.

of k = 30⇡). Typical convergence results for the proposed algorithms are reported on Figure 14 for the acoustic
case, and on Figure 15 for the electromagnetic case. The same conclusions as for the Marmousi model can be
drawn: relatively short sweeps allow for a good compromise between iteration count and parallel efficiency.

6. Conclusion

We have presented several improvements to the double-sweep preconditioner for time-harmonic wave prob-
lems originally proposed in [18], which uses sweeping as a matrix-free preconditioner for a Schwarz domain
decomposition method. The matrix representations of the Schwarz operator and its inverse were used to design
these preconditioners: some of the new variants can be linked to well-known algebraic techniques like Block-
Jacobi and Gauss-Seidel methods, which opens some perspectives as other techniques could be explored in a
similar fashion. The introduction of cuts in the sweeps allows to restore some parallel efficiency to achieve
some speed-up over the standard Schwarz method, which can be further improved by pipelining for problems
with multiple right-hand sides. All these algorithms have the important property of being independent of the
underlying problem formulation; we have presented results for the Helmholtz and Maxwell equations, in 2D and
3D, discretized using finite elements. The extension to elastodynamics is currently under investigation.
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Figure 14. Number of GMRES iterations for the acoustic COBRA model at k = 314⇡ vs.
sweep length. GIBC(4) denotes fourth order Padé impedance conditions on the artificial inter-
faces [15].
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Figure 15. Number of GMRES iterations for the electromagnetic COBRA model at k = 314⇡
vs. sweep length. GIBC(2) denotes second order Padé impedance conditions on the artificial
interfaces [15].
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