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ABSTRACT
Introduction: The mathematical modeling of electromagnetic problems in electrical devices are
often presented by Maxwell's equations and constitutive material laws. These equations are par-
tial differential equations linked to fields and their sources. In order to solve these equations and
simulate the distribution of magnetic fields and eddy current losses of electromagnetic problems,
a subproblemmethod for modeling a 3-D magnetodymic problem with the b-conformal formula-
tion is proposed. Methods: In this paper, the subproblemmethodwith using edge finite elements
is proposed for coupling subproblems via several steps to treat and deal with some troubles regard-
ing to electromagnetic problems that gets quite difficulties when directly applying a finite element
method. In the strategy subproblem method, it allows a complete problem to define into sev-
eral subproblems with adapted dimensions. Each subproblem can be solved on its independent
domain and mesh without performing in whole domain or mesh. This easily supports meshing
and decreases computing time. Results: The obtained results, the subproblemmethodwith edge
elements indicates magnetic flux densities and the eddy current losses in the conducting region.
The computed results is also compared with the measured results done by other authors. This
can be shown that there is a very good agreement. Conclusion: The validated method has been
successfully applied to a practical test problem (TEAM Problem 7).
Key words: Eddy current, Magnetic field, TEAM problem 7, b-conformal formulation, finite ele-
ment method, subproblem method

INTRODUCTION
As we have known, the mathematical modeling of electromagnetic problems in electrical devices are often
presented by Maxwell’s equations and constitutive material laws. These equations are partial differential
equations (PDEs) 1,2 linked to fields and their sources (such as: magnetic and electric fields, eddy current
losses).
In order to solve these equations and simulate the distribution of magnetic fields and eddy current losses,
many authors have been recently used a finite element method (FEM) for magnetodynamic problems. But,
the directly application of the FEM to an actual problem is still quite difficult 3,4 when the dimension of the
computed conducting domains is very small in comparison with the whole problem.
In order to overcome this drawback, many authors have been recently proposed a subproblem method (SPM)
to divide a complete problem into subproblems (SPs) in one way coupling5–7. However, this proposal was
done for thin shell models, where appearing errors near edge and corner effects 5–7.
In this study, the SPM is expanded for coupling SPs via two steps with using edge finite elements (FEs). The
scenario of this method is also based on a SPM5, instead of solving a complete model (e.g, stranded inductors
and conducting regions) in a single mesh, it will be split into several problems with a series of changes. This
means that the problem with a stranded inductor (coil) alone is first solved, and then the second problem with
conducting regions is added. Thus, the complete solution is finally defined as a superposition of the SP
solutions. From this SP to another is constrained by interface conditions (ICs) with surface sources (SSs) or
volume sources (VSs), that express changes of permeability and conductivity material in conducting
regions.The developed method is performed for the magnetic flux density formulation and is illustrated on a
practical test problem (TEAM problem 7) 3.
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SPM IN AMAGNETODYNAMIC PROBLEM
Amagnetodynamic problem is defined in a studied domain Ωi, with boundary ∂Ωi = Γ = Γh ∪Γb.
The conducting region of Ω is denoted Ωc

and the non-conducting one Ωc
c,i,

with ΩC = Ωc,i ∪ ΩC
c,i.

The eddy current belongs to ΩC , whereas stranded inductors is defined in ΩC
c . The Maxwell’s equations

together with the following constitutive relations are 7–10

curl hi = ji,divbi = 0, curlei =−∂t bi (1a-b-c)

hi = µ−1
i bi +hs,i, ji = σi ei + js,i (2a-b)

n×hi |Γh = j f ,i,n×bi |Γb = k f ,i, (3a-b)

where hi is the magnetic field, bi is the magnetic flux density,
ei is the electric field, ji is the electric current density, µi is the magnetic permeability, σi is the electric
conductivity and n is the unit normal exterior to Ωi.
The fields j f ,i and f f ,i in (3a) and (3b) are SSs and consider as a zero for classical homogeneous boundary
conditions. From the equation (1b), the field bi can be obtained from a magnetic vector potential αi via a

bi = curl ai. (4)

Taking (4) into (1c), it gets curl (ei +∂t ai) = 0, that leads to the presentation of an electric scalar potential ν
through

ei = −∂t ai −grad νi. (5)

The sources hs,i in (2a) and j s,i in (2b) are VSs that can be expressed as changes of a material property in 5–7.
For example, the changes of materials from SP q (i = q) to SP p (i = p) can be defined via VSs bs,p

and js,p, i.e.

hs,p = (µ−1
p µ−1

q ) bu, js,p = (σp − σq) eq, (6a-b)

for the updated relations, i.e.

hu +hp = (µ−1
p (bu +bp) and jq + jp = σp eu + ep).

FINITE ELEMENTWEAK FORMULATION
Magnetic flux density formulation
By starting from the Ampere’s law (1a), the weak form of bi -formulation of

SP i(i ≡ q, p) is written as 4−7

(µ−1
i bi,curl a

′
i)Ω − (σi ei,a′i )Ωc + ⟨n×hi,a′i⟩ = ( js,i,a′i )Ωs , ∀ a′i∈Fe0 (curl,Ω). (8)

Combining the magnetic vector potential ai and the electrical field ei defined already by (4) and (5), one has

(µ(−1)
i curl ai,curl a′i)Ωi +(σ∂t ai,a′i)Ωc,i + (hs,i,curl a′i)Ωi + ( js,i,a′i)Ωi +

(σi grad ν ,a′i)Ωi + ⟨n×hi,a′i⟩Γh = ( js,a′i)Ωs,i ), ∀a
′
i ∈ Fo

e (curl, Ωi),
(9)

where F0
e (curl, Ωi) is a function space defined on Ωi containing the basis functions for ai as well as for the

test function a
′
i (at the discrete level, this space is defined by edge FEs; notations (·, ·) and < ·, · > are

respectively a volume integral in and a surface integral of the product of their vector field arguments.
The surface integral term on Γh (

⟨
bxhi,a

′

Γh

⟩
in (9) is defined a homogenous Neumann BC, e.g. imposing a

symmetry condition of ”zero crossing current”, i.e.

n x hlΓh = 0 ⇒ n ·hilΓh = 0 ⇔ n · jilΓh = 0. (10)

The obtained solutions by solving equation (9) with a stranded inductor alone is then considered as VSs for
solving the second problem (with an added conducting region) via the volume integrals
(hs,i, curl a

′
i)Ωi and ( js,i,a

′
i), where hs,i and js,i are already given in (6a-b).
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Discretization of Edge FEs
As presented in 1,7, each edge ei j = {i, j} linked to the vector field is defined as

Sei, j = p j grad (∑
r∈NF , j,

−
i pr

)− pigrad (∑r∈N
F,i,

−
j

pr), (11)

where N
F,m,

−
n
is the set of nodes in the facet containing evaluation point x. This means that it contains nodem

without node n, and each facet is uniquely determined for three-edge-per-node elements (Figure 1), where
either a triangular or a quadrangular facet is involved. The set N

F,m,
−
n
depends on point x, which can be either

{{m} ,{o} ,{p}} or {{m} ,{o} ,{p} ,{q}}, respectively. It should be noted that vector field Sei j is defined as a
zero in all the elements without linking to edge ei j . The vector field space created by sei j , ∀ e ∈ E , is denoted
by S1.

Figure 1: Definition of the facet associated with notationNF, j,i−.

Basis function of Edge FEs
According to definition of basis functions, the value of Sei j is defined as 1 along the edge ei j , and equal to 0
along other edges i.e. ∮ i

j si ·dl = δi, j, ∀ i, j ∈ E, (12)

where δi, j = 1 i f i = j and δi, j = 0 i f i ≠ j.
This property shows up variations of functionals and included that functions Sei j from base for the space it
generates. This is then called an edge base function. The associated FEs and celled edge FEs. The edge
function is helpful to check some of its characteristic. The vector field

grad P
F,m,

−
n
= grad(∑r∈N

F,m,
−
n

pr), (13)

involved in the expression (11), need to be analyzed at first. The characteristic of continuous scalar field,

P
F,m,

−
n
= ∑r∈N

F,m,
−
n

pr, (14)

is equal to 1 at very point in the facet linked to the N
F.m.

−
n
, which is a property of the nodal functions. The

vector field of the product of pm and (13),

pmgrad (∑r∈N
F,m,

−
n

pr) (15)

is developed now. This field is united with the edge {m,n}. As soon as the function pm is considered, it is
defined as a zero on all the edges containing point x, without being incident to node {m}. Thus, the value of
(15) is defined as a zero along the all the edges without emn. The vector fields defined in (15) is equal to zero
on them as shown in Figure 3. The association of the fields in (15) combined with edges { j, i} and {i, j}, as in
(11), gives a vector field which has the announced properties Sei j as in (15) (Figure 2). This also means that
circulation along edge ei j is equal to 1 with this edge and is equal to zero with others.
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Figure 2: Geometric interpretation of the edge function Se .

APPLICATION TEST
The practical test problem is a 3-D model based on the benchmark problem 7 of the TEAM workshop
including a stranded inductor (coil) and an aluminum plate 3 (Figure 3).
The coil is excited by a sinusoidal current which generates the distribution of time varying magnetic fields
around the coil. The relative permeability and electric conductivity of the plate are
µr,plate = 1, σr,plate = 35.26 MS/m, respectively.The source of the magnetic field is a sinusoidal current
with the maximum ampere turn being 2742AT. The problem is tested with two cases of frequencies of the 50
Hz and 200 Hz.

Figure 3: Modeling of TEAM problem 7:coil and conducting plate 3, withµr,plate = 1, σr,plate = 35.26 MS
m .

The 3-D dimensional mesh with edge elements is depicted in Figure 4. The problem with the coil alone is first
considered. The distribution of magnetic flux density generated by the excited electric current in the coil is
pointed out in Figure 5. The computed results on the of the z-component of the magnetic flux density along

442



Science & Technology Development Journal, 23(1):439-445

Figure 4: The 3-Dmeshmodel with edge elements of the coil and conducting plate, and the limited bound-
ary.

Figure 5: Distribution ofmagnetic flux density generated by the excited sinusoidal current in the coil, with
µr,plate = 1, σr,plate = 35.26 MS

m and f = 50 Hz.

the lines A1-B1 and A2-B2 (Figure 3) is checked to be close to the measured results for different frequencies
of exciting currents (already proposed by authors in [ 3]) are shown in Figure 6. Themean errors between
calculated and measured methods7 on the magnetic flux density are lower than 10%. This can be
demonstrated that the results obtained from the SPM is completely suitable and accepted.
The y component of the varying of the eddy current losses with different frequencies (50 Hz and 200 Hz)
along the lines A3-B3 and A4-B4 (Figure 3) is shown in Figure 7. The computed results are also compared
with the measured results as well 3. The obtained results from the theory modeling are quite similar as what
measured from the measurements. The maximum error near the end of the conductor plate on the eddy
currents between two methods are below 20% for both cases (50 Hz and 200 Hz). This is also proved that
there is a very good validation between the SPM and experiment methods3.

CONCLUSION
The extended method has been successfully computed the distribution of magnetic flux density due to the
electric current following in the coil, and the eddy current losses in the conductor plate. This aim has been
achieved by a detailed study of the magnetic flux density formulation and finite element edges via SPM. With
the obtained results, the method with edge element also indicates that where the hotpot occurs in the
conducting regions developed in another topic. The method has been also successfully validated to the actual
problem (TEAM problem 7).
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Figure 6: The comparison of the calculated results with the measured results at y =72mm, with µr,plate =

1, σr,plate = 35.26 MS
m and di f f erent f requencies.

Figure 7: The comparison of the calculated results with the measured results at z = 19mm, with µr,plate =

1, σr,plate = 35.26 MS
m and di f f erent f requencies.
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