

Probabilistic Joint Interpretation of Multiple Geophysical Methods for Landfill Characterization

Isunza Manrique, I.¹, Caterina, D.¹, Hermans T.², Nguyen F.¹ ¹Urban an Environmental Engineering, University of Liege, Belgium. ²Geology Department, Ghent University, Belgium

1) Motivation

RAWFILL project: supporting a new circular economy for RAW materials recovered from landFILLs.

2) Case study: geophysical survey + sampling

<u>Context</u>: MSW landfill located in Meerhout (Belgium), active from 1962 to 1998

1 m 4

<u>Multi-geophysical survey:</u> frequency-domain electromagnetic induction (EMI), magnetometry, electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), multiple analysis of surface waves (MASW) and horizontal to vertical (H/V) spectral ratio measurements. Guided sampling: 9 boreholes and 7 trial pits.

3) Methods

Geoelectrical methods: ERT/IP

Fig. 1. Multi-geophysical survey using ERT/IP, MASW and H/V co-located with 7 trial pits (black squares) and one borehole (yellow dot). (Aerial image from Geopunt Flanders).

0.1 m Sand, coarse, humus,... Sand, coarse, debris...

Mainly household waste 7.5 m+

> Natural soil (Van Diest formation)

Fig. 2. Description of borehole 8. Water table level was found at 7.5 m and the lower limit at 13.8 m.

Fig. 3. Illustration of the 5 layers identified after trial pitting

Fig. 4. Magnetometry (top), EMI (middle) and ERT/IP (bottom) acquisition.

5) **T-model:** combining multiple data

(the deeper limit is extrapolated from B8).

> This is an alternative to assess an unknown event A through its conditional probability P(A|B,C) given 2 (or more) data events B, C of different sources (Journel, 2002).

4) Probabilistic approach

- 1. Compute histograms by comparing the inverted models with the colocated data from trial pits.
- 2. Derive conditional probabilities of each of the N layers given the inverted models. Sensitivity correction using Bayes' rule.
- 3. Select model(s) than can better resolve structure of the landfill.

6) Conclusions and perspectives

IP method is useful to delineate MSW (plastics, paper, organics, wood, textile, metals, glass, etc.) overall. ERT is more sensitive to saturated zones within the waste. H/V results show a low amplitude peak around 2Hz (thus it might) • not be reliable), however a parametric analysis at this frequency is still in agreement with the estimated thickness of the waste. • For this case there is no clear improvement of using the τ-model for combining the chargeability and S-wave velocity models mostly due to the heterogeneity of the latter.

If the unknown event A = waste body (Layer 5) and events B and C = S-wave velocity and chargeability models, we can estimate $P(L5|V_s, chargeability)$ using co-located data.

Fig. 8. Conditional probability of layer 5, given the chargeability and the Swave model, using a $\tau(B,C)=0.2$.

7) Key references

- Hermans T. and Irving J., Facies discrimination with ERT using a \bullet probabilistic methodology: effect of sensitivity and regularization, NSG, 2017.
- Journel A. G., 2002, combining knowledge from diverse sources: An alternative to traditional data independence hypotheses, Mathematic Geology.