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Abstract 10 

Background: Boar taint is an unpleasant smell found in the meat of some uncastrated male pigs. This taint 11 

is often prevented by surgical castration without anesthesia or analgesia. However, this practice is an 12 

animal welfare concern. Production of entire males and immunocastration were suggested as alternatives. 13 

Ensuring that meat is untainted remains a priority for slaughterhouses. This has initiated research about 14 

the development of new boar taint detection methods. Most focus on detecting skatole and androstenone, 15 

two major contributors to boar taint. 16 

Scope and approach: This review aims to describe past methods and recent advances made in rapid boar 17 

taint detection, and provide leads for future research. The main findings of past methods such as the use of 18 

insect behavior-based sensors, e-noses, and gas chromatography–mass spectrometry, are presented. 19 

Recently developed methods based on mass spectrometry, Raman spectroscopy, and sensors are also 20 

discussed. Finally, biosensors showing promising results and potential for boar taint detection are 21 

presented. The advantages and drawbacks of these techniques, cost analysis, and possible challenges 22 

encountered during their application to on-line detection are addressed. 23 

Key findings and conclusions: This review presents numerous techniques that were developed for boar 24 

taint detection. Some methods, such as laser diode thermal desorption combined with tandem mass 25 

spectrometry, proved their on-line/at-line efficiency as they are fast and accurate. However, initial 26 

investment and difficulty of implementation could lead to reluctance in applying these. Further research 27 

could focus on testing new sensor materials whereas sensory evaluation remains the most practical method 28 

used in slaughterhouses.  29 
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1. Introduction 32 

Boar taint is a strong, unpleasant smell found in the meat of some uncastrated male pigs. This smell, 33 

caused by a complex mixture of molecules, is released upon cooking of the meat. The major molecules 34 

responsible for this smell are androstenone (5α-androst-16-en-3-one) and skatole (3-methylindole), which 35 

are known more commonly for their urine and fecal smell, respectively (Patterson, 1968; Vold, 1970). 36 

Surgical castration of male piglets without pain relief is a common practice worldwide. This castration is a 37 

fast and cheap way for farmers to ensure that the meat they sell to slaughterhouses is exempt from boar 38 

taint. 39 

Surgical castration without anesthesia or analgesia is often criticized for the pain caused to the piglet. In 40 

2010, many European stakeholders had pledged to stop surgical castration practices by 2018 (European 41 

Commission, 2010). Although the 2018 objectives were not successfully met, actions to promote 42 

alternatives to surgical castration are under way (Backus et al., 2018). As listed by the European Food 43 

Safety Authority in a report, these alternatives are the raising of entire (i.e., uncastrated) males, 44 

immunocastration, sperm sexing for production of females only, chemical castration, and administration 45 

of hormones to inhibit the hypothalamic–pituitary–gonadal axis (EFSA, 2004). In practice, the last three 46 

are considered unrealistic because sperm sexing is too expensive for large-scale applications, chemical 47 

castration is painful for the animal, and lastly, even though castration by injection of exogenous hormones 48 

is possible, its administration is prohibited in the EU (Bonneau & Weiler, 2019). Such substances are 49 

well-known for their growth-promotional effects and have been prohibited by the EU in 1981 for 50 

administration to farm animals (European Communities, 1981).  51 

Therefore, the remaining alternatives are immunocastration, and the production of entire males. 52 

Immunocastration has been a very reliable technique, and non-responders accounted for only 0-3% of 53 

vaccinated pigs. The reason for the occurrence of non-responders is uncertain, but is said to originate 54 

either from health issues in the pig or simply missing the pig during vaccination in group-housing systems 55 

(Čandek-Potokar et al., 2017). Even though all pigs were found to be correctly immunocastrated in a 56 

recent study by Kress et al. (2020), and particular attention was paid to the piglets’ health and vaccine 57 

administration, ensuring that the meat produced is taint-free remains a top priority. 58 

The practice of rearing of entire males is currently increasing (Backus et al., 2018). Despite research into 59 

reducing boar taint in several fields, such as genetics (van Son et al., 2017; Zadinová et al., 2017), breed 60 

selection (Aluwé et al., 2011), and selection of boar slaughter weight and boar feed (Heyrman et al., 2018; 61 

Wesoly & Weiler, 2012), 4% and 25% of carcasses in slaughterhouses are strongly and moderately 62 

tainted, respectively (Aluwé et al., 2009). Hence, such carcasses must be distinguished from the untainted 63 

ones to satisfy consumers. These distinguished carcasses are then used in a variety of products where boar 64 

taint can be reduced or simply where masking strategies can be applied. Example of these strategies 65 

include the use of spices, smoking the meat and diluting it with untainted one (Škrlep et al., 2020). 66 

Several analytical procedures have been suggested as reference methods for the quantification of skatole 67 

and androstenone. These methods have shown good criteria during in-house validation (Bekaert et al., 68 

2012; Fischer et al., 2011; Hansen-Møller, 1994; Verplanken et al., 2016), and in-house validation 69 

followed by an inter-laboratory collaborative study (Buttinger & Wenzl, 2014, 2020). Except for the 70 

portable gas chromatography–mass spectrometry (GC-MS) method proposed by Verplanken et al. (2016), 71 

all the above-mentioned methods are time-consuming (sample preparation and analysis) and cannot be 72 

used for detection in slaughterhouses. 73 



Although sensory evaluation and colorimetric methods for the detection of boar taint are well-74 

implemented in slaughterhouses now, research into new detection methods has been ongoing for decades. 75 

The classification method for carcasses used should meet standards such as low cost (less than 1.30 76 

euro/analysis), speed (less than 10 s), automation, and 100% sensitivity and specificity (no false positives 77 

and no false negatives) (Haugen et al., 2012). 78 

A recent study by Font‐i‐Furnols et al. (2020) has described and compared currently used boar taint 79 

detection methods, and identified those that are practically implementable in slaughterhouses. The 80 

methods that have been described in this study analyze boar taint odor as a whole, or the androstenone and 81 

skatole independently found in adipose tissue. 82 

This current review presents advances in boar taint detection in a chronological manner. Recent (i.e., after 83 

2015) and innovative research performed on boar taint detection is supplemented with older research on 84 

boar taint, and suggestions are provided on aspects that are worth further investigation. Some technologies 85 

have already been tested for the detection of boar taint compounds, but they require further development. 86 

Others, such as odorant-binding proteins (OBPs), have found applications for odor detection in other 87 

domains and have hence been suggested as promising leads for boar taint detection. This review presents 88 

several biological materials that could have a leading edge in boar taint detection methods based on 89 

bioelectronic noses. Finally, this review investigates potential challenges encountered during on-line boar 90 

taint detection, by considering the range of elements involved at various levels, which could interfere with 91 

the correct detection of tainted carcasses. 92 

All methods described in this review are summarized in Table 1 and presented according to their 93 

appearance in the text. It is to be noted that the type of information given in the method sensitivity column 94 

in the table, may vary from one article to another. Further, limits of detection and quantification are given 95 

when they are available. A careful interpretation of these limits must be performed, as the way in which 96 

they were determined varies. For example, some articles determined these for standards diluted in solvent, 97 

some in fat and finally others in melted fat. When these limits are not available, indications as to whether 98 

measurements could be performed at or below the cut-off limits are given. These commonly accepted 99 

thresholds generally range from 0.2 to 0.25 µg g-1 of fat for skatole and 0.5 to 1.0 µg g-1 of fat for 100 

androstenone (Bonneau, 1998). However, the exact threshold values may vary between studies and are 101 

hence given in the sensitivity column. 102 

2. Present boar taint detection methods in slaughterhouses 103 

Boar taint detection at the slaughterhouse is performed in two different environments, either at-line or on-104 

line. At-line detection is performed in the slaughterhouse but not on the slaughter line, while on-line 105 

detection refers to measurements performed directly on the slaughter line (Font‐i‐Furnols et al., 2020; 106 

Lundström et al., 2009). Both detection environments have advantages and disadvantages. 107 

On-line detection does not require fat sampling, and the carcass can hence be directly excluded from the 108 

slaughtering line, if tainted. However, on-line detection must not hamper the speed at which carcasses are 109 

slaughtered. The slaughtering speed is approximately 360 carcasses/h in medium-sized slaughterhouses, 110 

but can reach up to 600 carcasses/h in large slaughterhouses (Borggaard et al., 2017; Font‐i‐Furnols et al., 111 

2020). One must remember that boar taint evaluation can be performed exclusively on entire and 112 

immunocastrated males, which account for only 39% of the total male population (De Briyne et al., 2016). 113 

A slaughterhouse must however be prepared in the eventual case of long slaughtering sequences made up 114 

solely of entire and immunocastrated males. In this case, if a single measuring device is used, it must be 115 



capable of operating at such speeds, i.e., less than 10 s. More than one measuring device should be used in 116 

alternation, if the detection speed is lower than the slaughtering speed. 117 

On the other hand, at-line detection does not necessarily need to function at slaughtering speed, but 118 

requires fat sampling, which could result in the need of an additional operator in some slaughterhouses 119 

and hence generate extra costs. Additionally, a carcass traceability system must be implemented to 120 

associate the measurement performed on a sample to the corresponding carcass. 121 

Currently, two methods are widely used for boar taint detection in slaughterhouses. The first consists of a 122 

sensory evaluation performed by a trained expert after heating fat from the neck region to release the low-123 

volatility boar taint compounds (skatole and androstenone have a vapor pressure of 7.3 × 10-4 kPa and 1.3 124 

× 10-6 kPa at 25 °C, respectively). Selection and training of assessors for boar taint detection in 125 

slaughterhouses is a well-established practice, given that inter- (and intra-) individual variability in 126 

olfactory acuity exists for androstenone and skatole (Trautmann et al., 2014). Individuals possess varying 127 

perception thresholds and some even present anosmia, i.e., a lack of odor perception, for androstenone. 128 

Hence, assessors are selected according to their olfaction sensitivity for androstenone and skatole. They 129 

follow a well-structured training program that consists of training with skatole and androstenone 130 

standards. Further, they practice with fat samples in the laboratory and, finally, practice on-line to get 131 

accustomed to the working conditions. Once the training is completed, the assessor can perform the 132 

evaluation on-line, where fat is heated and smelled right off the carcass or at-line, on a fat sample (Font‐i‐133 

Furnols et al., 2020). Through the use of this technique, it is assumed that if trained assessors cannot 134 

detect boar taint compounds in fat samples under controlled conditions, it is unlikely that an untrained 135 

consumer will detect the taint in less controlled conditions (Trautmann, 2016). 136 

Sensory evaluation by trained experts is preferred by many slaughterhouses (compared to the colorimetric 137 

assay described later), as it does not require substantial initial investment. Apart from selecting and 138 

training the assessor, the main cost is the salary of the assessor. Additionally, sensory evaluation of the 139 

taint is the only method that assesses boar taint as a whole. It has been found that 33% of the variation in 140 

boar taint is due to skatole only, 36% to androstenone only, and 50% due to the combination of the two 141 

molecules (Hansson et al., 1980). Perceiving all volatile organic compounds (VOCs) responsible for the 142 

taint allows for not only the perception of the odor of each of these, but also for the perception of the odor 143 

resulting from potential synergistic effects. 144 

The second method is a colorimetric assay (Mortensen & Sørensen, 1984) often used at-line in Danish 145 

slaughterhouses. This method analyzes only indolic compounds, and provides results as “skatole 146 

equivalents.” The contribution of other molecules such as androstenone is not accounted for, resulting in a 147 

partially complete result, used as a basis for classification of carcasses. This method is already 148 

implemented in slaughterhouses and is hence cost-effective (lower than 1.30 euro/ analysis). However, a 149 

high initial investment must be considered (Font‐i‐Furnols et al., 2020), which may partly explain the 150 

decision of many slaughterhouses to currently use sensory evaluation. 151 

3. Past research in boar taint detection 152 

3.1. Insect behavior-based sensing 153 

Classical Pavlovian conditioning has been used in several species of insects. This learning procedure is 154 

defined as the association of a conditioned stimulus with an unconditioned reward, to analyze novel 155 

chemical cues (Wäckers et al., 2011). Pavlovian conditioning has been used for a variety of applications in 156 

different insects. 157 



Parasitic species, such as the wasp Microplitis croceipes (Hymenoptera: Braconidae), have been used 158 

extensively for insect-learning experiments. M. croceipes have been shown to memorize and react to a 159 

broad range of molecules, including some that are not found in their natural environment (Olson et al., 160 

2003). Additionally, these wasps have been shown to differentiate conditioned odors of similar molecules, 161 

based on molecular chain length and the position of functional groups (Meiners et al., 2002). Further, M. 162 

croceipes show specific conditionable behaviors depending on the resource: seeking behavior for food 163 

resource and coiling behavior for host resource (Olson et al., 2003). 164 

These properties have led to the use of M. croceipes in a variety of applications, such as the detection of 165 

methyl benzoate, the major VOC of cocaine (Olson & Rains, 2014); and indole, skatole, and 166 

androstenone, the major molecules responsible for boar taint (Olson et al., 2012; Wäckers et al., 2011). 167 

Both tests were performed using a “wasp hound.” This device is a cylinder equipped with a camera at the 168 

top to record the movements of the wasps, and a small hole at the bottom to allow the entrance of VOCs 169 

for possible detection (Wäckers et al., 2011). If no recognized VOC is present, the wasps move freely. If a 170 

VOC is present, they will tend to aggregate in front of the opening, and this will be recorded by a camera 171 

(Schott et al., 2014). 172 

Wäckers et al. (2011) found that, after conditioning, the wasps were able to recognize indole, skatole, and 173 

androstenone separately, as well as in a 1:1:1 mixture. The concentrations perceived by the wasps in this 174 

experiment were within the range of the compounds found in boar fat (0.1 to 0.4 µg g-1). Olson et al. 175 

(2012) performed further research into boar taint detection by M. croceipes. They found that, as for other 176 

insects, the olfactory learning of this species is concentration dependent. Additionally, the direction of 177 

concentration generalization (i.e., learning a concentration and being able to report others) was found to be 178 

odor-dependent. Finally, it was shown that these parasitic wasps can report low, medium, and high 179 

concentrations of the above-mentioned three molecules in boar fat at 25 °C (Olson et al., 2012). 180 

No recent research has been conducted on this sensing method, and many aspects must still be accounted 181 

for, before considering such a method for use in slaughterhouses. First, the wasps’ minimum detection 182 

thresholds for these molecules should be determined (Olson et al., 2012). Additionally, the wasps may 183 

react to natural unconditioned stimuli (Schott et al., 2014), which would give false positives. This could be 184 

a potential drawback. More importantly, a facility must be created at the slaughterhouse, and personnel 185 

must be mobilized to rear, keep, and train the insects before use (Haugen et al., 2012). Ensuring that the 186 

wasps are confined to the rearing chambers and wasp hound is primordial, as having freed wasps in the 187 

slaughterhouse could present some risks for the operators and additionally bring up issues in terms of food 188 

hygiene. Animal needs and habits (e. g., eating and resting) also need to be addressed before considering 189 

the use of wasps as biosensors. Although such a method is considered low-investment (500 to 3000 euros) 190 

(Haugen et al., 2012), operational cost should be well-studied to determine whether analysis falls below 191 

the estimated 1.30 euro/analysis, mentioned earlier. 192 

3.2.  Electronic noses (e-noses)  193 

The e-nose is an artificial device composed of an array of sensors, whose purpose is to imitate the human 194 

nose, both in terms of functioning and results (Haugen & Kvaal, 1998). In the human nose, odorants bind 195 

to receptors on olfactory neurons (Figure 1a). This creates an action potential in the receptor and induces 196 

depolarization of the axon. Once at the axon terminal, this signal is passed along to mitral cells, which 197 

make up the olfactory bulb, along with axon terminals and several glomeruli. The olfactory bulb is the 198 

region where the signal is transformed into an electric signal and transferred to the brain, allowing it to 199 

process the information (Zhang et al., 2018). 200 



 201 

Figure 1. Comparison of odor perception by the human nose and an e-nose. (A) Human olfaction (B) VOC detection 202 
by e-nose. 203 

Similarly, for e-noses, when gases (in this case, VOCs) reach the surface of a sensor (i.e., the sensitive 204 

layer), a change occurs in the surface’s properties (e.g. conductivity change and absorbance change). This 205 

change is transformed into an electrical signal by the transducer (Figure 1b). These signals are then 206 

gathered and processed by a computer, where a pattern is identified and a response is delivered to the user 207 

(Wojnowski et al., 2017). In the case of carcass sorting, the response should simply be whether the carcass 208 

is considered tainted or not, i.e., above or below a defined threshold (for example, the threshold described 209 

for skatole and androstenone in the previous section). 210 

Sensors used in the e-nose operate according to different principles. The conductivity variations of the 211 

sensitive layer are monitored for some sensors. These include metal–oxide–semiconductor (MOS) 212 

sensors, metal–oxide–semiconductor field-effect transistor (MOSFET) sensors, conducting polymer 213 

composites, and intrinsically conducting polymers (CPs). Electrochemical (e.g., potentiometric sensors), 214 

optical (e.g., absorbance-based sensors), and piezoelectric properties (e.g., quartz crystal microbalances) 215 

are monitored for other sensors (Guo et al., 2015; Loutfi et al., 2015; Wojnowski et al., 2017). E-noses can 216 

operate with one type or a combination of various gas sensors. Studies on boar taint detection using such 217 

sensors are discussed hereafter and are summarized in Table 1. 218 

The first sensor arrays used non-specific gas sensors, i.e., they detect and respond to a variety of 219 

molecules present in the gas phase. The molecules modify the sensor’s property (mentioned above), the 220 

signals recorded by each sensor in the array are then combined, and complex data processing allows the 221 

classification and recognition of odors (Peris & Escuder-Gilabert, 2016). 222 



Berdague and Talou (1993) tested a prototype MOS array system on heated fat samples originating from 223 

entire and castrated male pigs, as well as from female pigs. Bourrounet et al. (1995) developed a system 224 

based on the use of five commercial MOS sensors to analyze the headspace of heated (150 °C, 30 s) entire 225 

male pig fat and classify the samples according to their androstenone content (previously determined by 226 

enzyme-linked immunosorbent assay, ELISA). Although a classification accuracy of 84.2% was reported, 227 

one of the main conclusions of this work was that the device had to be miniaturized before further use 228 

(Bourrounet et al., 1995). Annor-Frempong et al. (1998) used an e-nose composed of a 12-conducting-229 

polymer-type (polypyrrole) sensor array to discriminate lipid and fat samples with varying amounts of 230 

skatole and androstenone (at 22-23 °C). A correlation coefficient of 0.78 was found between the results 231 

obtained with this array and the assessment performed by a sensory panel (Annor-Frempong et al., 1998). 232 

Di Natale et al. (2003) used a quartz crystal microbalance coated with various types of metalloporphyrins 233 

(a type of piezoelectric sensor) to measure the presence of androstenone in the headspace of heated (35 234 

°C, 30 min) pork fat. The interaction occurring at the surface of the sensor was specific, through the 235 

interaction of androstenone with porphyrin rings, and non-specific through cavity interactions with alkylic 236 

chains. This research led to the finding that the correlation coefficient between the added androstenone 237 

concentration in fat and the values determined with the sensor array was 0.98. This method is too time-238 

consuming for wide-scale applications in slaughterhouses and requires expensive materials (quartz 239 

microbalances). Additionally, it was found that the sensor’s limit of detection of androstenone was below 240 

the human olfaction threshold of 0.5 µg g-1. Such a result is helpful in detecting carcasses for which boar 241 

taint is primarily caused by androstenone. Tainted carcasses presenting high skatole and low androstenone 242 

concentrations cannot be classified as tainted with the exclusive use of this androstenone-sensitive sensor. 243 

Additionally, it was found that skatole is the major compound responsible for consumer dissatisfaction 244 

with smelling tainted carcasses (Bonneau et al., 2000). Therefore, skatole-sensitive sensors should be 245 

developed to complement the information obtained with the androstenone-sensitive sensors.  246 

Vestergaard et al. (2006) evaluated the use of an ion mobility spectrometry-based electronic nose (MGD-1 247 

system) for boar taint analysis. It comprised of headspace analysis of samples incubated at 40 °C for 10 248 

min. This equipment was proven effective in sorting fat samples in terms of high and low levels of skatole 249 

and androstenone (after multivariate analyses). The author of the study reminds, however, that even if a 250 

high correlation is found between the androstenone content and the results obtained with the e-nose, an 251 

on-line sampling and detection device must still be developed, raw data pre-processing must be 252 

automated, and the subsequent multivariate methods must be optimized. 253 

Although many e-noses are already available in the market (with prices ranging from 10000 to 40000 254 

euros) (Haugen et al., 2012), none of the commercially available e-noses, nor the prototypes presented in 255 

the aforementioned studies appear to have been tested for on-line/at-line slaughterhouse applications. On-256 

line/at-line testing should be undertaken because good correlations were observed between the results 257 

obtained with the sensors and the actual taint, which was either evaluated by a sensory panel, or by 258 

determining the fat’s skatole and androstenone content. 259 

Promising new sensor materials that could be further considered for boar taint detection, the challenges 260 

with them, and how to tackle these challenges, is presented later in this review (sections 5 and 6). 261 

3.3. Gas chromatography–mass spectrometry (GC-MS) based methods 262 

Mass spectrometry (MS) is a well-known technology that has been widely used for its reproducibility, 263 

stability, and sensitivity. Hence, MS-based techniques have been the focus of many research studies on 264 

boar taint detection. 265 



MS has been used in combination with gas chromatography (GC-MS) to analyze VOC profiles found in 266 

the headspace of heated fat. As boar taint compounds such as skatole and androstenone are highly 267 

hydrophobic and hard to volatilize, fat must be heated at high temperatures to detect these compounds in 268 

its headspace. 269 

Sørensen & Engelsen (2014), have used a dynamic headspace sampling–gas chromatography–mass 270 

spectrometry (DHS-GC-MS) technique (fat incubated at 150 °C for 12 min) for rapid screening for the 271 

presence of indole, skatole, and androstenone in pig adipose tissue. Target ions of m/z 117 (indole), 130 272 

(skatole), and 257 and 272 (androstenone) were monitored to allow proper quantification of these 273 

molecules. Limits of detection of 0.082 µg g-1, 0.097 µg g-1, and 0.623 µg g-1; and prediction errors of 274 

0.096 µg g-1, 0.094 µg g-1, and 0.331 µg g-1 were obtained for indole, skatole, and androstenone, 275 

respectively. Hence, this method should be adequately sensitive for boar taint detection, if the commonly 276 

accepted thresholds of 0.2 µg g-1 for skatole and indole, and 1 µg g-1 for androstenone are used. However, 277 

effort to reduce the time of analysis is still needed, as the first result was issued in 24 min and the 278 

following in 6 min, i.e., a maximum of ten analyses were performed per hour, compared to several 279 

hundred carcasses analyzed with the current human nose technique (Sørensen & Engelsen, 2014). 280 

Verplanken et al. (2016) used a solid phase microextraction–gas chromatography–mass spectrometry 281 

(SPME-GC-MS) technique for boar taint detection. By optimizing fat heating, the extraction time was 282 

drastically reduced to 45 s (heating at 400 °C), allowing the total run time for one sample to be 3.5 min, 283 

when coupled to an analysis by portable GC-MS. Even though the portable GC-MS method showed good 284 

validation results, this method lacked sensitivity. It was unable to detect boar taint compounds at threshold 285 

levels, leading to possible false results (Verplanken et al., 2016). 286 

Finally, these methods are known to be expensive, representing a high initial investment ranging from 287 

100000 euros to 600000 euros, depending on the resolution of the MS (Haugen et al., 2012). However, 288 

providing an exact running cost is difficult, because many costs, such as the technician’s salary, cost of 289 

solvents and gases used, and cost of maintenance add up to the depreciation of the initial investment.  290 

Additionally, the analysis time remains very important for methods in which molecules are separated by 291 

GC prior to MS-detection. Recent studies have therefore turned towards the use of MS without upstream 292 

GC separation. 293 

4. Recent advances in boar taint detection 294 

4.1. MS-based methods 295 

Verplanken et al. (2017) tested rapid evaporative ionization mass spectrometry (REIMS) for the rapid 296 

detection of boar taint. REIMS is based on the formation of gaseous molecular ions by thermal 297 

evaporation of biological tissues, with the help of an electrosurgical electrode as an ion source. These ions 298 

are carried by a Venturi air jet pump to an MS for detection and establishment of a mass spectrum 299 

(Schäfer et al., 2009). Compared to the aforementioned techniques, REIMS has the advantage of 300 

providing a heating source and sampler of molecular ions in a single, hand-held tool. Additionally, this 301 

method does not require any sampling before analysis. These criteria make this method easy to be used by 302 

the operator and could be used on-line in slaughterhouses (the MS part of the device is in a separate room 303 

but is connected to the sampling tool by a long tubing). In their work, Verplanken et al. (2017) sampled 304 

neck fat from 50 sow, 50 tainted boar, and 50 untainted boar carcasses to perform in-lab tests. The mass 305 

spectra analyzed are hence mainly composed of ions produced by ionization of lipids. Chemometrics 306 



(orthogonal partial least-square discriminant analysis models in this case) was then applied to the obtained 307 

mass spectra. The model provided a highly accurate classification (99% correct classification) and 308 

discrimination between the samples seem to have originated mainly from differences in the fatty acid and 309 

phospholipid region of the mass spectra. Additionally, although high initial investments are expected, the 310 

cost of analysis in this method was estimated to be lower than 1.0 euro/analysis, and the analysis speed 311 

was 3-5 s/sample (Verplanken et al., 2017). 312 

Although fast analysis was achieved, cleaning of the equipment must also be considered as it slows down 313 

the hourly analysis speed. Verplanken et al. (2017) cleaned the equipment after every 10 samples. Thus, if 314 

an analysis time of 5 s/sample is considered, the cleaning procedure should not last longer than 52 s, for 315 

this method to be used in medium-sized slaughterhouses (350 carcasses/h). Hemeryck et al. (2019) 316 

developed a statistical model on 1097 fat samples in the laboratory and later tested this in a 317 

slaughterhouse. The analysis took less than 10 s/sample and the study concluded that this approach 318 

allowed for correct classification of the carcasses (no indication of the classification accuracy was given). 319 

Further validation is needed about the potential use of REIMS for slaughterhouse applications, as the 320 

effectiveness of this method in more heterogenous conditions (different carcasses in different 321 

slaughterhouses) is not guaranteed. Several factors such as genetics, diets, and rearing conditions affect 322 

the molecular profiles analyzed in untargeted approaches (Font‐i‐Furnols et al., 2020). 323 

Another MS-based detection method that has recently been used for at-line boar taint detection is laser 324 

diode thermal desorption–tandem mass spectrometry (LDTD-MS/MS). In this method, a small amount of 325 

liquid sample is inserted into a well plate and left to dry before an infrared laser diode heats up the bottom 326 

of the plate, allowing complete sublimation of the sample. The vaporized sample then undergoes 327 

atmospheric pressure chemical ionization (APCI), an ionization method that does not break down the 328 

molecules and produces monocharged ions. These ions are then detected by tandem mass spectrometry 329 

(Bynum et al., 2014). In the case of boar taint detection, a liquid-liquid extraction step must be performed 330 

before injection into the well plate. This step allows a separation of indole, skatole, androstenone, and 331 

other molecules with similar characteristics from other more polar molecules. This solvent, containing the 332 

molecules of interest, is injected into the well plate. 333 

Two teams have been working on LDTD-MS/MS boar taint detection during the same period of time: the 334 

Danish Technological Institute (DTI) (Borggaard et al., 2017) and Phytronix Technologies, Inc., in 335 

collaboration with Shimadzu Corporation (Auger et al., 2018). Both developed similar methods and 336 

analyzed similar results, except that Borggaard et al. (2017) quantified skatole and androstenone only, 337 

while Auger et al. (2018) quantified skatole, androstenone, and indole. 338 

Both LDTD-MS/MS methods achieved good validation criteria. The correlation coefficients for their 339 

calibration curves were greater than 0.99, and the limits of quantification were lower than the commonly 340 

accepted thresholds. Although 0.2 µg g-1 for indole and skatole, and 1 µg g-1 for androstenone are 341 

commonly accepted thresholds, the exact sorting threshold for androstenone is still under investigation by 342 

the DTI, and should range between 0.5 to 2 µg g-1 androstenone in fat (Borggaard et al., 2017; Støier, 343 

2019). Additionally, both LDTD-MS/MS methods were precise, with a maximum relative coefficient of 344 

variation (% CV) of 5% in the work by Borggaard et al. (2017) and 15% in the work by Auger et al. 345 

(2018). As stated by Font‐i‐Furnols et al. (2020), sample preparation in the second study needs further 346 

optimization, which might be the reason behind the higher % CV. 347 

Although sample preparation before injection into the well plate lasts several minutes, the LDTD-MS/MS 348 

analysis in itself takes less than 10 seconds per sample to accurately quantify boar taint compounds. Using 349 



such method in slaughterhouses is hence feasible provided that a carcass traceability system is put in 350 

place. Both teams have applied for a patent for boar taint detection by LDTD-MS/MS (WO2016139291 351 

for the DTI application and WO2017147709 for the application by Phytronix Technologies, Inc.). 352 

The studies performed by the DTI appear to be more advanced. An economical study concluded that 353 

although this method requires high initial investment, the estimated overall price of analysis is 0.70 354 

euro/carcass (Borggaard et al., 2017). Additionally, the method has also been accredited by the Danish 355 

Accreditation Fund (DANAK) and is now being tested in a Danish slaughterhouse with a fully automated 356 

system, from fat sampling to detection of the compounds (Støier, 2019). 357 

Given the recent advances in LDTD-MS/MS, it appears to be promising and may soon replace the 358 

colorimetric method currently used in Danish slaughterhouses (Font‐i‐Furnols et al., 2020). 359 

4.2. Raman spectroscopy-based methods 360 

In recent years, Raman spectroscopy has been efficiently used in the food industry for protein and lipid 361 

analysis. Raman spectroscopy is based on the Raman effect, which is a process by which a portion of 362 

photons are scattered from a sample irradiated by a laser beam. An inelastic collision occurs as a result, 363 

thus changing the vibrational or rotational energy of the molecules. The scattered radiation is 364 

characterized by a different wavelength. A Raman spectrum can be seen as a “fingerprint” of the 365 

scattering material, thus giving quantitative and qualitative information on the irradiated sample (Yaseen 366 

et al., 2017). Raman spectra are influenced by the composition of fatty acids in lipids, as well as by their 367 

degree of saturation (Herrero, 2008). Recent studies have shown a correlation between the variability in 368 

the fatty acid composition of boars and varying levels of indole, skatole, and androstenone. Mörlein and 369 

Tholen (2014), found that the concentrations of polyunsaturated fatty acids were significantly higher in 370 

boars with low indole, skatole, and androstenone levels, as compared to highly tainted boars. Liu et al. 371 

(2016) used a portable Raman device to analyze and classify fat tissues with varying levels of boar taint 372 

compounds. The fat was not diluted with a solution but was thawed and used directly for analysis in this 373 

experiment. After selecting specific ranges of signals from the spectra and analyzing the results by partial 374 

least squares discriminant analysis (PLS-DA), a classification accuracy of 81% was obtained. Although 375 

such a result is encouraging and implies that the fatty acid composition of boar fat could be used as a 376 

proxy to detect tainted carcasses, the accuracy of this method should be verified in slaughterhouses. The 377 

pigs being slaughtered may vary in terms of breed and diets, which could have repercussions on the 378 

accuracy of the proposed model (Font‐i‐Furnols et al., 2020). 379 

Sørensen et al. (2015) also used Raman spectroscopy for boar taint analysis. In contrast to the above-380 

mentioned study, which used normal Raman scattering to detect variations in fatty acid composition, 381 

Sørensen et al. (2015) used surface-enhanced Raman scattering (SERS) to directly quantify skatole and 382 

androstenone. SERS increases the method’s sensitivity by several orders of magnitude and should allow 383 

the quantification of molecules, such as skatole and androstenone, present at low concentrations in the 384 

matrix. Low limits of detection were found for skatole and androstenone in solution (2.1 × 10-11 M and 1.8 385 

× 10-10 M, respectively). However, high prediction errors were obtained when quantifying skatole and 386 

androstenone in fat samples (0.17 µg g-1 and 1.5 µg g-1, respectively). 387 

Although high prediction errors have been found in this work, further optimization of such techniques 388 

should be encouraged. Raman spectroscopy has potential on-line applications because of its relatively low 389 

investment cost (20000 to 50000 euros) (CBRNE Tech Index, 2018), no need for sampling (portable hand-390 

held-tool), and having multiple uses (also true for LDTD-MS/MS and REIMS). It not only detects tainted 391 

carcasses, but can also provide information on other aspects of meat quality (Font‐i‐Furnols et al., 2020). 392 



4.3. Specific sensors based on the intrinsic properties of target molecules 393 

Hart et al. (2016) filed for a patent for a new electrochemical sensor system capable of detecting and 394 

quantifying boar taint. This sensor system is composed of two parts, both based on the intrinsic 395 

(reduction-oxidation) properties of the target molecules (i.e., androstenone and skatole), and detected by 396 

means of carbon electrodes deposited by screen-printing. Skatole is detected based on its electrochemical 397 

behavior using cyclic voltammetry (direction oxidation at the surface of the electrode). The enzymatic 398 

activity of androstenone is analyzed using an enzyme electrode where the reduction of androstenone to 399 

androstanol occurs in the presence of the enzyme 3α-hydroxysteroid dehydrogenase, NADPH, and 400 

Meldola’s blue as a reduction mediator (Hart et al., 2016). 401 

The efficiency of this new sensor system was tested by Westmacott et al. (2020) and compared to results 402 

obtained by gas chromatography for both molecules. Good correlation coefficients (R2=0.801 for skatole 403 

and R²=0.932 for androstenone), substantial recoveries (114.5% for skatole and 95.9% for androstenone), 404 

and a relatively fast analysis (within 60 s) was obtained. 405 

This technology presents many favorable aspects, beyond results in preliminary tests. It is considered very 406 

easy to produce on a large scale and at low cost (Westmacott et al., 2020). Carbon is a cheap material, and 407 

screen-printing is a reliable technology for mass production of low-cost disposable sensors. As these 408 

sensors are disposable, any cross-contamination is avoided. Lastly, this technology can, in theory, be 409 

easily used for on-line measurements with an automated or manual portable device (Font‐i‐Furnols et al., 410 

2020). The feasibility of on-line detection must be tested before considering mass production and use in 411 

slaughterhouses. 412 

5. Biosensors – a path to be further investigated for boar taint 413 

detection 414 

This section will discuss biological materials that have not yet been used for boar taint detection in meat 415 

samples; however, they are worth being investigated further for their affinity towards molecules 416 

responsible for boar taint (e.g., skatole), or they have shown encouraging results for the detection of these 417 

molecules in other applications. Hence, these biological materials could be used to develop biosensors. 418 

Biosensors are “measuring devices that trace chemical compounds, organisms, or physical measurands by 419 

spatially and functionally combining a biological component with a physical or chemical transducer” 420 

(Paczkowski et al., 2011). The definition of a “biological component” is very vast, and it could be an 421 

enzyme, antibody, organelle, cell, organ, or complete organism (the last one has been explained in section 422 

3.1. “Insect behavior-based sensing”). The transducer simply converts the response occurring after the 423 

reaction of the bio-component and analyte into a measurable output (Paczkowski et al., 2011). 424 

Biosensors are often based on the use of specific receptors or proteins of the sensory system, which are 425 

coupled to electronic transducers. These are often referred to as bioelectronic noses. 426 

5.1. OR-based bioelectronic nose  427 

These bioelectronic noses are based on the use of olfactory receptor (OR) proteins, or cells which express 428 

olfactory receptors on their membrane. ORs act as odorant-recognition elements and are combined with 429 

transducers, which allows the conversion of the detected biological signal into an electrical signal 430 

processable by a computer (Zhang et al., 2018). 431 



In contrast to chemical sensors, bioelectronic noses based on the use of ORs benefit from the “naturally 432 

optimized molecular recognition and sensitivity of the ORs” (Manai et al., 2017). Their sensitivity is also 433 

greater to that of gas-sensor array systems. Sensitivity up to the femtomolar can be achieved for odorants 434 

found in liquid conditions and up to the parts per trillion for odorants in gaseous conditions (Manai et al., 435 

2017; Zhang et al., 2018).The downside of the use of ORs is that they must remain in hydrophobic 436 

conditions to ensure their functionality (Guo et al., 2015; Manai et al., 2017), which is challenging for 437 

practical applications. 438 

Keller et al. (2007) investigated the differences in sensory perception from one human to another. To 439 

perform this, they focused on androstenone, since the perception of steroids varies greatly (i.e., the 440 

perception of androstenone varies from urine smell to floral smell from one person to another). To 441 

determine which OR was stimulated in the presence of androstenone, a luciferase assay was performed. 442 

The OR7D4 olfactory receptor appeared not only highly stimulated by androstenone, but was also very 443 

specific to it. In a second test where the response of OR7D4 was tested in the presence of 66 odors, the 444 

receptor responded only to androstenone and androstadienone (Keller et al., 2007). This finding agrees 445 

with the absence of differentiation of these two molecules during sensory assessments made by panelists 446 

in similar studies (Brooks & Pearson, 1989). 447 

Based on the use of OR7D4, Guo et al. (2015) developed a bioelectronic nose in which these receptors 448 

were anchored to a gold electrode to ensure signal transmission, and square wave voltammetry was used 449 

to monitor the response of the electrode to varying concentrations of androstenone in the solution. The 450 

limit of detection of 10-14 M seen in this study is far below the accepted threshold value for androstenone 451 

and shows the potential of OR7D4 for the development of bioelectronic noses for androstenone detection. 452 

Developing systems with ORs specific to several boar taint molecules should increase the strength of 453 

carcass classification in slaughterhouses. Thus, OR-based bioelectronic noses should be investigated 454 

further with the other molecules responsible for boar taint: skatole and indole. 455 

These two molecules have been identified as oviposition attractants for the southern house mosquito, 456 

Culex quinquefasciatus (Diptera: Culicidae), which is known to be a pathogen vector (Du & Millar, 1999). 457 

An understanding of C. quinquefasciatus olfactory receptors (CquiORs) involved in the perception of such 458 

molecules appears to be an important step in the improvement of “attract-and-kill” strategies that use 459 

oviposition attractants. CquiOR2 was found to be 10 to 70 times more selective for indole, as compared to 460 

other indole derivatives. Further, CquiOR10 was found to be very sensitive and narrowly tuned to skatole 461 

(Hughes et al., 2010; Pelletier, Hughes, et al., 2010). Olfactory receptors of Anopheles gambiae (Diptera: 462 

Culicidae) have also been investigated. A. gambiae is the major vector of malaria in sub-Saharan 463 

countries. This insect locates human hosts through olfaction, but not much is known about its molecular 464 

recognition. Carey et al. (2010) investigated the response of 50 AgamORs (A. gambiae olfactory 465 

receptors) to 110 odorants. It appears that AgamOR2 is narrowly tuned and strongly activated by indole, 466 

which is found in human breath and sweat, at up to 30% in the headspace of the latter (Carey et al., 2010) 467 

As Guo et al. (2015) performed studies with OR7D4 for the detection of androstenone, bioelectronic noses 468 

could be tested with CquiOR2, CquiOR10, from C. quinquefasciatus, and AgamOR2 from A. gambiae, 469 

for detection and quantification of skatole and indole. 470 

5.2. OBP-based bioelectronic nose 471 

Odorant-binding proteins (OBPs) refer to a class of proteins found in vertebrates and insects. Although 472 

their structures are very different in these two organisms, their function remains similar. OBPs are 473 

responsible for the initial step of molecule recognition and odor perception and are found in high 474 



concentrations in the nasal mucus of vertebrates and lymph of the insects’ sensilla (Dimitratos et al., 2019; 475 

Pelosi et al., 2014). The OBPs of both vertebrates and insects possess thermal stability. They can 476 

withstand high temperatures, which is interesting, because boar fat must be heated at very high 477 

temperatures to volatilize skatole and androstenone. If denatured as a result of overheating, restoring the 478 

OBPs to their initial condition will reverse the damage, which is economically attractive as it increases the 479 

number of detections that can be potentially performed by an OBP-based sensor (Pelosi et al., 2014). 480 

Being thermally stable makes OBPs ideal for the development of bioelectronic noses. In such sensors, the 481 

binding of the molecule of interest to the protein can have several impacts, such as modification of 482 

protein’s mass and refractive index. This allows OBPs to be used with various transducers (Pelosi et al., 483 

2014). OBP-based bioelectronic noses for boar taint detection could be developed with the use of the 484 

appropriate OBP. 485 

Dimitratos et al. (2019) have worked on the development of biosensors for the rapid detection of water 486 

contamination by harmful coliform bacteria. To achieve this, the research team proposed the development 487 

of rapid tests to detect and quantify indole, a characteristic metabolite. The OBP, AgamOBP1, from the 488 

insect A. gambiae, was used as the detector. The results of the two tests, based on competitive binding for 489 

AgamOBP1’s binding pocket, appeared to be highly specific and sensitive to indole, with a limit of 490 

detection in water lower than 100 nM (Dimitratos et al., 2019). OBPs from other species could also be 491 

used for sensor applications. Pelletier, Guidolin, et al. (2010) found that an OBP from C. quinquefasciatus, 492 

CquiOBP1 was involved in the reception of oviposition attractants such as mosquito oviposition 493 

pheromones, skatole, and indole. As for OR-based bioelectronics noses, considering the variability in 494 

sensors and their specificity to various VOCs of interest, an interesting outcome would be to combine 495 

these sensors into a common bioelectronic nose. 496 

5.3. Aptamer-based biosensors 497 

Aptamers, often referred to as “chemical antibodies,” are single-stranded DNA or RNA (ss-DNA or ss-498 

RNA) oligonucleotides that are produced in vitro based on systematic evolution of ligands by exponential 499 

enrichment (SELEX). Aptamers may be used for a large variety of applications, and are able to detect a 500 

wide range of compounds, from metal ions to whole organisms (Jayan et al., 2020). These applications 501 

include clinical therapy (Ng & Adamis, 2006), drug delivery systems (Min et al., 2011), and aptasensors, 502 

i.e., a type of biosensor where the receptors are aptamers. Several types of aptasensors have been 503 

developed. These include electrochemical, mass-sensitive, and optical aptasensors (fluorescence-based 504 

and colorimetric-based).  505 

Frimpong et al. (2017) investigated the feasibility of detecting skatole and androstenone with gold 506 

nanoparticle (AuNP) aptasensors. Based on capture SELEX, two aptamers with high affinity and 507 

selectivity for skatole and androstenone were selected and electrostatically absorbed to citrate-capped 508 

AuNPs. In an environment favorable for AuNP aggregation and in the absence of the molecules of 509 

interest, the aptamers prevent the aggregation of AuNPs, i.e., the aptamer-AuNP complexes are dispersed 510 

in the solution. When the molecules of interest are also present in the solution, the aptamers that have a 511 

stronger affinity for them tend to unbind from the AuNP surface, and bind to skatole and androstenone. 512 

Under saline conditions, the NPs aggregate, leading to an absorbance shift in the UV-VIS region from 524 513 

nm to 660 nm (a color change from pink to blue). Frimpong et al. (2017) reported a significant color 514 

change when AuNPs in saline conditions, were placed in contact with skatole and androstenone in 515 

aqueous solutions, with concentrations ranging from 1.0 × 10-13 M to 1.0 × 10-4 M. Additionally, 516 

absorbance measurements were also performed in the presence of only tryptophan or indole. In this case, 517 

no significant color change was reported, thus proving the specificity of the aptamer considered. 518 



Although aptasensors seem to be a promising solution for boar taint detection, based on the specific 519 

detection of skatole and androstenone, more research must be performed to allow on-line use of such 520 

technology. First, research on the potential use of such aptamers for the detection of skatole and 521 

androstenone in the gaseous phase should be undertaken. Second, the speed of measurement must be 522 

optimized (currently 30 min for the incubation of aptamers and AuNPs before detection). Lastly, time 523 

consuming fat extraction would be avoided in the case of gaseous phase sampling, resulting in faster 524 

detection. 525 

5.4. Production cost of biosensors 526 

In contrast to the methods described in section 4, the biosensors discussed in this section must either be 527 

developed further or tested for boar taint detection (tested with boar fat samples). It seems premature to 528 

provide an idea of investment or operational cost at this stage of development. 529 

Several aspects must be considered in order to establish the investment cost of such sensors. The 530 

production of the biological component must be considered. This includes not only amplification, but also 531 

purification of the biological material. Second, the transducer’s production must be considered. Limiting 532 

the costs of production appears to have been part of the analysis by Guo et al. (2015), when developing the 533 

sensors. Guo et al. (2015) used square wave voltammetry as the transduction technique, as it is considered 534 

more rapid, efficient, and low-cost, when compared to electrochemical impedance spectroscopy. In their 535 

work, Frimpong et al. (2017) mentioned the use of aptamers as they are cost-effective solutions. 536 

The economic feasibility of such biosensors must be analyzed in greater depth before considering 537 

potential industrial use. Two economic scenarios must be considered: one for medium-sized 538 

slaughterhouses (approximately 360 carcasses/h) and another for large-sized slaughterhouses 539 

(approximately 600 carcasses/h). As is the case for many instrumental methods, the operational cost will 540 

decrease for bigger slaughterhouses. As mentioned earlier, each analysis should ideally cost less than 1.30 541 

euro. Whether disposable or non-disposable biosensors are created must also be considered as this could 542 

affect the final price of each analysis. 543 

6. Challenges and solutions for sensor-based detection in 544 

slaughterhouses 545 

Although biosensors are promising new solutions for boar taint detection, they face many challenges when 546 

used in slaughterhouses. Some of these are specific to the environment in which boar taint is detected and 547 

others are general to any sensor. The environment referred to in this case is not only the slaughterhouse 548 

but also the fat’s headspace in which the VOCs are detected. 549 

6.1. Environment-specific noise challenges 550 

The detection of boar taint by analysis of the fat’s headspace can be strongly impacted by the large variety 551 

of VOCs present. These VOCs can impact the selectivity and sensitivity of the sensor used. Hence, the 552 

sensor should be robust against potential fouling. A better understanding of the VOCs found in the 553 

headspace, including their origin, is important to tackle such fouling. 554 

As mentioned earlier, for skatole and androstenone to be detected, fat must be heated (Figure 2) at high 555 

temperatures. As a result, most of the VOCs found in the headspace of heated fat originate from the 556 

degradation of lipids (Figure 2b), more specifically the oxidation of fatty acids, starting at around 70 °C 557 



(Ladikos & Lougovois, 1990). The compounds resulting from heating the fat include alcohols, aliphatic 558 

hydrocarbons, aldehydes, ketones, esters, carboxylic acids, aromatic compounds, and oxygenated cyclic 559 

compounds such as lactones and alkylfurans (Mottram, 1998). 560 

Optimization of the extraction temperature and time is necessary, because lipid oxidation increases as 561 

temperature rises, and skatole and androstenone are difficult to volatilize. This should result in maximal 562 

skatole and androstenone concentrations in the headspace, with minimal lipid degradation products. 563 

Other VOCs typically found in the headspace of heated meat originate from the Maillard reaction 564 

occurring between a reducing sugar and an amino acid (Figure 2c), as well as the reaction between the 565 

lipid-degradation products and the Maillard reaction products, which can result in several compounds 566 

(Imafidon & Spanier, 1994). Further information about the interaction between the Maillard reaction and 567 

lipid oxidation was provided by Zamora & Hidalgo (2011). Although these reactions are not as important 568 

as the lipid degradation, they still need to be considered, given the presence of collagen fibers and the 569 

hydrosoluble molecules found in water. 570 

The slaughterhouse’s VOCs background noise may also add to the difficulty of detecting boar taint 571 

(Figure 2e). To the best of our knowledge, numerous studies have been performed to analyze VOCs 572 

originating from swine operations, including Feilberg et al. (2010) and Schiffman et al. (2001). However, 573 

none have analyzed the ambient air in slaughterhouses as a source of background noise. 574 

Schiffman et al. (2001) identified more than 300 volatile compounds (VOCs and other gases) in air 575 

samples from swine operations. These include molecules from a wide variety of classes, including acids, 576 

phenolic compounds, and aldehydes present at high concentrations, as well as nitrogen- and sulfur-577 

containing VOCs. Most of these VOCs are derived from undigested proteins that decompose in manure 578 

(Hobbs et al., 2004). However, VOCs originating from manure are unlikely to contribute much to the 579 

VOC profile of slaughterhouses, as the pigs are washed and checked for cleanness at various stages, 580 

including prior to transportation from the farm and at the slaughterhouse before the scalding step (Food 581 

and Agriculture Organization of the United Nations, 1991). 582 

Some of the VOCs found in the global environment of the slaughterhouse originate in part from the blood, 583 

as the steps performed before sorting of the carcass include evisceration and splitting of the carcass. 584 

Forbes et al. (2014) analyzed the effect of aging and storage conditions on human blood and reported that 585 

fresh blood presented a simple VOC profile, mainly including 2-heptanone, 4-heptanone, 2-octen-1-ol, 586 

and 1-octen-3-ol. 1-octen-3-ol makes up more than 95% of the profile. Some of the above-mentioned 587 

molecules could make up part of the slaughterhouse’s “background noise,” as domestic pigs and humans 588 

resemble each other in terms of organs and chemical composition of tissues (Paczkowski et al., 2014), 589 

Similarly, pig carcasses have been used widely in forensic science as an analogue to human cadavers. The 590 

studies in this field that analyzed early post-mortem intervals could provide an estimation of the VOC 591 

profile of carcasses in slaughterhouses. Armstrong et al. (2016), who analyzed early post-mortem intervals 592 

(0-72 h), found that the VOC profile of a pig carcass at 1 h post-mortem was composed of a variety of 593 

molecules, including sulfur-containing compounds, alcohols, and carboxylic acids. However, the most 594 

abundant class of compounds was esters, with molecules such as cis-3-hexenyl acetate, ethyl acetate, and 595 

methyl acetate. 596 

The slaughterhouse’s VOCs background noise probably has a stronger impact on on-line detection than on 597 

at-line detection, as the latter is performed in a laboratory where air quality can be more easily controlled 598 

(e.g., by filtering the incoming air). Whether these VOCs are found in the air of the slaughterhouse, and 599 

their extent, should be verified. Many factors, such as temperature, affect the decomposition rate of a 600 



carcass (Dekeirsschieter et al., 2009). Hence the VOC profile originating from it may vary significantly 601 

within and between slaughterhouses. 602 

As previously mentioned, the unpleasant smell of boar taint is perceived at an odor threshold of 0.2 to 0.25 603 

µg g-1 fat for skatole and 0.5 to 1 µg g-1 fat for androstenone. The maximum concentrations found in 604 

tainted fat are as high as 0.8 µg g-1 for skatole and 5 µg g-1 for androstenone (Fischer et al., 2011). The 605 

concentration levels at which these molecules are found in the fat’s headspace could affect the sensitivity 606 

of both specific and non-specific methods. In case of on-line detection, there is limited time available for 607 

heating of the carcass and detection of the taint. Early heating of the fat on a larger surface could be a part 608 

of the solution to this problem. As addressed previously, these molecules are very hard to volatilize; thus, 609 

early heating should be performed at very high temperatures. 610 

 611 

Figure 2. Factors affecting sensitivity of detection. (a) complex fat matrix, (b) lipid oxidation products, (c) Maillard 612 
reaction products, (d) low skatole and androstenone content in fat, and (e) slaughterhouse’s VOCs background noise 613 

1.1. Drifts and corrections 614 

Another challenge encountered in sensor-based detection of boar taint is temporal sensor drift. It is 615 

defined as the gradual variation in the sensor response when exposed to the same analyte under the same 616 

conditions. The reasons for such a drift are classified into two main categories: first- and second-order 617 

drift. 618 

First-order drift is due to interaction occurring at the surface of the sensor. This includes aging of the 619 

sensor causing the reactive phase to reorganize itself, and sensor poisoning due to the binding of 620 

contaminants to the reactive surface. Second-order drift is caused by variations in experimental conditions, 621 

such as humidity variations (Vergara et al., 2012). 622 



Data processing using mathematical analysis can be used to detect and correct the errors in case of first-623 

order drifts. These methods are either univariate or multivariate, depending on whether drift compensation 624 

is performed on the sensors individually or on the sensor array. 625 

An example of such a univariate method is the multiplicative drift correction method proposed by Haugen 626 

et al. (2000). They suggested a calibration method that considers the temporal drift in sequence and in 627 

between sequences. The suggested methodology consisted of recalibrating the sensor with a reference 628 

sample after a given number of analyses. In the case of boar taint, the reference sample could be a sow fat 629 

sample with known low amounts of skatole and indole, to which analytes of interest are added. VOCs 630 

could be sampled under the same conditions. However, such methods require complicated and time-631 

consuming experimental set-ups that are not suitable for rapid on-line sorting of carcasses. 632 

Several multivariate methods have also been developed, which are either supervised or unsupervised. In 633 

supervised methods, the training samples are labeled to group them in a set of classes. Thus, in the case of 634 

boar taint detection, tainted samples could be grouped together in advance. Unsupervised methods, on the 635 

other hand, do not use labeling prior to statistical analysis (Di Carlo & Falasconi, 2012). Examples of 636 

supervised and unsupervised methods include the ensemble method introduced by Vergara et al. (2012) 637 

and the drift correction method based on common principal component analysis (CPCA) proposed by 638 

Ziyatdinov et al. (2010), respectively. 639 

A more practical solution to reduce first-order drifts related to sensor poisoning could be to clean the 640 

sensor after a fixed number of analyses, using organic solvents. Sensors could also be replaced after a 641 

fixed number of analyses. 642 

The solvents used during the cleaning process, and the replaced sensors must be correctly disposed of. 643 

Thus, it needs to be determined when a sensor is to be cleaned, and when it is to be replaced. Low-cost 644 

sensors developed on substrates such as carbon or plastic, can be discarded after a single use. 645 

Another solution to reduce the drift of sensors is to develop new sensor materials that possess greater 646 

selectivity and specificity towards the analytes of interest, leading to an increased lifespan of such sensors. 647 

Such materials include molecularly imprinted polymers (MIPs). These are “synthetic materials with 648 

artificially generated recognition sites able to specifically rebind a target molecule in preference to other 649 

closely related compounds” (Turiel & Martín-Esteban, 2010). MIPs are resistant to a wide range of 650 

temperatures and pH, and their synthesis is cheap and easy (Turiel & Martín-Esteban, 2010).They have 651 

already been used for many applications, including drug delivery, protein separation, and for making 652 

sensors (Bossi et al., 2007; Zang et al., 2020). MIP-based sensors have been developed for various 653 

purposes, such as acetaldehyde detection (Debliquy et al., 2016), L-nicotine detection (Thoelen et al., 654 

2008), and penicillin G detection (Weber et al., 2018). Only a few studies have investigated the use of 655 

MIPs for the detection of boar taint, thus offering research possibilities. 656 

Verplanken (2018) attempted to develop MIPs through a non-covalent approach for the detection of 657 

skatole and androstenone. MIPs with sufficient specificity and selectivity for use in screening assays could 658 

not be obtained through non-covalent imprinting of androstenone. This may be attributed to the lack of 659 

anchoring chemical functional groups on the androstenone molecule. However, when various MIPs were 660 

combined in an array and tested on boar neck fat samples, a classification accuracy of 82.7% was obtained 661 

for skatole detection. Further research should be performed on developing MIPs for androstenone 662 

detection. Such attempts could focus on binding of the template and the functional monomer through a 663 

semi-covalent or covalent approach. If successful, integrating such MIPs in an array could increase the 664 

classification accuracy. Even if these MIPs were deposited on a quartz crystal microbalance to widen its 665 

range to nonconductive polymer-based MIP, the electronic nose would be cumbersome because additional 666 



equipment is needed for monitoring the frequency variation with analytes. Another alternative is 667 

monitoring the resistance change of sensors based on conductive polymer MIPs, such as polyaniline and 668 

polypyrrole. The resulting electronic nose would be smaller, cheaper, and easier to use. Debliquy et al. 669 

(2016) developed an acetaldehyde-based MIP using a pyrrole monomer as a functional monomer. The 670 

MIP-based sensors showed a rapid response to acetaldehyde in the parts per million range. 671 

Finally, a potential solution to reduce both first- and second-order drifts is to work under extremely 672 

controlled conditions. The environmental factors in the sampling procedure could be minimized by 673 

heating the carcass fat and sampling its VOCs in a closed environment where the air is replaced by a dry 674 

inert gas (Figure 3). Working in an oxygen-free environment would also help in preventing the creation of 675 

lipid-oxidation products, thus simplifying the detection process. 676 

 677 

Figure 3. Sampling and detection of boar taint in a closed environment. (a) heating device, (b) sensor, (c) closed 678 
environment, and (d) inert gas. 679 

7. Conclusion 680 

The large amount of research addressed in this review demonstrates that boar taint detection has been a 681 

major concern for the meat industry for decades. This review highlights that the at-line LDTD-MS/MS 682 

method is currently the most promising method for the rapid detection of boar taint in slaughterhouses. 683 

Given its good validation criteria and its potential to perform fast analysis at a low operational cost, this 684 

method is currently being tested in slaughterhouses. However, high initial investment, as well as the need 685 

for significant modifications in the slaughter line layout, could lead to a certain reluctance towards its 686 

implementation particularly in small infrastructures. 687 

Additionally, this method focuses particularly on the detection of skatole and androstenone. As 688 

highlighted by this review, such analysis does not represent the real sensory perception of boar taint, but 689 

serves as an indicator for the detection of tainted carcasses. The exact and complete odor of boar taint 690 



caused by a variety of molecules potentially acting in synergy can only be fully perceived by the human 691 

nose, making this detection technique perennial amongst all others being developed. 692 

Compared to LDTD-MS/MS, REIMS and Raman spectroscopy should also allow to better encompass this 693 

complex odor given that they are untargeted methods. Additionally, these methods can be used for on-line 694 

detection as Raman spectroscopy can be portable and REIMS possesses a hand-held measuring tool. 695 

Being an on-line method could be seen as a strong asset for techniques being developed. As a matter of 696 

fact, the growing meat demand goes with an increase in the number of carcasses slaughtered daily. This 697 

will either lead to the creation of bigger slaughterhouses or to an acceleration of the slaughtering pace with 698 

a “just-in-time” management of the carcasses needed. Hence, an on-line detection method seems more 699 

suited for the latter. 700 

Sensor-based methods might be another solution for on-line detection provided that it is able to tackle the 701 

major challenge of detecting low headspace concentrations of boar taint compounds in a VOC-rich 702 

environment. Early heating of the fat and sampling in a closed and controlled environment, were presented 703 

as solutions to tackle this issue. These suggestions will help in accelerating the validation of sensor-based 704 

methods in real slaughterhouse conditions provided they have, just as any other developed method, 705 

previously been validated in laboratory conditions and proved to be economically viable. 706 

In the future, several rapid and reliable detection methods might co-exist in the market. The chosen 707 

method will vary between slaughterhouses depending on the size of the installation, the slaughtering speed 708 

and the financial means available for purchasing the system, adapting the slaughter lines and finally to 709 

operate (i.e. operational costs). In any case, research in the field of rapid boar taint detection still has a 710 

bright future ahead of it.711 



Table 1. Summary of detection techniques described in the review. Note that the methods are presented in the same order as they occur in the text. In the “main findings” column, 712 
+ and – represent positive and negative findings, respectively. In the “method sensitivity” column, indications of limits of detection (LODs) and limits of quantification (LOQs) are 713 
given when possible. Indications of acceptance thresholds or lowest concentrations tested are given when possible. EC50 is the concentration that yields a half-maximal response. 714 
N/A indicates that the information is not available. 715 

Matrix analyzed Sample preparation and detection method Main findings Method sensitivity Reference 

1. Analytical methods used for laboratory purposes 

Porcine adipose 

tissue 

Melting of fat, extraction with methanol in water 

bath (60°C, 60 min), freezing, centrifugation and 

solid-phase extraction 

+ Good validation criteria 
LOD and LOQ determined in 

melted fat: 

(Bekaert et al., 2012) 

+ LOD and LOQ below 

rejection thresholds indicated in 

literature 

Indole: LOD = 2.5 ng g-1,  

LOQ = 5 ng g-1 

Ultra-high performance liquid chromatography – 

High resolution mass spectrometry 

- Time-consuming sample 

preparation 

Skatole: LOD = 2.5 ng g-1,  

LOQ = 5 ng g-1 

- Off-line detection method 
Androstenone: LOD = 7 ng g-1, 

LOQ= 10 ng g-1 

Porcine adipose 

tissue 

Thawing of fat, melting, extraction with methanol 

(55°C, 10 min), freezing, centrifugation and 

solvent evaporation 

+ Good validation criteria 
LOD and LOQ determined in 

melted fat: 

(Fischer et al., 2011) 

+ LOD and LOQ below 

rejection thresholds indicated in 

literature 

Indole: LOD = 0.5 ng g-1,  

LOQ = 1 ng g-1 

Poly(dimethylsiloxane)/divinylbenzene 

(PDMS/DVB) fiber used for solid-phase 

microextraction 

- Off-line detection method 
Skatole: LOD = 0.1 ng g-1,  

LOQ = 0.5 ng g-1 

Stable Isotope Dilution Analysis - Headspace 

Solid-Phase Microextraction - Gas 

Chromatography - Mass spectrometry 

- Deuterated compounds as 

internal standards are expensive 

or time-consuming to produce 

Androstenone: LOD = 35 ng g-1, 

LOQ= 60 ng g-1 



     

Matrix analyzed Sample preparation and detection method Main findings Method sensitivity Reference 

1. Analytical methods used for laboratory purposes 

Porcine adipose 

tissue 

Homogenization with methanol, 5 min sonication, 

15 min cooling in ice bath, centrifugation for 5 

min at 4000g, 5 min cooling in ice bath 

+ Good validation criteria 

LOD determined with standards in 

solution, LOQ determined as ten 

times the LOD. 

(Hansen-Møller, 

1994) 

Androstenone derivatization with dansylhydrazine 
+ Quantification of indole, 

skatole and androstenone 

Indole: LOD <3 ng ml-1,  

LOQ = 30 ng g-1 

High performance liquid chromatography – 

fluorescence detection (HPLC-FD) 

- Time-consuming and 

expensive 

Skatole: LOD <3 ng ml-1, 

 LOQ = 30 ng g-1 

 - Off-line detection method 
Androstenone: LOD = 20 ng ml-1, 

LOQ= 200 ng g-1 

Porcine adipose 

tissue 

Two methods tested and validated by 

collaborative trails 

+ Validated by inter-lab 

collaborative study  

(ISO 5725-2:1994) 

Method validated with melted fat in 

the following range: 

(Buttinger & Wenzl, 

2014, 2020) 

Freezing of fat, grinding, melting, centrifugation, 

size exclusion chromatography, solvent 

evaporation 

+ Performances compliant with 

requirements 
Indole: 90 - 970 ng g-1 

Isotope dilution - Gas Chromatography - Mass 

Spectrometry 

+ Robust and free of matrix 

interferences 
Skatole: 210 - 1150 ng g-1 

Isotope Dilution - Liquid Chromatography - Mass 

Spectrometry 
- Off-line detection method Androstenone: 320 - 3850 ng g-1 

     



Matrix analyzed Sample preparation and detection method Main findings Method sensitivity Reference 

2. Present boar taint detection methods in slaughterhouses 

Porcine adipose 

tissue 

Heating of the fat 
+ Selection and training of the 

assessors 

LOD variable from one assessor  

to another. 

(Trautmann et al., 

2014) 

Detection with human nose by sensory evaluation 

+ Detection of taint based on 

global VOC profile generated  

by heating 

 

 + Small investment 

Selection and training of assessors 

performed to ensure that the 

assessor detects (LOD) the taint 

below rejection thresholds 

 

- Evaluation of assessors 

affected by several factors 

 (e.g. fatigue) 

 

 

- Long training of assessors to 

decrease subjectivity of 

assessor's evaluation 

 

Porcine adipose 

tissue 

Solvent extraction of indolic compounds + Cost-effective LOD determined in back-fat. 

(Mortensen & 

Sørensen, 1984) 

Addition of color reagent + Robust method 
LOD for skatole equivalents in the 

range 0.02 - 0.04 ng g-1 

Spectrophotometric detection (580 nm) - High initial investment  

 

- Result in "skatole equivalents", 

contribution of androstenone not 

considered 

 

     



Matrix analyzed Sample preparation and detection method Main findings Method sensitivity Reference 

3. Past research in boar taint detection 

3.1 Insect behavior-based sensing 

Skatole and 

androstenone 

diluted in 

dichloromethane 

(DCM) 

 

Porcine adipose 

tissue 

M. croceipes placed in arena 

+ Recognition of indole, skatole 

and androstenone separately and 

in a mixture 

N/A 
(Olson et al., 2012; 

Wäckers et al., 2011) 

Wasp hound with sugar water  

and odor source each time 

+ Insect can report various 

concentrations found in boar fat 

 
- Insect response to natural 

unconditioned stimulus 

3.2 Electronic noses (e-noses) 

Porcine adipose 

tissue 
Prototype MOS array system N/A N/A 

(Berdague & Talou, 

1993) 

Porcine adipose 

tissue 
5 commercial MOS array system 

+ Classification accuracy 

of 84.2% Classification in two classes based 

on androstenone content: 

 < 0.7 µg g-1 and > 1.7 µg g-1 

(Bourrounet et al., 

1995) 

- Miniaturization required 

     



     

Matrix analyzed Sample preparation and detection method Main findings Method sensitivity Reference 

3.2 Electronic noses (e-noses) 

Sunflower oil with 

vegetable fat, 

fortified with 

varying levels of 

skatole or 

androstenone 

 

Porcine adipose 

tissue 

Ambient temperature (22-23 °C), 

acquisition for 60 s. 

+ Correlation of 0.78 between 

results obtained with sensory 

panel and sensor array system 

Cut-off limits used: 

(Annor-Frempong et 

al., 1998) 
12 conducting-polymer array system Skatole: 0.2 µg g-1 

 Androstenone: 0.5 µg g-1 

Porcine adipose 

tissue 

Heated at 35 °C, 30 min. 

+ Limit of detection below 

androstenone accepted threshold 

of 0.5 µg g-1 LOD for androstenone in back-fat 

< 0.5 µg g-1 

(Di Natale et al., 

2003) 

Quartz microbalances - Expensive, time consuming 

Porcine adipose 

tissue 

Incubation at 40 °C, 10 min 

+ Sorting of carcasses into high 

and low levels of skatole and 

androstenone 

Cut-off limits used: 

(Vestergaard et al., 

2006) 
Ion mobility spectrometry based electronic nose - Sensitivity to be determined Skatole: 0.21 µg g-1 

  Androstenone: 0.5 µg g-1 



Matrix analyzed 
Sample preparation and 

detection method 
Main findings Method sensitivity Reference 

3.3 Gas chromatography–mass spectrometry (GC-MS) based methods 

Indole, skatole 

and androstenone 

diluted in 

methanol 

 

Porcine adipose 

tissue 

Incubation at 150°C, 12 minutes + Results in only 6 minutes LOD determined in back-fat: 

(Sørensen & 

Engelsen, 2014) 

Dynamic Headspace Sampling – Gas 

Chromatography – Mass Spectrometry 

- Expensive, fat sampling 

required 
Indole: 82 ng g-1 

  Skatole: 97 ng g-1 

  Androstenone: 623 ng g-1 

Skatole and 

androstenone 

diluted in corn oil 

 

Porcine adipose 

tissue 

Optimal extraction at heating parameters 

 400 °C, 45 s 
+ Results in 3.5 min 

Lack of sensitivity with portable 

GCMS for androstenone: 

no detection even at 10 µg g-1 

(Verplanken et al., 

2016) 

Solid phase microextraction - Gas 

Chromatography – Mass Spectrometry 
+ Good validation criteria 

Poly(dimethylsiloxane)/divinylbenzene 

(PDMS/DVB) fiber selected after optimization for 

solid-phase microextraction 

- Lack of sensitivity 

4. Recent advances in boar taint detection 

4.1 MS-based methods 

Porcine adipose 

tissue 
REIMS + Results in less than 10s 

Cut-off limits used: 

(Verplanken et al., 

2017) 

Indole: 0.1 µg g-1 

Skatole: 0.2 µg g-1 

Androstenone: 0.5 µg g-1 



Matrix analyzed Sample preparation and detection method Main findings Method sensitivity Reference 

4.1 MS-based methods 

Porcine adipose 

tissue 

1.5 mL brine and 1.5 mL acetonitrile added to 

sample (0,3 to 0,8 g). Homogenization for 30 s, 

followed by centrifugation for 5 min at 5000 g 

+ Accurate measurements 
LOD and LOQ determined in back-

fat: 

(Borggaard et al., 

2017) 
Supernatant left to dry for 2 min 

-Requires fat sampling and 

traceability system 

Skatole: LOD = 0,05 µg g-1,  

LOQ = 0,1 µg g-1 

Laser Diode Thermal Desorption Ion Source 

Tandem Mass Spectrometry 

+ Sampling can be fully 

automated (currently tested in 

slaughterhouse) 

Androstenone: LOD = 0.2 µg g-1, 

LOQ = 0,05 µg g-1 

Porcine adipose 

tissue 

3.0 mL NaOh (1N in water) + methyl-ter-butyl 

ether (MTBE). Vortexing for 1 min.  

Decantation for 2 min 

+ Accurate measurements Calibration ranges: 

(Auger et al., 2018) 

-Requires fat sampling and 

traceability system 

Indole:  

0,0165 µg g-1 to 0,132 µg g-1 

Supernatant left to dry for 1 min 
+ Sampling can be fully 

automated 

Skatole: 

 0,0413 µg g-1 to 0,660 µg g-1 

Laser Diode Thermal Desorption Ion Source 

Tandem Mass Spectrometry 
 

Androstenone:  

0,3325 µg g-1 to 2,660 µg g-1 

     

     

     

     



Matrix analyzed Sample preparation and detection method Main findings Method sensitivity Reference 

4.2 Raman spectroscopy-based methods 

Porcine adipose 

tissue 

Sample thawed at 4°c overnight,  

equilibrated for 1h 

+ Classification accuracy of 

81% after partial least square 

regression discriminant analysis 

(PLS-DA) 

Cut-off limits used: 

(Liu et al., 2016) 
Raman spectroscopy from 300 to 2100 cm-1 with 

8 cm-1 resolution, data acquisition  

about 20 min per sample 

Skatole: 0.2 µg g-1 

 Androstenone: 1.5 µg g-1 

Porcine adipose 

tissue 

Fat extraction. 

- High prediction errors 

LOD determined in melted fat: 

(Sørensen et al., 2015) 

Surface-enhanced Raman scattering, spectra 

acquisition for 20s from 200 to 3400 cm-1 

 with a 10 cm-1 spectral resolution 

Skatole: 2.4 x 10-6 M 

 Androstenone: 1.2 x 10-7 M 

4.3 Specific sensors based on the intrinsic properties of target molecules 

Skatole and 

androstenone 

diluted in 

methanol 

Voltammetric detection for skatole, enzyme 

electrode for androstenone 

+ Correlation of 0.801 for 

skatole and 0.932 for 

androstenone when compared to 

GC-MS results 

LOD in solution: 

(Hart et al., 2016; 

Westmacott et al., 

2020) 

+ Measurements within 60 s Androstenone 0.3 ppm 

- Must be tested with 

slaughterhouse conditions 
Skatole 0.052 ppm 



Matrix analyzed Sample preparation and detection method Main findings Method sensitivity Reference 

5. Biosensors - a path to be further investigated for boar taint detection 

5.1 OR-based bioelectronic noses 

423 human 

odorant receptors 

66 odors at high 

and low 

concentrations 

Cell-based assay technique + Response of OR7D4 specific 

to androstenone and 

androstadienone 

N/A (Keller et al., 2007) 

Olfactory psychophysical study 

Androstenone 

diluted in 

dimethyl sulfoxide 

(DMSO) 

Measurement performed in the range of -400 mV 

to 600 mV. Scan rate, duration and amplitude of 

100 mV/s, 0.05 s and 5 mV respectively. + Very low limit of detection 

(10-14 M) 

LOD for androstenone in solution 

10-14 M 
(Guo et al., 2015) 

OR7D4s anchored to a gold electrode, response 

monitored by square wave voltammetry. 

Odorants diluted 

in ND96 (in mM: 

96 NaCl, 2 KCl, 1 

CaCl2, 1 MgCl2, 5 

HEPES, pH 7.5) 

Diluted odorants applied for 20 s  

at a flow rate of 1.65 ml/min + CquiOR2 very selective for 

indole, CquiOR10 very selective 

and highly sensitive for skatole 

Skatole EC50 for CquiOR10 + 

CquiOR7 of 90 nM 

(Hughes et al., 2010; 

Pelletier, Hughes, et 

al., 2010) Recording of odorant-induced currents from 

oocytes expressing CquiORs 

50 AgamORs 

110 odorants 

diluted in either 

water, ethanol or 

paraffin oil 

Amplification of coding regions of AgOR and 

expression of these in the “empty-neuron” system 

+ AgamOR2 narrowly tuned and 

highly active by indole 

Indole response threshold between 

10-7 and 10-6 dilution 
(Carey et al., 2010) Functional characterization of AgamORs 

Odorant tuning curves 



Matrix analyzed Sample preparation and detection method Main findings Method sensitivity Reference 

5.2 OBP-based bioelectronic noses 

Indole diluted 

 in water 

Attenu fluorescence-quenching assay system, 

detection in less than 30 min (emission 

wavelength shift from 460 nm to 416 nm) + AgamOBP1 highly specific 

and sensitive to indole 

In fluorescence quenching assay, 

detection of indole  

at less than 100 nM 

(Dimitratos et al., 

2019) 

Lateral flow biosensor, in less than 20 min 

5.3 Aptamer-based biosensors 

Skatole and 

androstenone 

diluted in water 

Gold nanoparticle aptasensors 
+ Aptamer selected specific to 

skatole and androstenone Significant color change for skatole 

and androstenone at concentrations 

as low as 10-13 M 

(Frimpong et al., 

2017) Absorbance shift from 524 nm to 660 nm in the 

presence of skatole and androstenone 

- Tests must be performed with 

molecules in gaseous phase 

716 
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