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Abstract—Distribution system operators have been upgrading
their network over several decades, though not always keeping
digital records of all changes. As a result, the operators do
not always know exactly how their customers are connected
to a network. Some of these customers are equipped with
smart meters, providing voltage and current time-series. These
measurements can be used to identify the network topology and
the line impedances. This paper presents a method to identify
radially operated low-voltage networks which can be applied with
limited number of smart meters. The resulting identified model
provides the map of the network and impedances of the inferred
lines, allowing to perform subsequent analyses (e.g. power-flow).
Simulation results on a case study with 128 nodes show an
average error of 0.69% in computed voltages, while only 40% of
the nodes are equipped with smart meters.

Index Terms—distribution system, impedance inference, low-
voltage network, smart meters, topology identification.

I. INTRODUCTION

With the increasing use of distributed energy resources
and electric vehicles, distribution system operators (DSOs)
are encountering serious difficulties in guaranteeing the safety
of their Low-Voltage (LV) network in the years to come.
Being able to effectively integrate distributed energy resources
and electric vehicles is a fundamental step to accelerate the
energy transition process. At LV levels, distribution networks
are mostly operated radially, and power is distributed through
several feeders, i.e. main electrical lines carrying power from
the substation to the customer. Most residential loads are
connected to the feeder through a single phase and a neutral
wire. The phase to which a load is connected may be selected
arbitrarily. Power imbalances between phases are expected,
leading to a reduced hosting capacity of the system. In
order to implement effective preventive or corrective measures
against voltage or congestion issues, DSOs need to be able
to assess the system’s response to various realistic scenarios.
This analysis is usually performed through power-flow stud-
ies, but reliable solutions require accurate information about
topology of the network and physical characteristics of the
lines. DSOs do not always know how households, feeders and
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other appliances are interconnected. Furthermore, LV networks
topology can change over time because of faults, maintenance
or reconfiguration, and existing databases can contain outdated
or inaccurate information. DSOs can therefore lack possession
of a reliable model of their LV network, which can hinder
the efficient management and development of their system.
Network identification is the mathematical process that allows
to deduce this information. Effective network identification
methods for LV networks are, thus, essential for the develop-
ment of smarter grids [1]. This work presents a methodology
to retrieve the topology and the cable parameters of an LV
network from time-series measurements provided by a limited
number of smart meters in the grid.

This paper is structured as follows. Section II reviews
relevant literature. Section III states the problem, defining
inputs and outputs. Section IV describes the methodology
proposed to tackle the problem. Section V examines a specific
case study to evaluate the potential of such methodology
and discuss the results. Finally, Section VI summarises the
conclusions and introduces potential future work.

II. LITERATURE REVIEW

In transmission systems, topology and cable parameter
information is usually stored in appropriate databases [1].
Unfortunately, the same does not apply to LV distribution
networks. With the increasing importance and complexity of
distribution systems, the identification problem of LV net-
works has gained more attention and it has been recently
tackled adopting different approaches. Recent literature, such
as [1]–[3], focuses on identifying the topology of the network
when limited information is available. Algorithms that aim, as
this work does, to identify both network topology and lines
parameters at the same time, are presented in [4]–[7]. Authors
of [4] use the evaluation of voltage sensitivities with respect
to active and reactive power injections and Prũfer sequences
to identify the topology of small networks, assuming that
only specific cables types and lengths are used for the lines.
The identification problem in [5] takes the name of inverse
power flow problem, where the system admittance matrix
is found by solving an unconstrained least-squares problem.
The case with non-measured nodes in the grid, also referred
to as hidden nodes, is also tackled, both for meshed and
also radial topology, with the assumption that these hidden
nodes have zero net current injections. The inverse power-978-1-6654-3597-0/21/$31.00 ©2021 IEEE



flow problem is extended to poly-phase systems in [6], with
the full-observability assumption. Finally, an algorithm to
jointly estimate both admittance and topology, assuming that
the measurements for all non-zero power injecting nodes are
available, is presented in [7]. A summary comparison table can
be found in Table I. All the methods that have been examined
share the assumption that every node in the network, or at least
the power-injecting ones, has a meter attached to it. This paper
presents a methodology to tackle the network identification
problem even when some power-injecting nodes in the grid
are not metered.

TABLE I: Literature review where # indicates that the article
does not provide feature, G# partially provides feature,  pro-
vides feature.

Features | papers [1] [2] [3] [4] [5] [6] [7] [∗]
Line parameters
estimation

# # # G#     

Hidden non-
injecting nodes

# # #   #   

Hidden injecting
nodes

# # # # # # #  

Required
measurements

V V E V, S V, I V, I V, S V,I

No assumptions
on cables

G#   #    G#

Unbalanced
poly-phase

# # # # #  #  

∗ Proposed methodology
V = Voltage; I = Current; S = Power; E = Energy

III. PROBLEM STATEMENT

Let us consider a three-phase four-wire LV radial distribu-
tion network, as represented in Figure 1. Let N be the set
of nodes in the network and let ψn be the two-element vector
representing the geographical coordinates of node n ∈ N . The
three phases of the network are denoted by indices a, b and c
and the set of phases by P = {a, b, c}.

Fig. 1: Representation of a three-phase four-wire radial net-
work with three feeders.

The network is observed over a finite time period T
discretised into time intervals of length ∆t. The value of a
variable in time-step t ∈ T is accessed by using an additional

subscript, i.e. •i,t refers to the value of variable •i in time-step
t. The absence of such a subscript denotes the entire time-
series. Let V pn,t and Ipn,t be the magnitudes of the voltage and
the current injection in phase p ∈ P of node n, respectively.
The set M ⊆ N is the subset of nodes in the network that
are equipped with smart meters. Information about ψm, V pm,
Ipm, ∀m ∈ M is considered as input of the problem. Smart
meters are assumed to provide measurements over the entire
observation period of voltage and current injection at phase
p of the node m ∈ M to which they are connected. The
method uses magnitude measurements since smart meters do
not usually include a phasor measurement unit.

The aim of a network identification problem is to retrieve
a model of the network describing both the network topology
and edge impedances. Let G = (N , E) be a graph representing
the network topology, with E as set of edges. Let Ze be the
impedance associated to edge e ∈ E and Z be the set of all
the impedances. Let H = N \ M be the set of unmetered
nodes in the network.

The network identification problem infers E , Z and Iph,
∀h ∈ H, assuming that:
• the topology of the network does not change during the

observation period;
• customers are connected to the main feeder through

single-phase two-wire connection;
• the phase of the network to which metered customers are

connected is provided;
• at least one node at every phase of every feeder of the

network is equipped with a meter;
• each phase of the MV/LV substation is metered;
• the ratios between cable resistance and reactance are

known, and denoted by γ.
The estimation of E , Z and Iph ∀h ∈ H is valuable information
to DSOs since it can be exploited, as an example, to perform
power flow computations or to identify problematic network
configurations.

IV. PROPOSED METHODOLOGY

The methodology is divided in two steps: the identification
of three single-phase graphs and merging these into a three-
phase one.

A. Single-phase identification algorithm

This step aims at modelling the phase p ∈ P of a network as
a rooted tree Ĝp. The identification algorithm consists of three
main parts, namely topology estimation, topology validation,
and hidden node detection, that are applied to each phase
p ∈ P independently. Let N̂ p ⊆ N p be the pool of nodes
made available to the identification algorithm. N̂ p initially
corresponds to the set of observed nodes Mp.

Topology Estimation

The first step of the algorithm consists of the estimation
of a rooted tree Ĝp = (N̂ p, Êp) with a topology as close
as possible to Gp = (N p, Ep). This operation is carried out
using correlation analysis on voltage measurements to infer



proximity between nodes. Correlation-based approaches have
already been proven successful both in phase [8] and topology
[1] identification methods. Load and production profiles at
different nodes of the LV network can present similar pat-
terns owing to comparable residential occupancy profiles and
weather conditions. To be sure that this does not affect the
results of the voltage correlation analysis, voltage time-series
are pre-processed applying a high-pass filter, as suggested in
[1]. Let wij be the Pearson Correlation Coefficient between
the filtered voltage time-series of nodes i and j. Let Ĝpw be a
weighted complete graph built on N̂ p, where the edge (i, j)
weight is equal to wij . The estimated topology Ĝp = (N̂ p, Êp)
is obtained computing the maximum spanning tree on Ĝpw.

Topology Validation

The second process checks each edge e = (i, j) ∈ Êp and
suggests where missing nodes and wrong connections, if any,
are. This process is performed by evaluating the estimated
impedance magnitude time-series Ẑpe = {Ẑpe,1, . . . , Ẑ

p
e,T } for

each edge e = (i, j) ∈ Êp as, ∀t ∈ {1, . . . , T}:

Ẑpe,t =
V pj,t − V

p
i,t

Îpe,t
(1)

where the estimated current Îpe,t flowing in e is given by

Îpe,t =
∑
n∈D̂p

e

Ipn,t (2)

where D̂pe is the set of downstream nodes with respect to edge
e. Since impedances are constants, the values Ẑpe should be
close to the same constant value. Edge e is considered valid if
the relative standard deviation of time-series Ẑpe , RSD(Ẑpe ), is
less than an arbitrary threshold λ, e.g. determined by statistical
tests for the largest accepted standard deviation.

Hidden Node Detection

Assume a hidden node H ∈ Hp exists in the path con-
necting it to the root node. Since the contribution of IpH is
missing in the computation of the topology validation step, the
estimated current flowing through such path is not the correct
one. This causes the rejection of the edges in that path, as
shown in Figure 2. Note also that since node 5 is hidden and
it is not a terminal node, the previous topology estimation step
mistakenly detects an edge connecting node 3 to node 6. Let
A ∈ N̂ p be the node with the longest path to the root among
all the nodes that are connected to a rejected edge in Ûp (node
6 in Figure 2). Let B and C be the parent and grandparent
nodes of A, respectively. An unobserved node H ∈ Hp may
be placed adjacent to A in three topological configurations, as
shown in Figure 3.

Let A ∈ N̂ p be the node, among all the nodes that are
connected to a rejected edge, with the longest path to the
root (node 6 in Figure 2). Let nodes B and C be the parent
and grandparent node of A, respectively. Node X ∈ Hp is
assumed to be adjacent to A. Three topological configurations
can occur, as shown in Figure 3. The hidden node detection

Fig. 2: First two steps of the identification algorithm with node
5 as hidden node. Dashed edges are rejected by the validation.

Fig. 3: Possible locations for a hidden node H adjacent to A.

step examines these configurations to assess which suits best.
Let ÎpA+ = ÎpAB be the contribution to the estimated ÎpBC
flowing through BC of A and its descendant nodes, and

ÎpB+ = ÎpAB − Î
p
BC (3)

be the rest of the current. In order to detect the correct location
of X , the algorithm solves three optimization problems:

Configuration “Bridge”:

δb = min
∑
t∈T
|VB,t−VC,t−ẐpCB(ÎpA+,t+ Î

p
B+,t+ Î

p
X,t)| (4a)

subject to, ∀t ∈ T

VB,t = VA,t − ẐpXAÎ
p
A+,t − Ẑ

p
BX(ÎpA+,t + ÎpX,t) (4b)

with (ÎpX , Ẑ
p
XA, Ẑ

p
BX , Ẑ

p
CB) ∈ R4.

Configuration “Leaf”:

δl = min
∑
t∈T
|VB,t−VC,t− ẐpCB(ÎpA+,t+ ÎpB+,t+ ÎpX,t)| (5a)

subject to, ∀t ∈ T ,

VB,t = VA,t − ẐpBA(ÎpA+,t + ÎpX,t) (5b)

with (ÎpX , ẐBA, ẐCB) ∈ R3.
Configuration “Common parent”:

δcp = min

T∑
t=0

|(V pA,t−Ẑ
p
XAÎ

p
A+,t)−(V pB,t−Ẑ

p
XB Î

p
B+,t)| (6)

with (ẐpXA, Ẑ
p
XB) ∈ R2.

Such problems are formulated by exploiting the current and
voltage relationships occurring in each configuration. Once
problems (4 - 6) have been solved, the algorithm selects the



configuration with the smallest δ ∈ {δb, δl, δcp}. Depending on
the predicted location of X , the pool of nodes N̂ p is updated
accordingly. If the algorithm picks the bridge configuration,
an additional node X is added to N̂ p. The estimated current
injection magnitude ÎpX is extracted from solution of (4), along
with the values of ẐpXA and ẐpBX . The estimation of the
voltage time-series V pX is computed as:

V̂ pX,t = V pA,t − Ẑ
p
XAÎ

p
A+,t ∀t ∈ {1, . . . , T} (7)

If the leaf configuration is selected, the current injection ÎpX is
extracted from the solution of (5), while the voltage time-series
of X cannot be estimated. To proceed with the identification
process, node A ∈ N̂ p is substituted by an auxiliary node X ′

with the same voltage as A and its current injection is given
by ÎpX′ = ÎpA + ÎpX . This allows one to fix the current flowing
in the path to the root of A for the next validation step and
to continue the identification process. If the common parent
configuration is selected, this implies that impedances ẐpXA
and ẐpXB could be found, which leads to a common voltage
V̂ pX . The voltage magnitude associated with V̂ pX is computed
as the average voltage given by the two voltage drops:

V̂ pX,t = (V pA,t − Ẑ
p
XAÎ

p
A+,t + V pB,t − Ẑ

p
XB Î

p
B+,t)/2 (8)

A node X is added to N̂ p with voltage V̂ pX and a zero net
current injection, since (6) voltages and currents in nodes A
and B do not provide information to estimate any potentially
missing current injection. If X is indeed a net zero-power
injecting node, edge CX is accepted in the topology by the
validation step. Otherwise, the correct ÎpCX is obtained in the
next validation iteration by solving problem (5), since node X
is added in a leaf configuration.

Whenever more than one hidden node is located in the
same area, solving problems (4) - (6) may not provide a
meaningful estimation of X corresponding to an actual hidden
node in the actual network. To check if the investigated area
of the network has been correctly identified, the algorithm
checks whether or not the addition of H would pass the
topology validation step. The hidden node is accepted if the
relative standard deviation of impedance time-series ZCX for
bridge and leaf configurations, or both ZAX and ZBX for
the common parent one, are below the tolerance λ. If not, to
proceed with the network identification, a new node Y is added
to the the pool of nodes N̂ p instead, obtained using a different
approach. The algorithm arbitrarily sets the position of the
hidden node Y midway between nodes A and B, connected
to them by two branches of equal impedances, to remove one
degree of freedom to the problem. The impedance associated
to edges Y A and BY , i.e., ẐpY A = ẐpBY , is evaluated by
multiplying a per-unit-of-length default impedance value Z∗

by the distance between the two nodes it connects. Voltage and
current injection of Y are computed, following Ohm’s law, as:

V̂ pY,t = V pA,t − Ẑ
p
Y AÎ

p
A+,t ∀t ∈ T (9)

ÎpY,t =
V pB,t − V

p
Y,t

ẐpBY
− ÎpA+,t ∀t ∈ T (10)

Once the pool of nodes N̂ p has been updated, topology vali-
dation and estimation steps are processed again. The algorithm
is performed until all the edges in Ĝp are labelled as valid.
Finally, the impedance magnitude of each validated single-
phase edge is given by the mean value of Ẑpe in equation (1).

B. Three-phase model identification

This step identifies a three-phase model of the network
starting from the identified single-phase graphs. Let N̂ and
F̂ be the sets of all the nodes and feeders in the single phase
graphs Ĝa, Ĝb and Ĝc respectively.

Each inferred single-phase graph Ĝp contains F̂ p paths
starting from the root node corresponding to one feeder each.
These paths must be gathered into F̂ = max{F̂ p|∀p ∈ P}
groups containing one feeder from each phase. These groups
are obtained by solving the following optimization problem:

min
x∈B ˆ|F|× ˆ|F|

∑
f1∈F̂

∑
f2∈F̂

xf1,f2∆f1,f2 (11a)

subject to:

xf1,f2 = xf2,f1 ∀(f1, f2) ∈ F̂2 (11b)∑
f2∈F̂

xf1,f2 = 3 ∀f1 ∈ F̂ (11c)

xf1,f2 ≥ xf3,f1 + xf3,f2 − 1 ∀(f1, f2, f3) ∈ F̂3 (11d)

where f1 and f2 are two single-phase feeders, xf1,f2 is a
binary variable equal to 1 if f1 and f2 are in the same three-
phase feeder. Symmetry of x is imposed by equality (11b).
Equation (11c) ensures that every three-phase feeder contains
one feeder from each single-phase graph. Constraint (11d)
imposes that if single-phase feeder f3 is associated to single-
phase feeder f1 and to single-phase feeder f2 then f1 and
f2 are also associated and the three of them belongs to the
same three-phase feeder. The distance between two single-
phase feeders, ∆f1,f2 , is defined by:

∆f1,f2 =

∑
k∈f1

δk,f2

|f1| +

∑
k∈f2

δk,f1

|f2|

2
(12)

where |f1| and |f2| are the number of nodes in f1 and f2,
respectively. The distance between a node k and a single-phase
feeder f is defined as:

δk,f = min{‖ψk−(ρψi+(1−ρ)ψj)‖, ∀(i, j) ∈ f, ρ ∈ [0, 1]},
(13)

where i and j are nodes of f . The right part of the subtraction
is the coordinates of the closest point to node k on the part
of the feeder delimited by these two nodes. This distance is
illustrated in Figure 4 for two single-phase feeders.

Now that the single-phase feeders are grouped, the nodes
belonging to feeders in the same group must be linked together
to form the feeders of the three-phase graph. Optimization
problem (14) builds these links by solving a minimum span-
ning tree problem involving node depths [9]. The solution to



Fig. 4: Distance between two single-phase feeders (f1 and f2)
from different phases.

this problem is an incidence matrix y, defining the edges Ê of
the graph Ĝ = (N̂ , Ê).

min
y∈B ˆ|N|× ˆ|N|, l∈N ˆ|N|

∑
i∈N̂

∑
j∈N̂

yi,j Wi,j (14a)

subject to: ∑
i∈N̂

yi,0 = 0 (14b)

∑
i∈N̂

y0,i = F̂ (14c)

∑
j∈N̂

yj,i = 1 ∀i ∈ N̂ (14d)

l0 = 0 (14e)

lj ≥ li + yi,j − ˆ|N |(1− yi,j) ∀(i, j) ∈ N̂ 2 (14f)

lj ≤ li + 1 + ˆ|N |(1− yi,j) ∀(i, j) ∈ N̂ 2 (14g)

lj ≥ li + 1 ∀(i, j) ∈ Êp (14h)

Objective function (14a) minimises the distance between the
selected edges (yi,j = 1). Distance Wi,j is given by the
Euclidean distance between node i and node j only if they
belong to the same phase or the same feeder:

Wi,j =

{
‖ψi − ψj‖ if (i, j) ∈ Êp or if xi,j = 1

+∞, otherwise.
(15)

Constraints (14b)-(14e) force the result to be a rooted tree that
presents the substation as its root node 0 and the expected
number of feeders in the topology. The node depth of node j,
lj , is defined by equations (14e)-(14g). The root node depth is
set to zero by equality (14e). Equations (14f)-(14g) states that
if node i is connected to node j, li = lj + 1. Equation (14h)
imposes that if, in the single-phase graph, node i is followed
by node j, the depth of node i in the three-phase graph must
be greater than the one for j.

Finally, impedances are assigned to the resulting three-phase
edges. The path impedance of an edge ep ∈ Êp,∀p ∈ P is

Zpe =
Zpe

dΠ̂(ep)

le ∀b ∈ Π̂(ep) (16)

where Zpe is the single-phase impedance estimated in Sec-
tion IV-A and de the length of the set of consecutive edges,
connecting i to j in the three-phase topology Ĝ.

Since this process is computed for all the single-phase
edges, each edge in the three-phase model has three different
impedance values associated to it. Assuming that an edge in
the model has the same type of conductors in every phase,
the self-impedance of each three-phase edge in the network
model is set to the mean value.

V. SIMULATION RESULTS

The developed methodology is tested on a three-phase
four-wire network with 128 single-phase customers similar to
a Belgian LV network, depicted in Figure 5a. The voltage
readings are obtained by simulating the network in OpenDSS
over 30 days at a 30 minutes resolution, resulting in 1440
time-steps. For this power-flow analysis, two different cable
types, whose self-impedance values are ‖Z1‖ = 0.0012 Ω/m
and ‖Z2‖ = 0.0009 Ω/m, are selected to model the main
feeders and their laterals, respectively. Consumption profiles
are obtained from residential consumption readings of the
Low Carbon London Project [10]. Active and reactive power
profiles are generated associating a different power factor
ranging from 0.93 to 0.97 to each customer.

(a) Reference topology. (b) Estimated topology.

Fig. 5: Network case study where each marker in Figure 5a
corresponds to a metered customer.

Only 40% of customers’ nodes outputted by the power
flow analysis are randomly selected as smart meters nodes.
The inputs of the identification algorithm are voltages and
current injections of these nodes and their geographical data.
To simulate common smart meter measurements, only mag-
nitude values are used as input in the algorithm with a unit
power factor. The hyper-parameter settings are the following:
λ = 0.1, γ = 0.1 and Z∗ = 0.001 Ω/m. The estimated
topology of the network is presented in Figure 5b. This figure
shows that the proposed methodology accurately identifies the
general shape of the network. The algorithm detects the right
number of feeders and correctly associates the metered nodes.
Estimated edge impedances modules have a mean value of
0.00106 Ω/m with a standard deviation of 0.00098 Ω/m
which is well within the expected range [0.0009, 0.0012]. Note
that 10 of the 84 estimated impedances are set using Z∗

(see end of Section IV-A). Not considering these values still
leads to impedances of average values of 0.00108 Ω/m with
a standard deviation of 0.00104 Ω/m.



(a) Node 180

(b) Node 215

Fig. 6: Metered and estimated voltage magnitude.

Another load-flow analysis is computed using the topology,
the edge characteristics and the estimated current injections
of the unmetered nodes. This load flow provides voltage time-
series estimations which can be compared to the input read-
ings. The minimum, median and maximum observed Root-
Mean-Square Errors (RMSE) are 0.09%, 0.69% and 3.53%
respectively. This suggests that the model, despite the few
information provided to the algorithm, can lead to reliable
voltage approximations. Figure 6 shows voltage magnitude of
two other nodes. While Figure 6a depicts a low estimation
error, the estimated voltage profile of Figure 6b presents
several under-voltages corresponding to less severe cases in the
correct time-series. This error is due to a localized inaccuracy
in the topology estimation that led to under-estimation of the
consumption around the meter.
produce a model whose topology reflects the structure of the

VI. CONCLUSION

This paper proposes an algorithm which identifies the
topology of a low-voltage network when a subset of nodes,
either customers or nodal points of connection, is not equipped
with smart meters. This objective is achieved by analysing
voltages, currents and geographical data of the metered nodes,
without relying on additional information. The performances
of the algorithm are evaluated on a case study with 128
customers, 51 of them equipped with smart meters. Despite
the low observability of the system, the algorithm is able to

network. A load-flow analysis performed using the inferred
model shows that the computed voltage time-series matches
the correct values with average RSME of less than 1%.

Future work could focus on how to exploit the solution
of additional load-flow analysis using the estimated model to
understand which area in the model topology presents larger
inaccuracy and to investigate how to improve it. Furthermore,
it would be interesting to investigate what the minimum
number of meters needed is to obtain relevant solutions and
where they should be installed for an optimal estimation of
the model. Additionally, further effort could be put into a
more exhaustive estimation of the edge parameters, taking
into account the evaluation of mutual and shunt impedances.
Finally, the model provided by this algorithm could be used
for further studies to maximise the integration of renewable
generation and electric car connections within LV networks.
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