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Ground state of magnetocrystals
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Neodyme spherical magnets are inexpensive objects that demonstrate how dipolar particles self-assemble into
various structures ranging from 1D chains to 3D crystals. The dipole-dipole interactions confer the stability to
these particular architectures. In the present paper, we explore ordered structures only, and we evidence that
hybrid magnetocrystals, alternating hexagonal planes of antiparallel dipoles, have the lowest magnetic energy.
This cohesion is the magnetic counterpart of the Madelung lattice energy found for ionic solids.
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Let us imagine that you buy 60 magnetic balls at your
favorite toy market. They stick together due to the magnetic
attraction being much stronger than gravity forces. Billions of
different configurations can be envisaged, but only a few of
them are ordered structures. They already capture the com-
plexity of assembling dipolar beads. Three typical examples,
made of 60 spherical magnets, are shown in Fig. 1: (a) one
simple loop, (b) one hexagonal plate with a vacancy in the
center, and (c) one cubic lattice 3 × 4 × 5. Finding the best
arrangement for N = 60 dipoles, which minimizes the mag-
netic energy of the system, is a challenge since it depends on
all the positions and orientations of the dipoles.

Recently, magnetic chains [1,2], cubic structures [3–5],
tubular [6], and planar structures [7] have been considered,
using spherical permanent magnets. These experimental and
numerical studies underlines the high complexity of magnetic
structures. In chains, defects can be created in the perfect
ordering of dipoles. These defects could act as magnetic
monopoles [1]. By minimizing the energy of eight dipoles
placed at the vertices of a cube, an infinite number of sta-
bles configurations have been evidenced, similar to Goldstone
modes [3,4]. Moreover, these multipolar magnetic cubes may
interact with extremely short-range interactions [5]. Hexago-
nal lattices have been also investigated, and the role played
by lacunes has also been demonstrated [7]. Besides these
fundamental questions, many applications can be found using
dipolar particles, from magnetic colloids [8] to smart actuators
[9] and microrobots [10].

In this paper, we will address the fundamental question of
the magnetic cohesive energy u of ordered 1D, 2D, and 3D
structures being composed of many dipolar magnetic balls.
These ordered structures are nicknamed magnetocrystals [11].

Let us note that the neodyme spheres behave as pointlike
dipoles [12,13] by assuming that they are uniformly magne-
tized. The interaction energy between two pointlike dipoles
�mα and �mβ is given by

Uαβ = μ0

4π

[
�mα · �mβ

r3
αβ

− 3
( �mα · �rαβ )( �mβ · �rαβ )

r5
αβ

]
. (1)

where �rαβ = �rβ − �rα is the vector linking particle centers α

and β. Looking carefully at (1), one observes that, depend-
ing on relative positions and orientations, two dipoles can
attract or repel each other. We will see in this paper that
both effects are playing a role in ordered structures. In the
following, we consider identical beads such that they have
similar size and similar magnetization (| �mα| = m). It is there-
fore possible to define a dimensionless magnetic cohesion per
particle as

u = 2πD3

Nμ0m2

∑
α �=β

Uαβ, (2)

where D is the sphere diameter. Since each dipole α has
five degrees of freedom, being the positions (xα, yα, zα ) and
angular orientations (θα, ϕα ), minimizing the energy (2) in our
example requires us to explore a complex configuration space
with 5 × 60 degrees of freedom. Stochastic optimization al-
gorithms can be used to find the ground states of Eq. (2), as
proposed in Ref. [1]. However, this requires long computation
times. In the example of 60 magnetic beads, as given above,
one intuitively expects that compact and ordered structures
will reach the lowest energy since particles are close together.
But this is not the case. Simulations show that the hexagonal
2D structure of Fig. 1(b) has a lower cohesive energy than the
cubic one [Fig. 1(c)]. Moreover, the cubic crystal is hard to
obtain experimentally, reflecting the weak cohesive energy of
this structure. This surprising result is due to the fact that the
dipole orientations are highly relevant.

In this paper, we propose a different approach: we will
assume a dipole ordering, compatible with experiments and
observations, in order to calculate best arrangements. Cal-
culations of magnetic cohesion u will be obtained in the
thermodynamic limit N → ∞.

Let us start with the 1D chain. As discussed in Ref. [1],
the ground state is obtained when all dipoles are parallel to
the chain favoring attraction between spheres. Each dipole is
interacting with its neighbors at distance D, 2D, 3D, and so
on. The asymptotic value of the 1D ground state per dipole
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FIG. 1. Typical 1D, 2D, and 3D structures composed of 60 dipo-
lar magnetic balls: (a) a chain forming a loop, (b) a hexagonal plate
with a hole in the center, and (c) a cubic lattice.

can thus be evaluated by (2), which reduces to the series

u1d = −2
∞∑

i=1

1

i3
= −2ζ (3), (3)

where all terms are attractive contributions to the magnetic
cohesion. This sum reduces to the Riemann zeta function ζ ,
giving an asymptotic value u1D ≈ −2.4037 for the dimen-
sionless magnetic energy per particle [1]. Although magnetic
chains and loops are basic systems, they can be assembled
in a way to form defects in the dipole orientations such that
monopole-like interactions are obtained, as demonstrated in
Ref. [1]. It has also been demonstrated [2] that the elastic
properties of rings like the one of Fig. 1(a) originate from the
magnetic dipolar interactions.

Two-dimensional ordered structures can be assembled fol-
lowing two different ways. Chains with parallel dipoles are
attracting if they form a hexagonal lattice. Antiparallel chains
can also be assembled to form a square lattice. Figure 2
presents a sketch of both cases, emphasizing the dipole ori-
entations in sublattice elements of different sizes.

Following the calculation method described in the Ap-
pendix and considering Eq. (2) for the hexagonal lattice, the
cohesive energy reduces to

uhex =
∑
(i, j)

i2 + 8i j − 8 j2

8(i2 − i j + j2)5/2 , (4)

FIG. 2. Sketch of 2D sublattices with 3 × 3 (a = 1) and 5 ×
5 dipoles (a = 2). Two types of arrangements can be created:
(a) hexagonal lattice and (b) square lattice. Blue and red arrows
emphasize (anti-)parallel dipole ordering in these structures.

FIG. 3. For each 2D structure discussed in this paper, we present
the evolution of the cohesive energy u as a function of inverse
crystal size 1/a. (Left) Hexagonal structure shows a 1/a convergence
towards −2.7585. (Right) The square lattice shows however a 1/a2

convergence towards −2.5494 for, respectively, odd and even a val-
ues. Red lines illustrate the intercept with the vertical axis for the
infinite system.

where i and j are lattice numbers for translational ordering,
each particle being given by the couple (i, j). The double
sum runs over any particle (i, j) of the lattice different from
the regarded central particle (i = 0, j = 0). The sums in (4)
are dominated by attractive terms of nearest neighbors. No
analytic solution can be obtained, and the series (4) should be
evaluated numerically. For such a purpose, we consider lat-
tices by running i and j in the growing interval [−a,+a], i.e.,
by taking into account an increasing number N = (2a + 1)2

of dipoles. Figure 3 (left) presents the numerical result as
a function of 1/a. One assumes a linear behavior intercept-
ing the vertical axis at uhex = −2.7585 being the asymptotic
value. This value is close to the one obtained earlier by
Messina and coworkers in the case of planar [7] and tubu-
lar [6] arrangements. This value has also been theoretically
approached [14].

The square lattice is obtained by using antiparallel dipoles
from a line to another one, as illustrated in Fig. 2(b). The
ground state is given by

usq =
∑
(i, j)

(−1) j ( j2 − 2i2)

2(i2 + j2)5/2 (5)

in which the factor (−1)i induces major oscillations in the
convergence of the series. Alternating attractive and repulsive
magnetic forces can be viewed as the magnetic counterpart
of the ionic solids, in which Coulomb attraction and re-
pulsion alternate along lattice axes. The present calculation
gives a kind of magnetic Madelung lattice energy. Figure 3
(right) presents usq as a function of 1/a2. Oscillations are
seen in usq as expected. However, a linear behavior is ob-
served for respectively odd and even a values. Both linear
trends are converging towards a unique limit along the vertical
axis. One obtains usq = −2.5494. This value, reported to the
first time to our knowledge, is higher than uhex whatever
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the value of a, meaning a weaker cohesion that could be
observed in experiments. In particular, a planar square lat-
tice seems harder to create than a planar hexagonal lattice.
Comparing magnetostructures based on u values is deli-
cate since the mechanical stability is linked to the entire
energy landscape around those minima. Cracks and parti-
cle reorganisations appear differently in square/hexagonal
lattices such that situations are contrasted. Nevertheless,
ranking lattices using u allows one to draw a global
trend.

Consider the packing fraction η being in 2D the surface
covered by magnetic beads over the lattice area. One obtains
ηhex = π

2
√

3
= 0.9069, being larger than ηsq = π

4 = 0.7854.
We can conclude that, in 2D, denser lattices of dipoles cor-
respond also to higher cohesive crystals.

For 3D structures, one may consider the generalization of
the cubic lattice by alternating antiparallel chains, as illus-
trated in Fig. 4(a). The cubic structure seems natural and is
often used for advertising magnetic toys. However, creating a
cubic lattice with neodyme magnets is quite tricky. For such a
structure, one has

ucub =
∑

(i, j,k)

(−1) j+k (−2i2 + j2 + k2)

2(i2 + j2 + k2)5/2 , (6)

where k is the third lattice number. Figure 5 shows ucub as a
function of 1/a2. By increasing a, the balance between paral-
lel and antiparallel rows has the same sign explaining a slow
convergence instead of oscillations. Nevertheless, the inter-
cept with the vertical axis gives ucub = −2.6767. Although the
3D cubic lattice has a low cohesive value, it is still higher than
hexagonal plates whatever their relative sizes a, as announced
in the introduction.

Another common 3D structure is the fcc lattice which can
be built from a stack of slightly shifted hexagonal layers.
This is illustrated in Fig. 4(b). In order to obtain attraction
between layers, dipoles should be oriented in the same way.
This lattice possesses the highest packing fraction value ever
known, ηfcc = π

3
√

2
≈ 0.7405 [15], but this structure has a

weak magnetic cohesion. Indeed, one has

ufcc =
∑

(i, j,k)

−8i2 − 8i( j + k) + ( j − k)2

8[i2 + i( j + k) + j2 + jk + k2]5/2 , (7)

which tends to ufcc = −0.5763 in the thermodynamic limit.
This magnetic cohesion is higher than the reference co-
hesion of a single pair of dipoles (u = −1). As a con-
sequence, this structure is hard to create experimentally,
and any mechanical stress destroys this extremely fragile
magnetostructure.

A third structure can be created by stacking hexagonal
planes placed in antiparallel situation. The so-called hybrid
structure is illustrated in Fig. 4(c). Its cohesive energy is given
by

uhyb =
∑

(i, j,k)

(−1)k (i2 + 8i j − 8 j2 + 4k2)

8(i2 − i j + j2 + k2)5/2 (8)

where the (−1)k factor emphasizes the alternating stack of
antiparallel dipoles. Figure 5 shows the convergence as a

FIG. 4. Sketch of 3D lattices with 5 × 5 × 5 dipoles. Three dif-
ferent arrangements can be created: (a) cubic lattice composed of
alternating antiparallel chains of dipoles, (b) fcc lattice correspond-
ing to the compact arrangement superposing similar hexagonal layers
being slightly shifted, and (c) hybrid lattice composed of antiparallel
hexagonal planes. Blue and red arrows emphasize (anti-)parallel
dipole ordering in the structure.

function 1/a such that uhyb = −2.8712 is obtained. There-
fore, hybrid lattices have the lowest cohesive magnetic energy
known. They should be considered the most stable magne-
tostructures. Recent experiments have been performed with
magnetocrystals showing indeed that the elastic response and
strength of hybrid lattices are enhanced [11] compared to
other magnetocrystals.

We have calculated above the cohesive energy of 2D and
3D magnetocrystals. The results are summarized in Table I.
The hybrid lattice seems to have the lowest cohesion energy
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FIG. 5. For each 3D case discussed in this paper, we present the
evolution of the cohesive energy u as a function of the inverse crystal
size 1/a or 1/a2. Red lines illustrate the intercept with the vertical
axis for the infinite system.

for a packing fraction ηhyb = π

3
√

3
, although this structure is

far from being the most densest one.
Our results about the cohesive energy of structures made

of magnetic entities may find some applications in magnetic
colloids [8,16]. Indeed, magnetic colloids can be synthesized

TABLE I. The various structures discussed in this paper and their
ground state u, as well as their packing fraction η. References to
earlier calculations are also given.

d Magnetostructure u η References

1 Chain −2.4037 1 [1,2]
2 Square −2.5494 0.7854 This work
2 Hexagonal −2.7585 0.9069 [6,7,14]
3 Cubic −2.6767 0.5236 This work
3 fcc −0.5763 0.7405 This work
3 Hybrid −2.8712 0.6046 This work

in a variety of shapes [17,18], and the possibility of remotely
controlling these soft matter entities via external fields makes
them ideal for producing tiny ordered structures, which, for
example, could be useful for pharmaceutical applications [8].
The 2D crystalization and more specifically the formation
of hexagonal 2D ribbons [19] has been proposed to better
capture the formation of colloidal structures under a constant
magnetic field.

Micrometer- up to millimeter-sized magnetic particles can
also be used for the microfabrication of 3D electronic de-
vices exploiting the magnetic interactions for self-assembling
specific and functional [20,21]. Self-assembly using dipolar
objects of various shapes can help scientists to microfabricate
2D and 3d metamaterials as demonstrated in Ref. [22]. Cubic
lattices have been grown by self-assembly in that case. It has
been also shown that microstructures can be self-assembled
[23] along liquid interfaces when the balance is reached be-
tween magnetic and capillary interactions. Those particles can
form 2D hexagonal lattices that can be actuated for mimicking
complex microorganisms [10].

Dipolar interactions between particles are also used to in-
duce cohesion in random packing experiments [24] and more
recently to excite systems like granular gases in order to
control the agitation, i.e., the injection of mechanical energy,
allowing for an extensive experimental study for the equation
of state in these dissipative systems [25].

A last application is the development of magnetorheolog-
ical elastomer by placing an array of magnetic particles in
an elastic matrix [26]. Using an external field orienting the
dipoles, the magnetic particles can be used for bending or
stretching these elastic composites creating smart actuators
[9,27]. The way particles are arranged in the matrix is relevant
for creating different behaviors [28] and instabilities [9].

In summary, the study of ordered structures made of dipole
magnets reveal that the hardest known structure is the hybrid
magnetocrystal, being made of a stack of antiparallel hexago-
nal plates. We show that it is characterized by a Madelung-like
lattice energy. This may find some applications in soft matter
where magnetic particles are used for self-assembly, colloidal
structures, microrobots, and actuators.
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APPENDIX: CALCULATION DETAILS

This section gives more details on the calculation method.
This method is illustrated with the specific cases of a 1D
chain, 2D square lattice, and 3D cubic lattice.

Since we evaluate the magnetic cohesion u in the ther-
modynamic limit, we consider that instead of using all pairs
(α, β ) of dipoles, we look only at the central dipole (α = 0)
and the sum runs over all dipoles β �= 0. Equation (2) becomes

u = 2π

μ0

D3

m2

∑
β �=0

U0β. (A1)

For a 1D chain of dipoles, one has a single lattice number
β = i that can be used to label dipoles from −∞ to ∞. Since
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the dipoles are parallel to the chain, one has �m0 · �mβ = m2 and
�m0 · �r0β = �mβ · �r0β = miD. Considering Eq. (1) and Eq. (A1),
one obtains

u1D = 1

2

∑
i �=0

(
1 − 3

i3

)
, (A2)

which reduces to Eq. (3), giving the expected result.
For a square lattice, with alternating dipole orientations,

we consider the dipole placed at the center of the (2a + 1) ×
(2a + 1) square. Two lattice numbers i and j are needed
to run over the dipoles β. Dipoles are parallel to the axis
defined by lattice number i. One has therefore �m0 · �mβ =
(−1) jm2, the factor (−1) j being used to model the alternating
orientations of the dipoles. Moreover the scalar products in
Eq. (1) become ( �m0 · �r0β )( �mβ · �r0β ) = (−1) jm2i2D2. Finally,

one has

usq = 1

2

∑
(i, j)

(−1) j

⎡
⎣1 − 3 i2

(i2+ j2 )

(i2 + j2)3/2

⎤
⎦, (A3)

which reduces to Eq. (5), which we numerically evaluate in
the main text for large lattices.

For the cubic 3D lattice, a third lattice number k should
be added. Dipole orientations alternate over j and k lattice
numbers. The evaluation of Eq. (A1) gives

ucub = 1

2

∑
(i, j,k)

(−1) j+k

⎡
⎣ 1 − 3 i2

(i2+ j2+k2 )

(i2 + j2 + k2)3/2

⎤
⎦, (A4)

which reduces to Eq. (6), as expected. The magnetic cohesion
of the other lattices was evaluated following the same method.
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