Long-term change of phytoplankton in Lake Kivu: The rise of the greens

Edouard Rugema1 | François Darchambeau2 | Hugo Sarmento3 | Maya Stoyneva-Gärtner4 | Maria Leitao5 | Wim Thiery6 | Adrien Latli7 | Jean-Pierre Descy2

1Symbion Power Lake Kivu Ltd, RSSB Headquarters, Kigali, Rwanda
2Unit of Chemical Oceanography, University of Liège, Liège, Belgium
3Departamento de Hidrobiologia (DHB), Universidade Federal de São Carlos, São Carlos, Brazil
4Department of Botany, Faculty of Biology, Sofia University ‘St Kliment Ohridski’, Sofia, Bulgaria
5Bureau d’études Bi-Eau, Angers, France
6Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium
7DEMN, Service Public de Wallonie, Gembloux, Belgium

Correspondence
Descy Jean-Pierre, Unit of Chemical Oceanography, University of Liège, Liège, Belgium.
Email: jpdescy@gmail.com

Funding information
Conselho Nacional de Desenvolvimento Científico e Tecnológico, Grant/Award Number: 309514/2017-7; Fundação Amazônia Paraense de Amparo à Pesquisa, Grant/Award Number: 2014/14139-3

Abstract
1. Phytoplankton time-series enable the observation of recurrent seasonal patterns on community composition, but drastic shifts in community structure are rarely observed, unless linked to anthropogenic impacts (e.g. changes in nutrient inputs). Here, we report a unique case of non-seasonal, multiannual regime shift of phytoplankton community structure in Lake Kivu, East Africa, and explore the possible causes for such changes.

2. We recorded phytoplankton biomass every 2 weeks over a period of 12 years (from 2002 to 2015). Phytoplankton community previously dominated by cyanobacteria and diatoms changed considerably from 2012, with a conspicuous rise in the biomass of green algae (from 3 to 33% lake-wide), and a decline of cryptophytes and cyanobacteria along with an increase in total chlorophyll concentration. Concomitantly, we observed significant differences in the mixed layer depth between the two periods, resulting from changes in the thermal gradient. The euphotic zone depth was also reduced in 2012–2015, probably from the higher phytoplankton biomass. Moreover, mean particulate nitrogen and phosphorus increased as well as the particulate N:P ratio.

3. Desmids (Cosmarium laeve) now dominate the mixolimnion, probably due to atelomixis, observed in high-frequency temperature measurements. We believe that decadal or multidecadal variability of climate on the Indian Ocean may be the reason for this regime shift in thermal stratification, with a strong impact in phytoplankton community structure.

4. In conclusion, our study demonstrates that tropical lakes may be subject to non-seasonal fluctuations that generate multiannual regime shifts. These regime shifts have probably never been reported previously because of the lack of long phytoplankton time-series in low latitudes.

KEYWORDS
atelomixis, climate variability, community structure, East Africa, tropical great lake
INTRODUCTION

As phytoplankton can respond quickly to changes in temperature, light, nutrient loading, and water column physical structure, the composition of the assemblage—both taxonomical and functional—may reveal natural and man-induced changes in these factors (Reynolds, 2006). There are well-documented examples of long-term monitoring of phytoplankton in temperate lakes, particularly for assessing effects of lake acidification (Ginn, Cumming, & Smol, 2007; Vrba et al., 2003), eutrophication or oligotrophication (e.g. Anneville, Ginot, Druart, & Angeli, 2002; Ruggiu, Morabito, Panzani, & Pugettli, 1998), or global warming (e.g. Sarmento, Amado, & Descy, 2013; Stenuit et al., 2007). The response at the level of individual cell populations can be fast (days to weeks) and reflect environmental or seasonal variations, but changes in assemblage composition resulting from a change in lake status (e.g. from a reduction of nutrient loading) occur at longer time scales (Reynolds, 1992). Therefore, years of continuous observations are necessary to tell apart changes related to significant environmental trends from stochastic or seasonal variations. Typically, decades of phytoplankton monitoring, using the same methods, are needed to assess those trends.

In tropical lakes, few studies based on phytoplankton surveys have been long enough to assess changes at a multi-annual scale. Most of the time, long-term surveys were based on measurements of chlorophyll a (Chla) concentration (i.e. an estimate of phytoplankton biomass), as a proxy for pelagic primary production, and gaps are often present in time series. For instance, records of Chla in Lake Tanganyika (Bergamino et al., 2010; Horion et al., 2010) have shown variations at seasonal and inter-annual scales, related to variations of the mixed layer depending on meteorological and climatic conditions, which determine water column processes in African Great Lakes (Nicholson, 1996; O’Reilly, Alin, Plisnier, Cohen, & McKee, 2003; MacIntyre, 2012; Tierney et al., 2010; Tierney, Smerdon, Anchukaitis, & Seager, 2013). However, the lack of continuity in records (Plisnier, Nshombo, Mgana, & Ntabimizi, 2018) hampers straightforward interpretation of changes involved and, too often, methodological differences between past and recent surveys further complicate data processing and interpretation. Therefore, studies on tropical lakes have mostly relied on paleolimnological approaches based on various sediment archives, such as fossil diatoms (Haberyan & Hecky, 1987) or phytoplankton pigments (Saunlner-Talbot et al., 2014), with a time resolution of decades to centuries.

In deep tropical lakes, phytoplankton composition responds primarily to the alternation of stratified conditions in the rainy season with the deep mixing that occurs in the dry season: the seasonal mixing event not only increases the supply of dissolved nutrients to the euphotic zone, but also results in a higher mixed layer (Zm); euphotic layer (Zeu) depth ratio (Sarmento, Isushima, & Descy, 2006). In these conditions, phytoplankton is subjected to potential light limitation, leading to diatom dominance (Reynolds, 2006). By contrast, in the shallow mixed layer of the rainy season, the lower Zm:Zeu ratio selects for high-light-adapted phytoplankton such as green algae and cyanobacteria. The trade-off between high light and nutrient limitation in the rainy season and low light and high nutrients during the dry season has been documented in classic studies in African lakes (e.g. Hecky & Kling, 1987; Kilham, Kilham, & Hecky, 1986) and is a key to understanding shifts in phytoplankton composition in these lakes. Resource ratios may also play a role in determining which species may be the most successful in given conditions of light and nutrient availability (Kilham et al., 1986).

Although it has not been used extensively so far, pigment-based analysis of phytoplankton composition may provide an adequate framework to relate community composition to environmental changes. Phytoplankton marker pigments, determined by high-performance liquid chromatography (HPLC) analysis, have been used for assessing biomass at the class level, with many applications in marine, estuarine, and freshwater environments (e.g. review in Sarmento & Descy, 2008). Estimating algal abundance from marker pigment relies on calculations using measured pigment concentrations and ratios of those markers to Chla (e.g. with CHEMTAX, Mackey, Mackey, Higgins, & Wright, 1996). As it is based on a fast, automatic and reliable analytical technique, the pigment approach has been largely used in oceanographic studies and monitoring programmes (Jeffrey, Mantoura, & Bjørnland, 1997), as well as in large lake studies (Descy et al., 2005; Fietz & Nicklisch, 2004; Fietz, Sturm, & Nicklisch, 2005; Sarmento et al., 2006). We carried out a long-term phytoplankton monitoring of the water column of Lake Kivu using this approach.

Lake Kivu is a great and deep (maximum depth of 489 m) meromictic lake of the East African Rift (Figure 1). It is located north of Lake Tanganyika, at 1463 m above sea level. In this lake, the mixolimnion (i.e. the mixed layer of a meromictic lake) alternates between periods of complete mixing down to maximum 65 m and periods of stratification, during which nutrients become depleted in the euphotic zone (Figure 2; Sarmento et al., 2006; Schmid & Wüst, 2012; Thiery, Martynov, et al., 2014; Thiery, Stepanenko, et al., 2014). The deepening of the mixed layer occurs during the dry season (June, July, August) and is primarily driven by the substantial decrease in atmospheric relative humidity during that period, which generates evaporative-driven cooling of near-surface waters, and secondly by the reduced incoming longwave radiation reaching the lake surface owing to lower cloudiness (Thiery, Martynov, et al., 2014). The strength of the stratification during the wet season varies from year to year, with notably weak stratification periods during the 2008 and 2009 wet seasons. Overall, the recent years have been marked by a slight reduction in stratification strength (Figure 2), possibly related to the transition from a wet to a drier period.

Whereas moderate to severe P-limitation of phytoplankton prevails in Lake Kivu during most of the year (Sarmento, Darchambeau, & Descy, 2012; Sarmento et al., 2009), N-limitation may occur in the stratified rainy season, as denitrification takes place within the oxic-anoxic transition zone (Liéro et al., 2012; Roland et al., 2018). Pelagic primary production in Lake Kivu exhibits substantial variation at the seasonal scale, but also between years (Sarmento et al., 2012), as shown by the variable height of the dry season Chla peak (Darchambeau, Sarmento, & Descy, 2014). Phytoplankton composition also varies seasonally in a predictable way, with diatoms...
being more abundant in the dry season, and cyanobacteria better developed in the rainy season (Sarmento et al., 2006, 2007). Given the remarkably low taxonomic diversity of phytoplankton in Lake Kivu, and the fact that there are few dominant species (Sarmento et al., 2007), there is a good correspondence between resolution at the class level based on marker pigments and resolution at genus/species level, that can be obtained with microscopy. For instance, variations of diatom biomass mostly reflect variation of abundance of needle-like *Nitzschia* and *Fragilaria*, and variations of cyanobacteria type 2 biomass depends on abundance of *Planktothrix* and *Raphidiopsis*. Similarly, green algae are essentially composed of populations of *Cosmarium laeve* (Sarmento et al., 2007) and of *Tetraedron minimum* (Stoyneva et al., 2012).

A phytoplankton biomass long-term monitoring (recorded over a period of 12 years, from 2002 to 2015) at the class level in Lake Kivu, allowed us to detect drastic changes in phytoplankton community structure. The main shift occurred from 2012, with a conspicuous rise in the biomass of green algae, paralleled by changes in the abundance of the other phytoplankton groups. The objective of this study is to report these changes and to examine possible explanations for them, based on the available environmental data and on the ecological strategies of the dominant taxa. Our main hypothesis was that phytoplankton responded primarily to changes in water column mixing dynamics.

2 | METHODS

The study sites were located in the northern basin (off Gisenyi 1.07°S, 29.23°E) and the eastern basin (off Kibuye 2.10°S, 29.20°E) of Lake Kivu, as well as in southern basin (at Ishungu) of (2.34°S, 28.98°E) (Figure 1). The Gisenyi and Kibuye sites are located in the deepest basin, where the exploitation of the methane present in large amounts in the deep waters has begun in the past years (for more information, see https://www.contourglobal.com/asset/kivuwatt). Part of the data were obtained in the framework of the “Biological Baseline of Lake Kivu” (Descy & Guillard, 2014), setup for monitoring the changes which may occur in the mixolimnion.
as a result of the gas exploitation (see Wüest, Jarc, Bürgmann, Pasche, & Schmid, 2012). In this paper, owing to the similarity of the limnological conditions, the data from Gisenyi and Kibuye sites were merged.

General physical and chemical characteristics of the lake water are described elsewhere (e.g., Borges, Abril, Delille, Descy, & Darchambeau, 2011; Descy et al., 2012; Sarmento et al., 2006; Schmid, Halbwachs, Wehrli, & Wüest, 2005). The lake is meromictic, with a salinity gradient located between 60 and 90 m depth, separating the top oxygenated layer—the mixolimnion or biozone from the deep anoxic waters extending down to 485 m at the deepest point. Limnological and planktological observations were made throughout the mixolimnion twice a month from March 2002 to November 2009, and monthly afterwards. The longest time series is from the Ishungu site (2002–2015), and that from the northern-eastern basin is somewhat shorter (2005–mid 2015). Similar techniques were used throughout the study period, with use of multiparameter probes (Hydrolab DS4, Yellow Springs Instrument 6600 V2 probe and Sea & Sun CTD M725 and 257 probes) for acquisition of vertical profiles of temperature, dissolved oxygen, pH, and conductivity in the mixolimnion, with casts down to 70 m depth. There was no systematical cross-calibration, but every probe was calibrated on the day of measurement, and sometimes two probes were used. The mixed layer depth, Zm, was determined at each occasion as the depth with the maximum downward temperature change per m, because salinity has a marginal effect on density gradient in the top 65 m (Schmid & Wüst, 2012). The depth of the euphotic zone (Zeu, the depth at which light is attenuated at 1% of subsurface PAR) was estimated from the vertical attenuation coefficient measured with Li-Cor surface and submersible sensors, and from Secchi depth using conversion coefficients, determined several times during the study period from simultaneous measurements (see e.g., Darchambeau et al., 2014).

Water samples were collected using a Van Dorn or Niskin 6-L bottle, at different depths, at 5 m intervals in the 0–20-m layer and at 10-m intervals in the 20–60-m layer. For each sampling depth, at least 3 L of water were filtered on Macherey-Nägel (Düren, Germany) GF5 filters (average retention capacity of 0.4 μm) on which pigment extraction was carried out in 90% HPLC-grade acetone, following Sarmento et al. (2006). In addition, 2 L of a pooled sample of the mixed layer were filtered on a pre-combusted GF5 filter for particulate carbon (C), nitrogen (N), and phosphorus (P) analyses. Filters were left to dry and then kept frozen until analysis. Those analyses of seston elemental composition were carried out from 2002 to 2008 using a Carlo Erba NA1500 elemental analyser for determining particulate C (POC) and particulate N (PON), and particulate P (POP) was measured after persulphate digestion. Molar C:N, C:P, and N:P ratios were used as indicators of phytoplankton nutrient status, as in Sarmento et al. (2009, 2012) and in Darchambeau et al. (2014). From 2012 to 2015, only PON and POP were measured, for the sites off Gisenyi and Kibuye, according to Valderrama (1981), so that only N:P ratios were available for comparison with the 2002–2015 period. However, a few seston analyses were performed by elemental analysis during the EAGLES project (Descy et al., 2015), allowing to obtain some C:N seston ratios in the lake off Gisenyi.

Phytoplankton biomass and composition were assessed throughout the study by determination of Chla and marker pigments by high-performance liquid chromatography. High-performance liquid chromatography analysis of phytoplankton extracts was carried out using the Wright et al. (1991) gradient elution method, with a Waters system comprising a photodiode array detector and a fluorescence detector. Calibration was made using commercial external standards (DHI, Denmark). For estimating phytoplankton abundance at the class level, pigment concentrations were processed with the CHEMTAX software (Mackey et al., 1996). Lake Kivu data processing followed a procedure similar to that of Descy et al. (2005), allowing estimating Chla biomass of green algae, Chrysophytes, diatoms, Cryptophytes, dinoflagellates, and cyanobacteria, taking into account variations of pigment ratios with season and depth. Phytoplankton biomass was expressed either as the mean over the whole mixolimnion (0–60 m), per unit volume (mg Chla/m³), or as mg Chla/m², by integrating the Chla measurements at the different sampled depths. Based on previous knowledge of the phytoplankton composition in Lake Kivu analysed using microscopy (Sarmento et al., 2007), the following phytoplankton groups were considered:

- Diatoms and chrysophytes, which have chlorophylls c and share fucoxanthin as main marker pigment; diatoms also have diadinoxanthin and diatoxanthin; due to analytical problems of the HPLC
technique (i.e. the incomplete separation of myxoxanthophyll and violaxanthin or diadinoxanthin), diatoms were not confidently distinguished from chrysophytes: these two classes were regrouped and treated as diatoms + chrysophytes.

- Green algae, which have chlorophyll b, lutein, neoxanthin, zeaxanthin, and violaxanthin
- Cyanobacteria type 1 (T1), which have zeaxanthin at high concentration
- Cyanobacteria type 2 (T2), which have echinenone and often aphanizophyll and/or myxoxanthophyll in addition to zeaxanthin
- Cryptophytes, with chlorophyll c, alloxanthin, and α–carotene
- Dinoflagellates, with chlorophyll c, peridinin, and diadinoxanthin

On some occasions, a supplementary 50-ml sample was preserved immediately after collection with Lugol’s solution and neutral formaldehyde (2–4% final concentration) for microscopic identification of main taxa, according to Sarmento et al. (2007). In addition, a monthly survey was carried out off Kibuye from November 2012 to April 2013, with collection of 1-L samples from 3 depths (−5, −20, −40 m), corresponding to the layers usually observed in Lake Kivu during stratification periods. After Lugol addition, these samples were left to settle for 24 hr and the sedimented material was resuspended in 100 ml lake water, and preserved with formaline and further microscope examination. Microscope examination was carried out by the Bi-Eau consultancy (Angers, France), using the Utermöhl technique (AFNOR 2006) for determining phytoplankton abundance and biovolume at the best achievable identification level. To estimate the bio-volumes, each taxon was assigned to a stereometrical form (Rott, 1981). For the main species, we used cylinder (with rounded or elliptical base), parallelepiped (with square or rectangular base), and revolution ellipsoid. Single measurements were done at light microscope with ×1,000 magnification and using the Olympus DPSoft program. Cell surface and volume were calculated using average dimensions. The surface:volume ratio (S/V) and the greatest axial linear dimension (m) were used for determination of primary phytoplankton life strategies (C, S, R, and transitional types - Grime (1979, 2001) and Reynolds (1988), summarised and completed by Olrik (1994) and Reynolds (2006).

2.1 | Continuous measurements at high resolution (lake logger data)

Mooring lines were installed on the two monitoring platforms located off Gisenyi: these lake loggers (Precision Measurement Engineering, USA) consisted of different sensors for continuous recording of temperature (with eight thermistors attached every 10 m from 0 to 70 m). The lake loggers allowed acquisition of high temporal resolution data (every 5 min) in the 2012–2014 period (Descy & Guillard, 2014) and generated a file with raw data every 6 hr; the data were used to assess the physical status of the top 70 m of the water column at high temporal resolution.

2.2 | Statistical analyses

Using the available limnological and planktological data, we constructed a data matrix containing 426 observations gathered at the three sampling sites, by averaging all variables between 0 and 20 m, i.e. approximately the euphotic zone. The limnological variables included in the data matrix were mixed layer depth (Zm), maximum temperature in the mixolimnion (Max_T), minimum temperature in the mixolimnion (Min_T), average temperature in the mixolimnion (T_avg), Delta_T (Max_T – Min_T), Schmidt stability index, Secchi depth (Secchi), depth of the euphotic zone (Zeu), Zm : Zeu ratio; when available, PON, POC, C:N molar ratio, POP, C:P molar ratio, N:P molar ratio. The planktological data were Chla and the biomass of main phytoplankton groups (expressed as μg Chla/L, as calculated with CHEMTAX), i.e. green algae, cryptophytes, cyanobacteria T1, cyanobacteria T2, dinoflagellates and diatoms (chrysophytes were summed up with diatoms, as the distinction of the two classes based on pigments was uncertain). We performed a one-way analysis of variance (ANOVA) to test for significant differences between two time periods (2002–2008 and 2012–2014) for the biotic variables measured. Normality of data and residuals were analysed with a Shapiro–Wilks test (Shapiro & Wilk, 1965).

Using the R-software (R 3.5 version, Development Core Team, 2010) and the ADE4 package (Chessel, Dufour, & Thioulouse, 2004), we carried out a factorial correspondence analysis on the phytoplankton data in order to examine changes of phytoplankton biomass and composition over the years. In addition, we determined the trends in the variation of abiotic (limnological data) and biotic parameters (planktological data) over the 2002–2014 period using generalised additive models (Fewster, Buckland, Siriwardena, Baillie, & Wilson, 2000). Variables were standardised by site for reducing potential spatial or methodological between-sites bias and highlighting global tendencies at the scale of the whole lake. Temporal trends were modelled as a smooth nonlinear function of time. Autocorrelation error was reduced by adding a residual autocorrelation structure, optimised by minimising the Akaike information criterion over several combinations of autoregressive parameters (Zuur, Ieno, Walker, Saveliev, & Smith, 2009). Finally, we carried a canonical correspondence analysis (CCA), a well-known multivariate gradient analysis with constrained ordination (Ter Braak, 1986), on the data from the deep basin, for which values of all variables were available, in order to identify the key environmental variables driving the biomass of the phytoplankton classes.

3 | RESULTS

The total phytoplankton biomass in the northern and eastern basins ranged from 10 to 224 mg Chla/m² with a mean of 90 ± 38.6 mg Chla/m² between 2005 and 2014. In the southern basin, the biomass ranged between 10 and 348.7 mg Chla/m² with a mean of 77.6 ± 38.9 mg Chla/m² between 2002 and 2014.
Two periods can be distinguished based on Chla and phytoplankton composition in the lake (Figures 3 and 4): in the 2002-2008 period, mean Chla concentration in the euphotic layer was 2.2 μg/L; cyanobacteria were the dominant group of phytoplankton, with close to 50% of Chla on average, while diatoms represented 25%, closely followed by cryptophytes (22% of Chla); green algae contributed a few percent. From 2012 to 2014, mean Chla was 2.8 μg/L and the composition changed markedly: diatoms and green algae increased, and cyanobacteria and cryptophytes decreased to <20% together, on average. Similar changes were observed at Ishungu: a decrease of cyanobacteria and cryptophytes was observed, paralleled by an increase in green algae, from 2% in 2002-2008 up to 30% of Chla in 2012-2014. Despite the large interannual variations of Chla concentration in Lake Kivu, a significant increase in Chla concentration (p < 0.001) was observed at all sites in the post-2012 data.

Microscopic analyses carried out on samples collected monthly off Kibuye showed that the green algae were represented mainly by the desmid *Cosmarium laeve*, which was the single highly dominant taxon among the green algae, followed by the coccal *Tetraëdron minimum* (normal and lemon-shaped; see Stoyneva et al., 2012). Figure 5 allows to compare the morphological parameters of the main phytoplankton taxa and to assess the ecological strategies. With their high S/V and high m and mS/V, the diatoms (*Nitzschia bacata* and *Fragilaria danica*) and the filamentous cyanobacteria (*Raphidiopsis curvispora*, *Planktolyngbya limnetica*, and *Planktolyngbya contorta*), can be considered as S strategists, i.e. stress-tolerant taxa. By contrast, with their medium-sized to small cells and their lower S/V, the different forms of *Cosmarium* (*C. laeve*, small and large, and *Cosmarium polygontum*) and of *Tetraëdron* seem to exploit a transitional S-R (see discussion) life-strategy (Figure 5, right panel).

3.1 Statistical analyses

The factorial correspondence analysis showed the interannual variation of phytoplankton composition, with a temporal gradient, discriminating the years dominated by cyanobacteria T2 (2002-2008) from the years dominated by green algae (2013-2014), with a transition period in 2012 (Figure 6).

Modelling phytoplankton group variations using generalised additive model (Figure 7) helped to better understand the change in abundance of the main phytoplankton groups. All groups exhibited large variations over time, except for cyanobacteria T1, which remained relatively constant, and of dinoflagellates, which were barely developed most of the time. Two groups, cyanobacteria T2 and cryptophytes, showed a decrease from 2011 to 2012 onward, whereas diatoms (+chrysophytes) and particularly green algae increased in this period (Figure 7). These changes were statistically significant (Table 1).

A similar trend analysis, carried out on the available limnological data (Figure 8), showed an increase of the depth of the mixed layer from 2012, which resulted from a decrease of the thermal gradient (ΔT) within the mixolimnion. This weaker thermal gradient mainly resulted from an increase in T_min (see Figure 8 and Table 2), while T_max decreased. A slight increasing trend was observed for Chla, with a corresponding decrease of the depth of the euphotic layer.

Both PON and POP increased in Lake Kivu between the 2003-2008 period and the 2012-2014 period (Figure 9). Despite greater variability in 2012-2014, the differences were statistically significant. Sestonic N:P ratios were also significantly different between the two periods (Figure 9), with a higher average N:P ratio in 2012-2014, suggesting greater P limitation, occurring essentially in the rainy season, with N:P reaching 80, exceeding the range reported by Sarmento et al. (2012). Deeper vertical mixing in the dry seasons 2013 and 2014 resulted in increased P availability, reflected in the lower N:P ratio (down to 12, i.e. similar to Sarmento et al.’s data). A few C:N seston ratios (n = 6) from 2012 to 2013 gave a mean of 10.1 ± 1.6, i.e. similar to that published by Sarmento et al. (2012), based on the 2002-2008 data.

The CCA performed on the data from the northern and eastern basin (Figure 10) showed that environmental variables explained

![Figure 3](image-url)
56.1% of the variance of the biomass of the phytoplankton classes, with Zm, Zm:Zeu, Delta_T, PON, and POP as main driving variables. The analysis separated well the 2005–2008 period, with higher water column stability (Schmidt stability index, Delta_T) favouring high biomass of cyanobacteria T2 and cryptophytes, and the 2012–2014 period, with higher mixed layer depth (Zm, Zm:Zeu), higher particulate nutrients (PON, POP) and higher green algae, cyanobacteria T1 and diatom biomass.

3.2 | Temperature data from the lake loggers

The examination of water column temperature time-series acquired at high temporal resolution (at 10 m intervals) in 2012–2014, suggests that mixing may have occurred on a daily basis down to 20 (−30) m depth, even in the rainy season. Figure 11 shows an example extracted from the lake logger database: in the 2 first weeks of January 2013, the top layers of the lake cooled at night, so that the
temperature gradient disappeared down to 30 m, potentially allowing vertical mixing to occur. During the day, water temperature went up in the upper layers, generating a temporary stratification. Hence, the lake mixolimnion may have experienced a partial mixing every night, down to 20 or 30 m, depending on the cooling extent.

4 | DISCUSSION

Here, we report substantial changes on the phytoplankton assemblage of Lake Kivu related with non-seasonal multiannual changes on environmental conditions. Cryptophytes and cyanobacteria declined (from 25 to 7% lake-wide) in the period 2012–2014 in comparison with 2002–2008, and there was a dramatic rise of green algae (from 3 to 33% lake-wide), leading to an increase in Chla concentration. In parallel, the two periods also differed in the mixed layer depth, resulting from changes in the thermal gradient. The euphotic zone depth was reduced in 2012–2014, probably from the higher phytoplankton biomass. Moreover, the mean particulate N, P, and N:P ratio were greater in 2012–2014 than in 2002–2008, suggesting changes in nutrient supply resulting in greater P limitation.

The main objective of this study was to explain these long-term changes, which occurred at the scale of the whole lake. The contrasting survival strategies of the main phytoplankton groups point to a change in the lake’s mixing dynamics of the mixolimnion, as evidenced by the trends we identified in the environmental data. Diatoms and non-motile green algae such as those present in Lake Kivu require vertical mixing to remain in suspension (Reynolds, 2006). This is reflected, for instance, in the dry season peaks of diatoms reported from studies of phytoplankton in large, deep tropical lakes (Descy et al., 2005; Hecky & Kling, 1987; Sarmento et al., 2006, 2007, 2012). Conversely, cyanobacteria T2 correspond in Lake Kivu to filamentous forms, some with gas vesicles (Sarmento et al., 2012), making them able to remain in suspension in the rainy season conditions, when the mixolimnion is stratified. The fact that some of them can, through N\textsubscript{2}-fixation, withstand a reduced N supply resulting from increased denitrification that occurs at the oxic–anoxic interface in stratified conditions (Roland et al., 2018) may also have contributed to their success in the period 2002–2008.

This reasoning leads to the hypothesis that the change in phytoplankton composition may have also been driven by a change in nutrient cycling, as evidenced by the significant increase of PON, POP, and the N:P ratio. The fact that both PON and POP increased may be related to the increase in green algae and diatom biomass, as suggested by the CCA results. Regarding changes in dissolved nutrients concentration, few data are available, as SRP and DIN are often below detection level in the euphotic zone of the lake. Sarmento et al. (2006) reported mean SRP between 0.44 μM (rainy season) and 0.75 μM (dry season), and mean DIN between 2.42 (rainy season) and 3.29 μM (dry season). A few recent data for 2012–2014 reported
0.49 μM for DIN in the surface waters (0–30 m; Roland et al., 2018), suggesting a substantial decrease of DIN, whereas C:N particulate ratios did not change. There are unfortunately no reliable values for SRP, nor in C:P in the seston after Sarmento et al.’s study. Whether the DIN decrease is a cause or an effect of the recent changes in phytoplankton biomass is uncertain. We think it more likely that the increase in phytoplankton biomass resulted in a higher nutrient demand, reflected by the higher N and P concentration in the seston, and drove dissolved nutrient concentrations down. Nevertheless, it cannot be ruled out that these lower concentrations of DIN resulted also from other changes in the nutrient cycling processes, which are complex, depending on upward fluxes from the deep water (Pasche, Muvundja, Schmid, Wüest, & Müller, 2012) and from processes (e.g. nitrification, denitrification, anaerobic methane oxidation; see Roland et al., 2018) occurring within the anoxic–oxic interface of the lake and in its lower mixolimnion.

Overall, greater P limitation might have favoured species with comparatively low nutrient requirements (Kelham et al., 1986), as thin, needle-like diatoms such as Fragilaria danica and Nitzschia bacata (Sarmento et al., 2007) and possibly Cosmarium laeve, which is by far the most abundant species presently in Lake Kivu. There are few data on the nutrient and other ecological requirements of this particular species, which is known as widespread and cosmopolitan in different waters of the world—from oligotrophic to eutrophic with high mineralisation and wide range of pH (e.g. Brook, Williamson, & John, 2011; Coesel & Meesters, 2007; Kogan & Gorbanj, 1964; Palamar-Molvintseva, 1982; Sharf, 1985). The effect of underwater light on desmids is also underexplored with contrasting data on species from oligo- and eutrophic waters (review in Barbosa, Barbosa, Araujo, & Bicudo, 2013). However, the main distribution of Cosmarium laeve in small shallow water bodies, including ditches, cattle troughs, municipality fountains, and sulfur springs (e.g. Brook et al., 2011; Hindák & Hindáková, 1994), may indicate its preference to high-light conditions, which are prevailing in the clear water
column of the tropical, oligotrophic Lake Kivu. Accordingly, the

genus Cosmarium is considered, among the green algae, as tolerant
to chronically oligotrophic conditions (Reynolds, 2006, table 5.2).

According to the S/V and mS/V this desmid seems to exploit a
transitional S-R (i.e. stress-tolerant vs. ruderals, see the review by
Olrik, 1994) life-strategy, which includes low sensitivity to grazing.
Lake Tanganyika, or coenobial and colonial forms, such as is quite likely that the medium size of year round. This selection favours large unicells, as selection in large tropical lakes, where metazooplankton is present all (2012) emphasised the importance of grazing on phytoplankton se ‐

ular, supports the development of S‐strategists (Olrik, 1994), the below. Since nutrient deficiency, and strong P‐limitation in partic‐

It's low S/V ratio along with its thick cell wall implies high sinking rates, which is why atelomixis is key to keep them in suspension in the water column (Barbosa & Padisák, 2002), as discussed in detail below. Since nutrient deficiency, and strong P‐limitation in partic‐

its low S/V ratio along with its thick cell wall implies high sinking rates, which is why atelomixis is key to keep them in suspension in the water column (Barbosa & Padisák, 2002), as discussed in detail below. Since nutrient deficiency, and strong P‐limitation in partic‐

The hypothesis proposed to explain the success of non‐motile phytoplankton taxa in Lake Kivu mixolimnion is supported by the increasing trend the mixed layer depth, which obviously favoured diatoms and non‐motile green algae, at the expense of filamentous cyanobacteria and cryptophytes, which showed a strong decline in the recent years, probably as a result of the reduction of seasonal

Table 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Temporal trend</th>
<th>Adjusted R^2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zm</td>
<td>↗</td>
<td>0.56</td>
<td><0.001</td>
</tr>
<tr>
<td>Zeu</td>
<td>↘</td>
<td>0.20</td>
<td>0.003</td>
</tr>
<tr>
<td>Chla</td>
<td>↗</td>
<td>0.15</td>
<td><0.001</td>
</tr>
<tr>
<td>Tmax</td>
<td>↘</td>
<td>0.50</td>
<td><0.001</td>
</tr>
<tr>
<td>Tmin</td>
<td>↗</td>
<td>0.28</td>
<td><0.001</td>
</tr>
<tr>
<td>Delta T</td>
<td>↘</td>
<td>0.48</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Chla, chlorophyll a concentration; DeltaT, Tmax – Tmin; Tmax, maximal temperature in the mixolimnion; Tmin, minimal temperature in the mixolimnion; Zeu, euphotic layer thickness; Zm, depth of the mixed layer.

FIGURE 9 Box-plots of natural logarithm of particulate N (PON), particulate P (POP), and N:P molar ratios in the seston observed in all study sites, from 2003 to 2014. All data from the different basins have been merged. Dark lines represent the median and the middle boxes encompass 50% of the observations from lower (25%) to upper (75%) quartiles. The upper and lower whiskers describe, respectively, the extreme quartiles. Outliers are displayed as black circles. Stars indicate statistical significance at $p < 0.05$ (*), $p < 0.01$ (**) and $p < 0.001$ (***) tested with an ANOVA.
seasonally and in most cases supporting much higher phytoplankton diversity and biomass. Lake Kivu is probably a rare example of atelomeric lake. More interestingly, in many of those lakes the same algal group was very abundant: desmids, despite their assumed high specific sedimentation rate, remained in the plankton, due to the partial mixing of the water column at night. Therefore, we reinforce the hypothesis (see Barbosa & Padisák, 2002) that atelomixis may be a key process in low latitude lakes, essential to understand phytoplankton dynamics, and largely overlooked because of the need of high-frequency measurements to be detected.

The changes reported here overcome seasonal fluctuations in phytoplankton composition. There was a pronounced non-seasonal shift on core phytoplankton community structure that can only be explained by a climate variability over East Africa that operates at a decadal–multidecadal scale (Tierney et al., 2013). Apparently, these multiannual regime shifts are stronger than seasonal fluctuations of community structure, and it is likely that green algae were at times abundant in Lake Kivu in the past. For instance, Hecky and Kling (1987) reported several Cosmarium amongst the most abundant species in samples from March 1972. Additional evidence of variation of phytoplankton assemblage structure in the past is provided by data on fossil pigments in the sediment, where lutein, a carotenoid specific to green algae, shows great variations over the depth of a sediment core (Descy et al., 2015). Lutein concentration was low in surface sediments, whereas it was quite high in deeper strata, where diatoms were also more abundant.

Tropical lakes, given their usually weak thermal gradient, respond quickly in changes in atmospheric conditions that may be driven by climate variability (e.g. Nicholson, 1996). This may be particularly true for Lake Kivu, given its location at relatively high altitude, which determines a mean surface temperature of c. 24°C and a thermal gradient in the mixolimnion in the rainy season of c. 2°C (Schmid & Wüest, 2012). Hence, the intensity of vertical mixing shows a great sensitivity to meteorological conditions, particularly in the dry season (Schmid & Wüest, 2012) but also to those of the preceding rainy season (Darchambeau et al., 2013). This results in a great interannual variability of the intensity of the dry season mixing, which drives phytoplankton biomass and primary production (Darchambeau et al., 2014). Climate variability occurring at a decadal–multidecadal scale in East Africa (Tierney et al., 2013) is influenced by teleconnections with both Indian and Pacific Ocean sea surface temperatures. Correspondingly, for Lake Kivu, Darchambeau et al. (2013) have observed statistically highly significant correlations between intra- and inter-annual variations of water column stability, phytoplankton biomass and tropical ocean climate indexes, including western tropical Indian Ocean sea surface temperature anomaly index, dipole mode index, Southern Ocean Index, and El Niño–Southern Oscillation. It is very likely that the changes we report for Lake Kivu in mixed layer depth, decrease of the temperature gradient and phytoplankton assemblage structure are driven by the same large-scale variability. The lack of high-quality meteorological data for the 2002–2008 period makes it impossible to provide evidence for a change of weather pattern in the Lake Kivu region. We can just speculate that drier, clear sky conditions at night induced greater energy loss (longwave radiative cooling), allowing deeper mixing. This would be consistent with the slight reduction in stratification strength (Figure 2), possibly related to the transition from a wet to a drier period.

Finally, only long-term surveys over many years can capture the kind of variability, inducing regime shifts depending on large scale climate variation, we observed in a tropical large lake. A study covering a few years would have shown that the pelagic zone of Lake Kivu was dominated by cyanobacteria and diatoms, with very few green algae (Sarmento et al., 2006), contrasting both with previous reports (Hecky & Kling, 1987) and with the present situation. Moreover, a survey based only on Chla measurements would have shown a modest recent increase of phytoplankton biomass, which might have been interpreted as the result of nutrient enrichment, possibly from changes in fluxes from the deep waters to the mixolimnion, or from increasing inputs from the watershed. Only more detailed data including phytoplankton community structure allowed us to point out the effects of a change in the water column mixing pattern. Similar shifts in phytoplankton community structure might be expected in other East African Great Lakes, but they can only be detected if long-term limnological and planktological data (or paleoproxies) are available. This study also allows to insist that high-quality limnological, planktological, and meteorological data are needed for the monitoring, conservation and management of the African inland waters (Robarts & Zohary, 2018), which provide key resources for the local populations.
ACKNOWLEDGMENTS

The data used in this study, originating from different projects supported by CUD (Coopération Universitaire pour le Développement, FRS-FNRS (Fonds National de la Recherche Scientifique), CTB (Coopération Technique Belge), and BELSPO (Belgian Scientific Policy Office), were gathered during the EAGLES project, supported by BELSPO (Belgian Scientific Policy Office; www.belspo.be) under the Science for Sustainable Development (contract SD/AR/02A). The collaboration with the teams from ISP Bukavu and University of Rwanda was invaluable. H.S.’s work was supported by CNPq (grant 309514/2017-7) and FAPESP (process 2014/14139-3). The authors are grateful to the editor of FWB and to one referee, who both made constructive comments that helped improve the manuscript.

ORCID

Jean-Pierre Descy https://orcid.org/0000-0003-1649-7800

REFERENCES
