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Abstract. This paper describes the first use of aerial observations by a drone as an additionalmeans for choosing sampling
points during field studies of cyanobacterial harmful algal blooms (CyanoHABs) in selected Bulgarian waterbodies and the
use of HPLC analysis of marker pigments for the fast determination of phytoplankton composition and biomass. The

selection of waterbodies was based on the authors’ personal expertise and data collected over a 25-year period. In all sites
chosen by drone, there were high levels of cyanobacteria and cyanotoxins were present: microcystins (MC-LR, MC-RR,
MC-YR in Durankulak Lake and MC-LR and MC-RR in the Sinyata Reka Reservoir), cylindrospermopsin (in the Vaya
Lake and in the Mandra Reservoir) and saxitoxins (in Durankulak Lake). The finding of cylindrospermopsin is the first in

Bulgaria, the detection of saxitoxins is the first for Durankulak Lake and the microcystins records are the first for Sinyata
Reka Reservoir. Considering the high total number of wetlands in Bulgaria, many of which are lowland, small and shallow
and therefore vulnerable to CyanoHABs, we recommend further use of drones and HPLC in monitoring, which should

speed up detection and reduce sampling efforts while enabling valuable information to be gathered.
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saxitoxins.
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Introduction

The phylum Cyanoprokaryota (Cyanobacteria), known also as
blue–green algae, represents a group of peculiar prokaryotic

phototrophs without developed plastids that are widespread in
all types of aquatic and aeroterrestrial habitats (Graham et al.

2009; Whitton and Potts 2012). Some cyanoprokaryotes are

hazardous, causing environmental and human health problems
during their mass development, which is commonly referred to
as a blooms (Paerl 2001; Merel et al. 2013). Their negative

effects are due mostly to the production of strain-specific, gene-
controlled toxic metabolites (cyanotoxins), which have adverse
acute or chronic health effects on mammals (including humans)
and other organisms (including plants; Codd et al. 1989, 1999,

2005a, 2005b; Carmichael 1994; Codd 1995; World Health
Organization 1998; Chorus and Bartram 1999; Maršálek et al.

2000; Meriluoto and Codd 2005; Mitrovic et al. 2005; Metcalf

and Codd 2012; Merel et al. 2013;Walker 2015; Liyanage et al.

2016). Therefore, the common term ‘harmful algal blooms’
(HABs) is used for blooms dominated by cyanoprokaryotes
(abbreviated as CyanoHABs, C-HBs or cHAbs; e.g. Paerl et al.

2011; Carmichael and Boyer 2016). These blooms are perceived
as one of the most dangerous threats for our future, ironically
referred to as the ‘blue–green future’ (Elliott 2012).

Despite this general knowledge, which has high public
recognition, and despite considerable advances in the detection
and analysis of cyanotoxins, with vast amounts of data

collected, numerous problems still remain. A lot of work has
to be done to discover and better understand the taxonomy
and biology of different causative agents, toxins and toxic
effects, toxin cell quotas, all driving forces, risk assessments

and the socioeconomic and ecological costs of CyanoHABs,
which are largely unmeasured (e.g. Roelke and Buyukates
2001; Van Dolah et al. 2001; Mowe et al. 2015; Carmichael

and Boyer 2016).
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At the same time, the scientific tools, devices and methods
used in CyanoHAB studies are constantly improving. HPLC

determination of marker pigments is a useful tool for the rapid
assessment of phytoplankton biomass and composition at the
phylum and class levels (e.g. Jeffrey et al. 1997; Wright and

Jeffrey 2006). Originally developed in marine studies, HPLC
determination of marker pigments has been successfully used in
studies of estuaries (e.g. Paerl et al. 2003) and fresh waters, in

ecological studies (e.g. Descy et al. 2000; Schlüter et al. 2006)
and, in combination with microscopic assessment of dominant
taxa and determination of functional groups (Reynolds et al.

2002), to assess lake status (Sarmento and Descy 2008) and

estimate cyanobacterial biomass (Descy 2017). An example of
the successful application of the pigment technique for the
quantification of cyanoprokaryotes and cyanobacteria can be

found in Van Wichelen et al. (2010), where cyanobacterial
contribution as determined by HPLCwith CHEMTAX software
(CSIRO Marine Laboratories, Hobart, Tas., Australia; Mackey

et al. 1996) waswell correlatedwithMicrocystis spp. biomass in
a hypertrophic lake. Recently, studies of CyanoHABs, as well
as the monitoring and removal and wetland assessments of
CyanoHABs, have made use of available optical remote sens-

ing, geographic information system (GIS)-based methods and
modern field sampling devices (e.g. Gons et al. 2005; Williams
2014; Boon et al. 2016; Jung et al. 2017; Ragueno et al. 2017).

However, no single method seems sufficient for the accurate
monitoring of blooms. It is broadly accepted that all approaches
need to be tailored for specific waterbodies usingmethods based

on economic feasibility, speed, sensitivity and field applicabil-
ity, with an emphasis on early-warning systems for the detection
of toxigenic algal populations (Codd et al. 2005b; Srivastava

et al. 2013). Beyond doubt, the timing and speed of the
invention, development and application of these techniques
differs and is primarily related to the economic development
of the affected countries.

Bulgaria is an Eastern European country with a temperate
climate, positioned in a biodiversity hot spot of the Balkan
peninsula, with numerous waterbodies, including important

drinking water reservoirs, recreational sites and protected areas
(Michev and Stoyneva 2007). Although Bulgaria has a high
number of waterbodies (,8900), they are small and their surface

area of,112 000 ha covers less than 0.1% of the entire country
(Michev and Stoyneva 2007). The waterbodies in Bulgaria are
situated primarily in the lowlands (Michev and Stoyneva 2007).
Most are shallow and therefore quite vulnerable to human

impact caused primarily by strong agricultural activities in the
country; 340 are included in the Red List of Bulgarian wetlands
(Michev and Stoyneva 2007). Algological studies in Bulgaria

started at the end of 19th century (Petkoff 1898) and, since the
first decades of the 20th century, blooms of blue–green algae
were identified in different waterbodies with suggestions as to

their toxic character (Stoyneva 2014; Descy et al. 2018; Dimi-
trova et al. 2018 and references therein). Since the beginning of
the 21st century, 61 of the 115 waterbodies studied have been

found to be susceptible to CyanoHABs, withmore than 42 toxin-
producing taxa found, in addition to the detection of micro-
cystins, nodularins and saxitoxins by HPLC, ELISA and cyto-
toxicological tests (Stoyneva-Gärtner et al. 2017; Descy et al.

2018). All these results were based on standard phytoplankton

sampling and conventional microscopy, and indicated the need
for further permanent monitoring and studies based on modern

sampling and research methods (Stoyneva-Gärtner et al. 2017;
Descy et al. 2018). Therefore, the aim of the present studywas to
use aerial observations from a drone equipped with a camera as

an additional way of choosing sampling sites during field studies
of CyanoHABs in Bulgarian inland waters, in combination with
HPLC analysis of marker pigments for fast determination of

phytoplankton.

Materials and methods

The study was conducted from 20 to 27 June 2018 in nine
shallow (mean depth 0.5–2 m) lowland waterbodies, situated in

central and eastern Bulgaria (Fig. 1; Table 1). This early-
summer period was chosen because of an atypical extremely
dry and warm spring in the country (with temperatures up to
318C in April and May). However, unexpectedly, the sampling

days were preceded by strong rainfalls and floods along the
Black Sea coast. The waterbodies and the main sampling sites
were chosen according to all results from previous studies,

which indicated a threat of CyanoHABs, as summarised by
Stoyneva-Gärtner et al. (2017) andDescy et al. (2018) and based
on 25 years of expertise of the authors in studies on phyto-

plankton and cyanotoxins in most of these waterbodies
(Stoyneva 2000a, 2000b, 2003, 2014, 2016; Pavlova et al. 2006,
2007, 2014; Dimitrova et al. 2014a, 2014b; Stoyneva et al.

2015; Stoyneva-Gärtner et al. 2017). Detailed descriptions of
the morphometry, historical development, use, conservation
status and biodiversity of each of the waterbodies are provided
in the Database of Bulgarian wetlands in the Inventory of

Bulgarian wetlands and their biodiversity (Michev and
Stoyneva 2007). Table 1 provides the unique inventory number
for each waterbody from this database (IBWXXXX).

After reaching the target site at the shore of the chosen
waterbody, before sampling a drone equippedwith a camerawas
sent to observe and document the whole waterbody and possible

hot spots indicated by colour differences. The drone used was
DJI Mavic Pro (Model M1P GL200A; SZ DJI Technology,
Shenzhen, PR China). The records were stored as photographs
and videos. Decisions were made on the basis of aerial photo-

graphs obtained by remote sensing without any attempt to
correct data for surface reflection etc. Spots or areas of different
colour were chosen for sampling (Fig. 2) or, in case of visible

water homogeneity, sampling was done at the same sites as in
previous studies (Stoyneva 2000a, 2000b, 2003, 2014; Pavlova
et al. 2006, 2007, 2013, 2014, 2015; Dimitrova et al. 2014a,

2014b; Stoyneva et al. 2015; Stoyneva-Gärtner et al. 2017). All
sampling sites were reached by inflatable boat, with engine and
oars, used according to site characteristics.

Water transparency was measured using a Secchi disc
(in accordance with the requirements of Bulgarian monitoring
legislation: State Order for characterisation of the surface
waters of the Minister of Environment and Waters of Bulgaria

N 4/14.09.2012). The site coordinates, altitude, water tempera-
ture, pH, dissolved oxygen (DO), total dissolved solids (TDS)
and conductivity were measured in situ using an Aquameter

AM-200 and Aquaprobe AP-2000 (AquareadWaterMonitoring
Instruments, Broadstairs, UK).
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Total nitrogen (TN) and total phosphorus (TP) were mea-
sured ex situ using an Aqualytic AL410 Photometer from

(AQUALYTIC, Dortmund, Germany). The TN : TP ratio was
used to assess nutrient limitation according to Forsberg et al.

(1978) and Overbeck (1988), where values above 12 indicate
P limitation, values below 7 indicate N limitation and values

between 7 and 12 indicate that either of the nutrients may be
limiting.

Following the basic guidelines for the detection and moni-

toring of toxic cyanobacteria (Salmaso et al. 2017), HPLC
analysis was used to estimate biomass by marker pigment
analysis, as described in detail by Descy (2017, SOP5). Water

samples were filtered through Macherey-Nagel GF5 filters
(porosity 0.7 mm, Macherey-Nagel GmbH & Co. KG, Düren,
Germany) and placed in 8 mL of 90% acetone (HPLC grade)

in centrifugation tubes. For pigment extraction, samples
were subjected to two 15-min periods of sonication (in a
sonication bath containingmelting ice) separated by overnight
incubation at 48C. Pigments were analysed using a Waters

(Milford, MA, USA) HPLC system equipped with diode array
detection. Calibration was made using commercial external

standards of carotenoids and chlorophylls (DHI, Hoersholm,
Denmark). Chromatograms were processed and quantified

using Empower software (Sean O’Sullivan, Otago University,
Auckland, New Zealand) and pigment concentrations were
processed using CHEMTAX software (CSIRO Marine
Laboratories; Mackey et al. 1996), enabling estimation of

the contribution of phytoplankton classes and phyla to chloro-
phyll (Chl)-a. Data processing followed a procedure similar
to that of Sarmento and Descy (2008), enabling estimation

of the relative proportion of green algae, chrysophytes,
diatoms, cryptophytes, dinoflagellates and cyanoprokaryotes
or cyanobacteria in the biomass, expressed per unit volume

(mg Chl-a L�l). These taxonomic groups were separated
according to the pigments, indicated in the initial ratio matrix
(Table 2) used in the CHEMTAX processing, similar to that of

SOP5 (Descy 2017).
Total Chl-awas used as a proxy of total algal biomass in the

evaluation of trophic status according to the Open-Boundary
System of the Organization for Economic Cooperation and

Development (Vollenweider and Kerekes 1982; Vollenweider
1993).
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Fig. 1. Map of Bulgaria showing the sampling sites (modified after http://www.ginkgomaps.com, accessed 28 September 2018).
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A principal components analysis (PCA) was run using
Statistica 10 (StatSoft Inc., Tulsa, OK, USA) to examine the

relationships among limnological and phytoplankton variables
and to establish a classification of the lakes according to the
main environmental gradient.

For detection of microcystins, nodularins, saxitoxins and
cylindrospermopsins, the recommendations of Ballot et al.

(2017), Catherine et al. (2017) and Kokociński et al. (2017a)

were followed. Owing to possible variations in methods, more
details are provided below, with a note that themethods used are
completely compatible with those from our previous studies (for
details, see references in Stoyneva-Gärtner et al. 2017). For

microcystin and nodularin determination, stored water samples
were frozen and thawed three times to achieve cell lysis. Next,
samples were filtered through 0.45-mm nylon membrane filters

(Alltech Associates Inc., Deerfield, IL, USA). Microcystins and
nodularin were extracted from water samples by solid-phase
extraction with Empore Extraction Disks C-18 (Varian,

Darmstadt, Germany). Toxins were eluted with methanol.
Eluates were dried by a gentle stream of nitrogen, redissolved
in 500 mL of 50% methanol (v/v), filtered through 0.22-mm
polytetrafluoroethylene (PTFE) syringe filters (ALBET

LabScience, Dassel, Germany) and analysed by HPLC accord-
ing to ISO 20179:2005 (International Organization for Stan-
dardization 2005).

The HPLC system for quantitative and qualitative analyses
included an Agilent 1200 Series coupled with a diode array
detector (DAD; Agilent Technologies, Santa Clara, CA, USA).

Toxins were analysed on a Supelcosil ABZþPlus column
(150 � 4.6 mm, 5 mm; Supelco, Inc., Bellefonte, PA, USA).
The binary gradient of the mobile phase consisted of

Milli-Q water þ 0.1% trifluoroacetic acid (TFA) (A) and
acetonitrile þ 0.1% TFA (B), with a linear increase from 20%
B at 0 min to 46% B at 25 min and stop time at 30 min; the flow
rate was 1mLmin�1 and samples were run at temperature 258C.
Chromatograms were recorded at 238 nm and toxins were
identified by the retention time and characteristic ultraviolet
(UV) absorption spectra from 200 to 300 nm.

Purified microcystins MC-LR, MC-RR, MC-YR and
nodularin (Abraxis, Inc., Warminster, PA, USA) were used as
external standards.

Cylindrospermopsin and saxitoxins were detected using
specific antibodies in stored frozen water samples by
ELISA. Cylindrospermopsin, when present in a sample, and a
horseradish peroxidase (HRP)-conjugated cylindrospermopsin

analogue compete for the binding sites of rabbit anti-
cylindrospermopsin antibodies in solution. The anti-
cylindrospermopsin antibodies are then bound by a secondary

antibody (goat anti-rabbit) immobilised on the wells of the
microtitre plate. Saxitoxin, when present in a sample, and a
saxitoxin–enzyme conjugate compete for the binding sites

of rabbit anti-saxitoxin antibodies in solution. The saxitoxin
antibodies are then bound by a secondary antibody (sheep
anti-rabbit) immobilised on the plate. After a washing step

and the addition of substrate solution, a colour signal (blue) is
generated. The intensity of the blue colour is inversely propor-
tional to the concentration of cylindrospermopsin or saxitoxins
present in the sample. The colour reaction is stopped after a

specified time and the colour is evaluated using an ELISA
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reader. The concentrations of the samples are determined by
interpolation using a standard curve constructed for each run.

For determination of cylindrospermopsin and saxitoxin concen-
trations in water samples, commercially available ELISA kits
were used (Saxitoxin (PSP) ELISA, Microtiter Plate; Abraxis)

in combination with a microplate reader (5060-006; LKB,
Vienna, Austria).

Results

During the field trip, 17 sites from nine shallow lowland
waterbodies were sampled and their main environmental char-
acteristics were measured (Fig. 1; Table 1). Based on drone

observations of the water surface and colour, four sites with

visible coloured spots were chosen for targeted sampling of
CyanoHABs: Sinyata Reka 1, Vaya 1, Vaya 3 and Durankulak 3

(Fig. 2). The Mandra 2 site could be tentatively added to this
category because of the strong wind that started blowing
approximately 1 h before its sampling. The wind caused water

mixing in the shallowMandra Reservoir (up to 2m at Sampling
sites 1–3), when the Mandra 1 site was sampled (in accordance
with our previous studies - Stoyneva 2014, 2016; Stoyneva
et al. 2015; Stoyneva-Gärtner et al. 2017) and the use of a drone

was impossible. After the wind stopped, the drone was sent
over Mandra 2 and Mandra 3 sites. A slight change in water
colour with some tiny greenish glares was seen only at the

Mandra 2 site (Fig. 2e). A difference in water colour was

(a) (b) (c)

(d ) (e) (f )

Fig. 2. Aerial photographs taken by drones of some of the Bulgarian water bodies studied (June 2018): (a) Site 1 in Sinyata Reka Reservoir; (b) Site 2 in

Sinyata Reka Reservoir; (c) Site 1 of Vaya Lake; (d) Site 3 of Vaya Lake; (e) Site 2 of Mandra Reservoir; ( f) Site 3 of Durankulak Lake, showing the

minibus parked near the small quay used to access the sampling site.

Table 2. Initial ratio matrix for determination of phytoplankton classes biomass (lg chlorophyll-a L21) using CHEMTAX

The values are, for each phytoplankton class, the concentration of each pigment to chlorophyll a (chl_a); peri, peridinin; fuco, fucoxanthin; neo, neoxanthin;

myxo, myxoxanthophyll; viol, violaxanthin; ddx, diatoxanthin þ diadinoxanthin; allo, alloxanthin; lut, lutein; zea, zeaxanthin; echi, echinenone; acar,

a-carotene; chl_c, chlorophyll-c; chl_b, chlorophyll-b

Pigment

Class peri fuco neo myxo viol ddx allo lut zea echi chl_c chl_b chl_a

chlorophytes 0.000 0.000 0.033 0.000 0.030 0.000 0.000 0.174 0.023 0.000 0.000 0.273 1.000

chrysophytes 0.000 0.300 0.000 0.000 0.150 0.000 0.000 0.000 0.000 0.000 0.030 0.000 1.000

cryptophytes 0.000 0.000 0.000 0.000 0.000 0.000 0.396 0.000 0.000 0.000 0.100 0.000 1.000

cyanobacteria_T1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.109 0.000 0.000 0.000 1.000

cyanobacteria_T2 0.000 0.000 0.000 0.150 0.000 0.000 0.000 0.000 0.043 0.095 0.000 0.000 1.000

diatoms 0.000 0.563 0.000 0.000 0.000 0.129 0.000 0.000 0.000 0.000 0.200 0.000 1.000

dinoflagellates 0.629 0.000 0.000 0.000 0.000 0.225 0.000 0.000 0.000 0.000 0.150 0.000 1.000

euglenophytes 0.000 0.000 0.030 0.000 0.000 0.450 0.000 0.000 0.000 0.000 0.000 0.200 1.000
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visible to the naked eye from the shore at the Durankulak 2 site

(also sampled in our previous studies, cited above) without
need for a drone.

HPLC data on pigment markers indicate that the phytoplank-

ton of the studied sites primarily comprised cyanoprokaryotes,
diatoms and green algae, with a lower contribution of chryso-
phytes, cryptophytes, euglenophytes and dinoflagellates (Fig. 3).

Phytoplankton composition and abundance varied between
the waterbodies studied and between the different sites (Fig. 4).
Based on the Chl-a concentration, the Poroy and Aheloy

reservoirs and the Shabla and Ezerets lakes were eutrophic
(10–25 mg L�l Chl-a) and all other waterbodies were hypertro-
phic (.25mgL�l Chl-a), with highest phytoplankton abundance
in Sinyata Reka, Vaya, Mandra and Durankulak (Fig. 4). The

contribution of Cyanoprokaryota or Cyanobacteria at each site
showed a similar distribution pattern to that seen for the water-
bodies, being highest in Sinyata Reka Reservoir and lowest in

Shabla and Ezerets lakes (Fig. 4). At all sites chosen by drone,
and at the Durankulak 2 site, the contribution of both Chl-a
and cyanoprokaryotes was higher compared with the other sites

(Fig. 4).
TN ranged between 2.8 and 5.4 mg L�1 and varied slightly

between the sites studied in the same waterbody (Table 1). TP

ranged between 0.1 and 2.5 mg L�1 (Table 1). There was
considerable variation in TP values between the waterbodies
studied, but only slight variations between different sites in the
same waterbody (Table 1).

The TN : TP ratios (Table 1) indicated strong N limitation at
almost all sites studied (values between 1.8 and 5.6), with the
exception of Shabla, where a TN : TP ratio of 51 indicates strong

P limitation, and Ezerets, where a TN : TP ratio of 10.60

indicates that either of the nutrients may be limiting.
The results of the PCA run on environmental variables, Chl-a

and the biomass of phytoplankton groups are shown in Fig. 5.

Chl-a and TP were strongly positively correlated with each
other, and negatively correlated with Secchi depth, determining
the first principal component (PC). Cyanobacterial biomass was

strongly correlated with this eutrophication gradient. The sec-
ond PC was determined primarily by TN, DO and conductivity,
which were negatively correlated with diatoms and chryso-

phytes. Four groups of waterbodies were identified in the lakes
ordination (Fig. 5). The grouping of the waterbodies is easy to be
explain by their trophic status based on Chl-a. The first group
contained the hypertrophic inland Sinyata Reka Reservoir and

Vaya Lake, both with the highest biomass (mean Chl-a 116 and
87 mg L�l respectively) and highest pH values. The second
group contained only the large Mandra Reservoir (average

Chl-a 56 mg L�l), whereas the third group included Uzungeren
and Durankulak lakes, with mean Chl-a of 65 and 33 mg L�l

respectively. The fourth group was formed by all eutrophic

waterbodies: the Aheloy and Poroy reservoirs and the two lakes
on the north-coast, Shabla and Ezerets (Chl-a ranging between
9 and 12 mg L�l).

Toxin analyses revealed the presence of microcystins
(MC-RR, MC-YR and MC-LR, but primarily MC-LR) in two
of the waterbodies studied (Sinyata Reka and Durankulak), with
a difference in their concentrations and type depending on site

(Table 3). Cylindrospermopsin was found in Mandra and Vaya,
and saxitoxins were recorded in Durankulak, whereas nodularin
was not detected in any of the waterbodies (Table 3).
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Discussion

The results of this study prove the eutrophic to hypertrophic

character of the chosen waterbodies, as reported previously
(Stoyneva-Gärtner et al. 2017; Descy et al. 2018 and refer-
ences therein). In these conditions, the high relative proportion
of Cyanoprokaryota (Cyanobacteria) in the phytoplankton

biomass at almost all sites studied is easy to explain and
confirms previous knowledge on their widespread distribu-
tion, high diversity and abundance in the region studied

(Stoyneva 2000a, 2003; Pavlova et al. 2007; Dimitrova et al.
2014a, 2014b; Stoyneva 2014; Stoyneva-Gärtner et al. 2017;
Descy et al. 2018). The low water transparency and high pH

detected during the study (Table 1) correspond to both total
phytoplankton and cyanoprokaryote abundance (Fig. 3, 4) and
are in general accordance with our previous results for most of

these waterbodies obtained after processing by multivariate
analyses (Stoyneva 2014; Stoyneva et al. 2015; Stoyneva-
Gärtner et al. 2017). Again, cyanobacterial abundance
increased with P concentrations, thus confirming our previous

results in Bulgarian wetlands (Stoyneva 2014; Stoyneva et al.
2015; Stoyneva-Gärtner et al. 2017). Therefore, it is likely that
in shallow Bulgarian waterbodies TP is the main cause of

cyanobacterial abundance rather than any other measured
variable. Although collected during one sampling campaign,
the data from this study are in accordance with the knowledge

of the general environmental driving forces that allow cya-
noprokaryotes to outcompete other phytoplankton in eutrophic
to hypertrophic shallow standing waterbodies, such as high
temperatures, high pH and mainly high P (Downing et al.

2001; Carvalho et al. 2013; Descy et al. 2016). In contrast, in
the present study TNwas not correlated with TP and Chl-a, and
does not appear as a key determinant of cyanoprokaryote

biomass.

Considering the studies cited above and the shallow charac-
ter of the holo- to polymictic lowland wetlands studied, the
relatively small variation in spatial distribution of the phyto-

plankton biomass, as well as the related Chl-a content and
cyanoprokaryote biomass in the studied waterbodies are to be
expected. That was confirmed by the aerial photographs taken in
the field by the drone using uncorrected photographs, without

any attempt to mathematically correct the data for surface
reflections. The four exceptional cases of stronger water colour
in single sites at SinyataReka,Vaya andDurankulak (Fig. 2a–d, f)

and the less visible spot in Mandra fitted well with the HPLC
data on pigment composition and phytoplankton biomass
(Fig. 3, 4). The spots observed by drone and confirmed after

local sampling and processing of the material collected in the
beginning of summer (June 2018) were in accordance with
previous knowledge that blooms commonly start at sites offer-

ing the best conditions (primarily favourable light and nutrient
availability), known as hot spots or fronts of productivity (Oliver
and Ganf 2000; Gons et al. 2005). A shortcoming of drone
application was detected when the Mandra Reservoir was

sampled during and after a strong wind, when the water surface
and colour looked more homogeneous. However, even in this
case, the drone observations helped identify the initial front of a

CyanoHAB (Fig. 2e).
The toxins detected (Table 3) confirmed our previous find-

ings of microcystins (especially MC-LR, considered the most

dangerous type) inDurankulak (Pavlova et al. 2006, 2013, 2014,

2015; Pavlova 2007; Stoyneva-Gärtner et al. 2017) and are

the first reports of microcystins in Sinyata Reka Reservoir.

The finding of saxitoxins is the first for Durankulak. During

this study the presence of cylindrospermopsin in Bulgaria

was proved by reliable methods for the first time. This cyano-

toxin was long ago thought to occur in Bulgarian waters

Table 3. Cyanotoxins detected in Bulgarian waterbodies (June 2018)

Microcystins (MC-RR,MC-LR,MC-YR)were detected usingHPCL (limit of detection (LOD) 0.08–0.15mg L�l), whereas saxitoxins and cylindrospermopsin

(CSPM) were detected by ELISA (LOD 0.015 and 0.4 mg L�l respectively). IBW, Inventory of Bulgarian Wetlands (Michev and Stoyneva 2007); SA, site

abbreviation (asterisks indicate that the site was chosen based on drone observations). Sampling dates are as provided in Table 1

Waterbody (IBW number) SA Microcystins (mg L�l) Saxitoxins (mg L�l) CSPM (mg L�l)

Sinyata Reka Reservoir (IBW1793) SR1* MC-RR, 0.09; MC-LR, 0.3 ,LOD ,LOD

SR2 ,LOD ,LOD ,LOD

Vaya Lake (IBW0191) VA1* ,LOD ,LOD 0.1

VA2 ,LOD ,LOD ,LOD

VA3* ,LOD ,LOD ,LOD

Res. Mandra Reservoir (IBW1720) MN1 ,LOD ,LOD ,LOD

MN2* ,LOD ,LOD 0.1

MN3 ,LOD ,LOD ,LOD

Uzungeren Lake (IBW0710) UZ ,LOD ,LOD ,LOD

Poroy Reservoir (IBW3038) PR ,LOD ,LOD ,LOD

Aheloy Reservoir (IBW3032) AH ,LOD ,LOD ,LOD

Ezerets Lake (IBW0233) EZ ,LOD ,LOD ,LOD

Shabla Lake (IBW0219) SH ,LOD ,LOD ,LOD

Durankulak Lake (IBW0216) DR1 ,LOD ,LOD ,LOD

DR2 MC-YR, 0.2; MC-LR, 0.2 ,LOD ,LOD

DR3* MC-LR, 0.1 0.015 ,LOD

DR4 ,LOD ,LOD ,LOD
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(Pavlova et al. 2014; Stoyneva 2014) based on observations of
the widening distribution of its main causative agent, namely

Raphidiopsis raciborskii (Woloszynska) Aguilera, Berrendero
Gómez, Kastovsky, Echenique et Salerno (Syn. Cylindrosper-
mopsis raciborskii (Woloszynska) Seenayya et Subba Raju),

in Bulgaria and particularly after the species was detected in
Vaya and Mandra (Dimitrova et al. 2014b; Stoyneva 2016;
Kokociński et al. 2017b; Stoyneva-Gärtner et al. 2017). The

presence of cylindrospermopsin, produced by heterocytous
algae with strong N-fixation ability, is in accordance with the
N limitation of thewaterbodies studied, and ofMandra andVaya
in particular.

The low concentrations of all toxins found and their detection
at separate sites (Table 3) are easily explained by the atypical
(for the season) strong rains and floods that started during the

sampling week just after a long (also untypical for the country)
early period of warm weather and drought in April and May of
2018. Although recorded in low concentrations, almost all toxic

substances were found at the sampling sites chosen based on
drone observations, which differed visually in terms of water
colour and were proven to contain a higher abundance of
cyanoprokaryote compared with the other sampling sites

(Fig. 2, 4; Table 3).
The results of this study proved the risk in the shallow

lowland waterbodies of the occurrence of CyanoHABs and

show the considerable potential of using modern remote
methods and HPLC in studies and monitoring of CyanoHABs.
Despite possible limitations of the field application of a drone

because ofmeteorological conditions (e.g.wind, rain), the results
of this study confirm the importance of remote observations for
choosing proper sampling sites. Other reasons favouring the use

of drones are that they are easy and fast to use and they are small
and easy to transport during field trips. Considering the high
number of wetlands over Bulgaria (,9000 according to Michev
and Stoyneva 2007), we would strongly recommend the further

use of drones and the pigment technique in studies of phyto-
plankton biomass and composition to greatly increase the
speed of the field work; these techniques are very efficient in

terms of data acquisition and provide valuable information.
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