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Abstract—The accurate representation of variable renewable
generation (RES, e.g., wind, solar PV) assets in capacity expan-
sion planning (CEP) studies is paramount to capture spatial and
temporal correlations that may exist between sites and impact
both power system design and operation. However, it typically
has a high computational cost. This paper proposes a method to
reduce the spatial dimension of CEP problems while preserving
an accurate representation of renewable energy sources. A two-
stage approach is proposed to this end. In the first stage, relevant
sites are identified via a screening routine that discards the
locations with little impact on system design. In the second stage,
the subset of relevant RES sites previously identified is used
in a CEP problem to determine the optimal configuration of
the power system. The proposed method is tested on a realistic
EU case study and its performance is benchmarked against a
CEP set-up in which the entire set of candidate RES sites is
available. The method shows great promise, with the screening
stage consistently identifying 90% of the optimal RES sites while
discarding up to 54% of the total number of candidate locations.
This leads to a peak memory reduction of up to 41% and solver
runtime gains between 31% and 46%, depending on the weather
year considered.

Index Terms—variable renewable generation, capacity expan-
sion planning, spatial reduction, two-stage method

I. INTRODUCTION

Capacity expansion planning (CEP) problems are powerful
tools for the design, analysis and implementation of energy
system decarbonisation policies. In such frameworks, the
accurate spatiotemporal representation of variable renewable
energy generation (RES, e.g., wind, solar PV) is paramount for
the precise estimation of capacity requirements [1]. However,
the detailed modelling of RES comes at a high computational
cost and ways to mitigate this issue in order to strike the
right balance between accuracy and computational effort when
solving such problems are necessary, yet seldom proposed.
For example, a highly detailed representation of RES within
a CEP set-up cast as a linear program (LP) is proposed by
MacDonald et al. [2], yet the reported runtimes (thousands of
core hours for large-scale instances) limit its use in practice
and its reproducibility. Wu et al. [3] also propose an LP-
cast CEP framework in which high-resolution RES modelling
is made possible via a GIS-based resource assessment tool.
Nonetheless, the coefficient matrix stores hourly capacity
factor values at each location and is therefore full, which limits
the scalability of the proposed method to a few hundreds of

candidate RES sites only, thus rendering it unsuitable for large-
scale applications.

Although plenty of work has been carried out in recent years
to develop temporal reduction techniques for RES in CEP set-
tings [4], studies tackling the issue of spatial model reduction
are scarce. Cohen et al. [5] suggest the aggregation of RES
in resource regions, with wind and solar PV resources over
the contiguous United States being modelled via 356 and 134
profiles, respectively. In a similar vein, Hörsch and Brown [6]
leverage a CEP framework formulated as an LP to assess the
impact of spatial resolution on the outcomes of co-optimizing
generation and transmission assets across Europe. A network
reduction process based on k-means clustering is incorporated
in their method and the resulting topology serves as the basis
for modelling renewable resources. More precisely, Europe-
wide RES are represented via 37 to 362 different aggregate
profiles, depending on the desired number of network clusters.
While spatial aggregation approaches, as the ones proposed
in [5], [6], partly mitigate the aforementioned computational
issues [2], [3], the limited number of RES profiles considered
hinders their ability to exploit the benefits of resource diversity
which, in turn, can lead to system cost overestimation [7].

This paper proposes a method to reduce the spatial di-
mension and decrease the computational requirements of CEP
problems while preserving a detailed representation of RES
assets. This is achieved by leveraging a two-stage heuristic
that can be described as follows. The first stage, which is
cast as an LP, is used to screen a set of candidate sites and
identify sites that have little impact on optimal system design,
which are then discarded. In the second stage, information
(geo-positioning and capacity factors time series) about the
remaining sites is used as input data in a CEP framework
that determines the installed capacities of generation, storage
and transmission assets leading to a minimum-cost system
configuration. Thus, the proposed method makes it possible
to reduce the size of the CEP problem, and therefore enables
memory and computation time savings.

The paper is structured as follows. Section II details the
methods at the core of the proposed two-stage approach. Then,
Section III briefly describes the case study used to showcase
the applicability of the suggested approach before results are
reported in Section IV. Section V concludes the paper and
discusses future work avenues.978-1-6654-3597-0/21/$31.00 ©2021 IEEE



II. METHOD

The proposed solution method (or SM) is introduced in this
section. Firstly, the standard CEP framework (from hereon, the
FLP) is formulated. In the remainder of this paper, the FLP
denotes the CEP set-up that simultaneously tackles the siting
and sizing of RES assets, as well as the sizing of other power
system (e.g., generation, storage or transmission) technologies.
Then, the screening method for candidate RES sites (SITE)
that enables the formulation of a reduced-size CEP framework
(from hereon, the RLP) is described. The SITE-RLP sequence
will hereafter be referred to as the SM.

A. Capacity expansion planning framework

Let NB and L be the sets of existing buses and transmission
corridors, respectively. Let NR be a set of candidate RES sites
that may be connected to buses n ∈ NB , which is partitioned
into disjoint subsets Nn

R . The CEP formulation reads
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The problem described in (1a-m) minimizes total system
cost subject to a set of constraints of the underlying assets.
The objective function (1a) comprises capital expenditure,
fixed and variable operating costs of the generation, storage
and transmission assets, as well as the economic penalties
associated with unserved demand. Constraint (1b) enforces the
energy balance at each bus, while the operation and sizing of

RES assets is modelled via (1c-d). Note that a single RES
technology r ∈ R is associated with each site m ∈ NR.
Then, conventional generators are modelled via (1e-f) and the
operation and sizing of storage units follows (1g-k). Finally,
constraints (1l-m) encode the transportation model governing
the power flows in transmission links. It is worth noting that,
although the absolute values in Eqs. (1a), (1h) or (1l) render
the CEP problem described in (1a-m) non-linear, it can be cast
as an LP using standard reformulation techniques.

B. Renewable sites selection method

The proposed SM works by decoupling the siting and
sizing of RES assets. At first, the SITE stage is leveraged
to screen the sets of candidate RES locations and identify
those sites that play a role in the optimal system design,
while discarding the rest. To this end, the siting problem
is formulated by i) discarding some complicating variables
and approximating a subset of complicating constraints (i.e.,
the ones associated with dispatchable power generation, stor-
age systems and power flows in transmission lines) and ii)
relaxing and taking linear combinations, as well as scaling
the right-hand site coefficients of certain equality constraints
(i.e., the power balance equations). The objective function
(2a) is obtained by preserving the terms related to the costs
of deploying and operating RES technologies and the eco-
nomic penalty associated with unserved demand. Then, the
constraints discarded from (1a-m) are approximated via two
parameters found in (2b). More formally, let T be the set
of time periods, let Tτ ⊆ T , |Tτ | = δτ, τ = 1, . . . , T,
be a collection of disjoint subsets forming a partition of T
into time slices of length δτ . More precisely, δτ represents
the length of a time slice (e.g., one hour, one day) over
which the energy balance in (2b) is enforced and its role
is to emulate the behavior of storage assets shifting RES
supply in time. Furthermore, let ξnτ ∈ R+ denote regional
minimum RES feed-in targets enforced over every time slice
Tτ , τ = 1, . . . , T . This parameter enforces a minimum level
of local power production from renewable sources which i)
mirrors the effect of transmission constraints and ii) accounts
for low-carbon legacy generation capacity that would offset
the country-specific RES requirements. Constraints (1c-d) are
preserved as such and the siting problem thus reads

min
K, (pt)t∈T

ω
[ ∑
n∈NB
m∈NnR

(
ζm + θmf

)
Knm

]
+

∑
t∈T

[ ∑
n∈NB
m∈NnR

θrvpnmt +
∑
n∈NB

θepent

]
(2a)

s.t.
∑
t∈Tτ

[ ∑
m∈NnR

pnmt + pent

]
≥ ξnτ

∑
t∈Tτ

λnt,

∀n ∈ NB , ∀τ ∈ {1, . . . , T} (2b)

pnmt ≤ πnmt(κ0
nm +Knm),

∀n ∈ NB ,∀m ∈ Nn
R ,∀t ∈ T (2c)

κ0
nm +Knm ≤ κ̄nm, ∀n ∈ NB ,∀m ∈ Nm

R (2d)



For every n ∈ NB , the problem returns the set of candidate
RES sites identified as relevant (with an installed capacity
above 1 MW) in the optimal system design, i.e. Nn

SITE. Then,
the RLP is built by replacing Nn

R with Nn
SITE in constraints

(1a-d) of the CEP problem.

III. CASE STUDY

Input Data: The analysis is conducted for three individual
weather years (i.e., 2016, ’17 and ’18) and over 33 countries
within the ENTSO-E system. The siting stage relies on hourly-
sampled resource data obtained from the ERA5 reanalysis
database [8] at a spatial resolution of 1.0°. The mapping of
resource data to capacity factors time series is achieved via
the transfer functions of appropriate conversion equipment
for each individual technology. More precisely, a site-specific
selection of wind generators is carried out based on the
IEC 61400 standard [9] and four different converters are
available for deployment (i.e., the Vestas V110, V90, V117 and
V164), each of them suitable for specific wind regimes. The
selection of solar energy converters is done on a technology
basis, with the TrinaSolar DEG15MC module available for
utility-scale PV deployment and the TrinaSolar DD06M array
available for distributed PV generation. A greenfield approach
is adopted, i.e., no legacy capacity of RES assets is considered,
while the technical potential is estimated via a land eligibility
assessment framework [10] that yields eligible surface areas
for RES deployment for a set of 1740 candidate sites. A set
of assumptions pertaining to the power densities of different
generation technologies are then made to map surface areas
into maximum allowable installed capacities, i.e., technical po-
tentials. Specifically, a density of 5 MW/km2 is considered for
wind deployments [11]. With respect to solar PV units, power
densities of 40 MW/km2 and 16 MW/km2 are considered
for utility-scale and residential installations, respectively [12].
Electricity demand time series for all considered countries are
retrieved from the OPSD platform [13].

The CEP frameworks (i.e., both the FLP and RLP) follow
a centralized planning approach and build upon the 2018
TYNDP dataset, where each European country is modelled
as one node [14]. The resulting network topology is displayed
in Fig. 1. In this exercise, the expansion of the transmission
network is limited to the reinforcement of existing links.
Furthermore, the total capacity of each link may not exceed
twice the 2040 capacity estimated for this link in the TYNDP.
Besides the four RES technologies sited in the previous stage,
three more generation technologies are available for power
generation, namely run-of-river (ROR) and reservoir-based
(STO) hydro, as well as combined-cycle gas turbines (CCGT),
with the latter being the only of the three that is also sized in
(1a-m). The existing capacities of the other two are retrieved
from [15], where the existence of 34 GW of ROR and 98 GW
of STO installations is reported. Then, two technologies are
available for electricity storage, namely pumped-hydro (PHS)
units and Li-Ion batteries. The latter is the only one being
sized in (1a-m) and a fixed energy-to-power ratio of 4 h is
assumed. The legacy capacity of the former is retrieved from

Fig. 1: System topology in the capacity expansion planning
framework. AC connections displayed in full lines, DC links
shown in dotted lines. The 33 nodes form the set NB in (1a-m)
and (2a-d).

[15], where 55 GW/1950 GWh of PHS storage is reported.
The CEP problem is implemented in PyPSA 0.17 [16], while
the techno-economic assumptions are gathered in [17].

Parametrization of the SITE stage: The two parameters
of (2a-d) are defined as follows. First, the slicing period δτ
is considered to be equal to 24 h, which corresponds to the
nonzero frequency component of the aggregate EU-wide RES
capacity factor time series with the largest amplitude (i.e., as
provided by a discrete Fourier transform). Then, the country-
dependent ξnτ values are assumed not to be time-dependent
and their estimation proceeds as follows. First, the residual
demand (i.e., the difference between demand and generation
potential of legacy dispachable units) is computed at peak
load conditions. Then, the RES generation potential during
the same time instants is determined. For each country, if RES
potential exceeds the electricity demand for at least half the
time steps in the optimization horizon, its potential transmis-
sion capabilities (i.e., 2040 TYNDP capacity limits times the
length of slicing period δτ ) are added to the residual demand,
as the country is a potential exporter of electricity in the EU-
wide system. Conversely, if the electricity demand is higher
than the RES potential most of the time, the transmission
capabilities of that country are subtracted from the residual
demand, as cross-border exchanges will oftentimes be used to
cover for the domestic electricity needs. Finally, the ξnτ values
are determined as the ratio between the RES potential and the
transmission capacity-adjusted residual demand, respectively.

Implementation: The SM, as well as the FLP are imple-
mented in Python 3.7 and the proposed instances are run on
a workstation running under CentOS, with an 18-core Intel
Xeon Gold 6140 CPU clocking at 2.3 GHz and 256 GB RAM.
Gurobi 9.0 was used to solve both (1a-m) and (2a-d). The
dataset and code used in these simulations are available at
[17] and [18].



IV. RESULTS

The results of a set of experiments evaluating the perfor-
mance of the SM against the FLP are detailed in this section.

Table I summarizes the performance of the siting stage
by means of two indicators. First, the technology-specific
spatial reduction share (γr) denotes the proportion of initial
candidate RES sites discarded via SITE. Then, the screening
accuracy (αr) measures the ability of the method to identify
the relevant candidate RES sites. More formally, let R be
the set of renewable technologies and let N r

R be the subset
of sites with technology r ∈ R (these subsets are disjoint
for different r and form a partition of NR). Note that for
the purpose of this paper, offshore and onshore wind are
considered as different resources. In addition, let N r

FLP and
N r
SITE be the subsets of N r

R selected by FLP and SITE where
at least 1 MW of capacity is deployed, respectively. Then, the
screening accuracy is defined as

αr =
|N r

SITE ∩N r
FLP|

|N r
FLP|

, ∀r ∈ R, (3)

where |N | denotes the cardinality of set N . First, in this
table, it can be seen that the relative reduction achieved
by SITE varies from 6% for utility-scale PV to 62% for
distributed PV installations in the 2017 instance, with an
average reduction in onshore and offshore wind sites of 38%
and 54%, respectively. Furthermore, an overall reduction of the
number of selected RES sites of up to 54% is observed across
the three considered instances. In other words, less than half of
the candidate RES sites are found to be relevant in the optimal
system configuration by SITE and subsequently passed to
the RLP. With respect to the ability of SITE to identify
relevant RES locations, only the distributed PV sites have
a selection accuracy score below 85%. However, the limited
deployment of this technology in the solution of the proposed
CEP instances enables the screening stage to properly identify
over 90% of the relevant RES sites (i.e., the ones appearing in
the FLP solution), irrespective of the weather year considered.

However, not all candidate RES sites found in the FLP so-
lution are identified by SITE which selects different locations
instead. For instance, when the latter is run with 2016 weather
data, it fails to identify a total of 45 sites (14 onshore wind, 12
offshore wind and 19 distributed PV locations, respectively)
out of 418 identified in the benchmark. Investigating how far
these locations are from the ones selected by the FLP provides
a first insight into how different the system designs associated

TABLE I: Technology-specific sites reduction (γr) and screen-
ing accuracy (αr) of SITE. Number of candidate sites used
in the FLP specified in parantheses.

Won (590) Woff (417) PVu (128) PVd (605)
γr αr γr αr γr αr γr αr

2016 0.40 0.94 0.55 0.85 0.10 1.00 0.57 0.54
2017 0.37 0.94 0.55 0.86 0.06 1.00 0.62 0.83
2018 0.36 0.93 0.52 0.85 0.16 1.00 0.59 0.59

Fig. 2: (a) Distribution of geographical distances between pairs
of sites identified via SITE and the FLP. (b) Site-specific
installed capacity correlation between the RLP and the FLP.

with the two methods are. If the distances between the loca-
tions selected via SITE and FLP were found to be small, one
would expect the effect of misidentifying sites to be limited,
as RES patterns are usually comparable at neighboring sites.
Conversely, large distances between sites identified via the two
methods would often imply distinct RES patterns and could
thus lead to substantial differences in the way the technologies
are sized. The result of this analysis is shown in Fig. 2a.
These plots depict, for each technology and weather year,
the distribution of distances (expressed in kilometres) between
pairs of sites selected via the FLP and SITE, respectively. The
procedure used to generate these curves is as follows. First,
distances of zero are associated to the pairs of sites found by
both methods (αr shares in Table I). Then, each unidentified
site in the FLP solution is matched with the geographically
closest (based on the geodesic distance) location in the set
of SITE-exclusive locations. Once two sites are paired, none
of them can be subsequently matched with another. Upon
pairing all unidentified sites in the FLP with a counterpart
in SITE, a cumulative distribution function of technology-
specific distances is plotted. It can be observed in these three
plots that, without exception, the 95th percentile of the match-
ing distance for any of the four RES technologies falls below
500 km. In a European context, it has been previously shown
that country-aggregated wind output (usually more spatially
heterogeneous than PV generation) is remarkably correlated
at distances below the aforementioned threshold, especially in
the North Sea basin where most onshore and offshore sites
are deployed in the studied instances [19]. Furthermore, a
maximum distance between matched sites of under 1600 km
is reported for all technologies and weather years, with the
largest discrepancies being consistently observed for onshore
wind locations.



TABLE II: Differences in system-wide capacities between FLP and RLP for various technologies and weather years. A positive
value reflects more capacity installed (or higher TSCE) in the RLP, while a negative value indicates more capacity in the FLP.

Won Woff PVu PVd CCGT AC DC Li-Ion TSCE
Year [GW] [GW] [GW] [GW] [GW] [TWkm] [TWkm] [GWh] [be]

2016 -7.38 6.06 3.86 -1.63 0.10 -0.03 -0.05 0.51 0.36
(-16.31%) (1.48%) (1.92%) (-1.01%) (0.11%) (-0.04%) (0.10%) (1.99%) (0.40%)

2017 -7.94 4.96 0.60 7.51 1.01 -2.33 -0.16 1.18 0.44
(-12.84%) (1.17%) (0.29%) (7.36%) (2.30%) (-2.90%) (-0.29%) (4.07%) (0.52%)

2018 -13.73 12.19 2.51 -5.60 1.03 0.57 -0.04 -1.53 0.42
(-23.34%) (2.97%) (1.21%) (-2.99%) (2.54%) (0.65%) (-0.07%) (-3.63%) (0.48%)

Upon screening the candidate RES locations via SITE, the
RLP is run in order to retrieve, among others, the associated
installed capacities. Fig. 2b shows, for each weather year, the
correlation between installed capacities of i) the sites identified
in the FLP and ii) the sites identified by SITE and sized
via RLP. In this plot, round markers (o) denote data points
associated with locations that are common to FLP and SITE,
while crosses (x) represent data points corresponding to the
pairs of sites matched according to the procedure described in
the previous paragraph. The first remark in these plots is that in
76% (for 2016) to 79% (for 2018) of the cases, the installed
capacities of FLP and RLP sites are matched to MW-order
precision. Then, it can be observed that most of the (x) markers
are situated on the bottom of the corresponding subplots. A
complementary analysis of the resource signals associated with
these data points suggests the existence of high-quality RES
sites exploited by the FLP, but whose SITE counterparts
(determined via the distance-based pairing algorithm) exhibit
inferior resource quality and thus end up not being part of the
RLP solution. In such a situation, the missing capacity, i.e.,
FLP capacity of the (x) data points in the lower part of the
plot, is compensated in the RLP by superior power ratings at
(o) sites above the trend line in Fig. 2b.

Table II reports, for different data years and for various tech-
nologies sized within the CEP stage, the difference between
the system-wide installed capacities obtained by the FLP
and RLP models, respectively (positive values indicate more
capacity in the latter). In the last column, it can be seen that the
relative objective function difference (i.e., the TSCE) between
the two CEP set-ups does not exceed 0.52%, irrespective of
the weather year considered. However, as suggested in a recent
study by Neumann and Brown [20], rather small differences
in total system costs can translate into fairly distinct system
configurations. In this exercise, differences of 23.3%, 2.9%,
1.9% and 7.3% are reported for onshore wind, offshore wind,

TABLE III: Computational performance assessment of the SM.
Numerical values represent reductions associated with the SM
expressed in relative terms (%) with respect to the FLP.

Year Variables Constraints Non-Zeros PMR SRT

2016 34.54 34.67 33.48 41.37 36.56
2017 33.31 33.39 32.22 40.11 30.90
2018 33.72 33.82 32.67 39.28 46.57

utility-scale and distributed PV, respectively, between the RLP
and the FLP. A closer look at the breakdown of capacities
per country reveals the reasons behind such differences, as
the large majority of the discrepancies observed in Table II are
associated to a handful of resource-rich countries (e.g., Ireland,
Italy, Spain or the UK). For instance, in 2017 and 2018, the
FLP over-sizes onshore wind (and, thus, selects more sites)
in Ireland and the UK, and uses it to supply Central Europe.
Under the proposed (δτ, ξnτ ) set-up of the SITE stage, a subset
of these locations are not identified (see discussion on the (x)
markers in Fig. 2a) and the associated capacity in the FLP is
replaced in the RLP by a mix of offshore wind and distributed
PV. Further on in Table II, transmission capacities vary within
2.9% of the FLP outcome, while a maximum of 4.1% Li-
Ion storage capacity difference can be observed during the
same year where distributed PV differed the most from the
benchmark (i.e., 2017).

Finally, Table III summarizes the computational perfor-
mance gains (relative to the FLP) achieved by leveraging the
SM. More specifically, the reductions in i) the CEP problem
size (number of variables, constraints and non-zeros), ii) the
peak memory requirements (PMR) and iii) the solver runtime
(or SRT, taking into account the solver runtime of both the
SITE and RLP stages of the SM) are reported. In this table,
it can be observed that the proposed SM leads to an average
CEP problem size reduction of 33% which, in turn, enables an
average PMR reduction of 40% and runtime savings between
31% and 46% across the studied instances.

V. CONCLUSION

This paper proposes a method to reduce the spatial di-
mension of CEP frameworks while preserving an accurate
representation of renewable energy sources. This is achieved
via a two-stage heuristic. First, a screening stage is used to
identify the most relevant sites for RES deployment among
a pool of candidate locations and discard the rest. Then,
the subset of RES sites identified in the first stage is used
in a CEP problem to determine the optimal power system
configuration. The proposed method is tested on a realistic EU
case study and its performance is assessed against a CEP set-
up in which the entire set of candidate RES sites is available.
The method shows great promise and manages to consistently
identify more than 90% of the optimal sites while reducing
peak memory consumption and solver runtime by up to 41%
and 46%, respectively.



Capacity differences between the solutions provided by
the proposed method and the benchmark observed for some
weather years suggest that further work on the selection of
parameters used in the first-stage siting routine would be
useful. Moreover, re-casting the proposed heuristic into a more
structured form, e.g., where the siting and sizing of RES assets
are used as stages in a Benders-like decomposition framework,
is also envisaged as a promising development avenue.
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NOMENCLATURE

A. Abbreviations

AC, DC AC, DC transmission links
PVu, PVd utility-scale PV, distributed PV
TSCE total system cost error
Won, Woff onshore wind, offshore wind

B. Indices & Sets

g,G conventional gen. tech. index and associated set
l,L line, set of transmission corridors, L ⊆ NB ×NB
L+
n ,L−n set of in-bound links into node n, with L+

n =
{l ∈ L|l = (u, n), u ∈ N+

n }, where N+
n = {u ∈

NB |(u, n) ∈ L} and set of out-bound links from
node n, with L−n = {l ∈ L|l = (n, v), v ∈ N−n },
where N−n = {v ∈ NB |(n, v) ∈ L}

n,NB bus, set of buses
m,NR candidate RES site and the associated set
Nn
R , N r

R subset of sites assigned to bus n ∈ NB , subset of
sites with RES tech. r ∈ R

Nn
SITE set of RES sites connected to bus n ∈ NB retained

in the siting stage
N r
SITE set of RES sites with tech. r ∈ R retained in the

siting stage
r,R tech. index and set of RES technologies
s,S storage tech. and the associated set
t, T time index, set of time periods
τ, Tτ time slice index and time slice

C. Parameters

η
SD/D/C
s efficiencies of storage tech. s
φs power-to-energy ratio of storage tech. s
ξnτ RES supply target at node n, in period τ
κ0
l initial capacity for transmission line l
κ̄l maximum allowable installed capacity of line l
κ0
nx initial capacity of tech. x ∈ {g,m, s} at node n
κ̄nx maximum allowable installed capacity of tech. x ∈

{g,m, s} at node n
λnt electricity demand at node n and time t
πnmt per-unit availability of RES tech. at site m (con-

nected to bus n) and time t
θe economic penalty for demand curtailment
θxf , θ

x
v fixed (FOM) and variable (VOM) operation and

maintenance cost of tech. x ∈ {g,m, s, l}
ω weighting factor relating the length of time hori-

zon T to the annualized costs of technologies
ζx annualized investment cost of tech. x ∈

{g,m, s, l}

D. Variables

Kl ∈ R+ installed capacity of transmission line l
Knx ∈ R+ installed cap. of tech. x ∈ {g,m, s} at bus n
p
C/D
nst ∈ R+ flows of storage tech. s at bus n and time t
plt ∈ R power flow over line l at time t
pnxt ∈ R+ feed-in of gen. tech./site x ∈ {g,m} at bus n

and time t
pent ∈ R+ unserved demand at bus n and time t


