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Due to a lack of objective biomarkers, psychiatric diagnoses still rely 
strongly on patient reporting and clinician judgement. The ensuing 
subjectivity negatively affects the definition and reliability of psy-
chiatric diagnoses1,2. Recent research has suggested that a combina-
tion of advanced neuroimaging and machine learning may provide 
a solution to this predicament by establishing such objective bio-
markers for psychiatric conditions, improving the diagnostic accu-
racy, prognosis and development of novel treatments3.

These promises led to widespread interest in machine learn-
ing applications for mental health4, including a recent paper that 
reports a biological marker for one of the most difficult yet momen-
tous questions in psychiatry—the assessment of suicidal behaviour5. 
Just et al. compared a group of 17 participants with suicidal ideation 
with 17 healthy controls, reporting high discrimination accuracy 
using task-based functional magnetic resonance imaging signatures 
of life- and death-related concepts3. The authors further reported 
high discrimination between nine ideators who had attempted sui-
cide versus eight ideators who had not. While being a laudable effort 
into a difficult topic, this study unfortunately illustrates some com-
mon conceptual and technical issues in the field that limit trans-
lation into clinical practice and raise unrealistic hopes when the 
results are communicated to the general public.

From a conceptual point of view, machine learning studies aimed 
at clinical applications need to carefully consider any decisions that 
might hamper the interpretation or generalizability of their results. 
Restrictiveness to an arbitrary setting may become detrimental for 
machine learning applications by providing overly optimistic results 
that are unlikely to generalize. As an example, Just et al. excluded 
more than half of the patients and healthy controls initially enrolled 
in the study from the main analysis due to missing desired functional 
magnetic resonance imaging effects (a rank accuracy of at least 0.6 
based on all 30 concepts). This exclusion introduces a non-assessable 
bias to the interpretation of the results, in particular when consider-
ing that only six of the 30 concepts were selected for the final classi-
fication procedure. While Just et al. attempt to address this question 
by applying the trained classifier to the initially excluded 21 suicidal 
ideators, they explicitly omit the excluded 24 controls from this anal-
ysis, preventing any interpretation of the extent to which the classi-
fier decision is dependent on this initial choice.

From a technical point of view, machine learning-based predic-
tions based on neuroimaging data in small samples are intrinsically 
highly variable, as stable accuracy estimates and high generalizabil-
ity are only achieved with several hundreds of participants6,7. The 
study by Just et al. falls into this category of studies with a small 
sample size. To estimate the impact of uncertainty on the results by 
Just et al., we adapted a simulation approach with the code and data 

kindly provided by the authors, randomly permuting (800 times) the 
labels across the groups using their default settings and computing 
the accuracies. These results showed that the 95% confidence inter-
val for classification accuracy obtained using this dataset is about 
20%, leaving large uncertainty with respect to any potential findings.

Special care is also required with respect to any subjective choices 
in feature and classifier settings or group selection. While ad-hoc 
selection of a specific setting is subjective, testing of different ones 
and outcome-based post-hoc justification of such leads to overfitting, 
thus limiting the generalizability of any classification. Such overfit-
ting may occur when multiple models or parameter choices are tested 
with respect to their ability to predict the testing data and only those 
that perform best are reported. To illustrate this issue, we performed 
an additional analysis with the code and data kindly provided by Just 
et al. More specifically, in the code and the manuscript, we identi-
fied the following non-exhaustive number of prespecified settings: 
(1) removal of occipital cortex data; (2) subdivision of clusters larger 
than 11 mm; (3) selection of voxels with at least four contributing par-
ticipants in each group; (4) selection of stable clusters containing at 
least five voxels; (5) selection of the 1,200 most stable features; and (6) 
manual copying and replacing of a cluster for one control participant. 
Importantly, according to the publication or code documentation, all 
of these parameters were chosen ad hoc and for none of these set-
tings was a parameter search performed. We systematically evaluated 
the effect of each of these choices on the accuracy for differentiation 
between suicide ideators and controls in the original dataset provided 
by Just et al. As shown in Fig. 1, each of the six parameters represents 
an optimum choice for differentiation accuracy in this dataset, with 
any (even minor) change often resulting in substantially lower accu-
racy estimates. Similarly, data leakage may also contribute to optimis-
tic results when information outside the training set is used to build 
a prediction model. More generally, whenever human interventions 
guide the development of machine learning models for the predic-
tion of clinical conditions, a careful evaluation and reporting of any 
researcher’s degrees of freedom is essential to avoid data leakage and 
overfitting. Subsequent sharing of data processing and analysis pipe-
lines, as well as collected data, is a further key step to increase repro-
ducibility and facilitate replication of potential findings.

For the field of clinical neuroscience to move towards being 
able to improve the diagnosis and prognosis of psychiatric con-
ditions using objective machine learning-based biomarkers in 
mental health, it is crucial to deal with the above conceptual  
and technical pitfalls in the first place. Most importantly, realistic 
clinical populations need to be enrolled in such studies to increase 
the ecological validity and generalizability. Furthermore, strict tech-
nical and operational procedures need to be defined. At the stage 
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of identifying candidate machine learning biomarkers, strict nested 
cross-validation procedures, minimizing human interventions and 
subjective parameter choices, are essential to avoid data leakage or 
overfitting. Ideally, any results should be replicated in holdout data, 
and preferentially out-of-sample datasets, to evaluate their gen-
eralizability to other clinical populations. This comprises careful 
reporting and interpretation of any findings acknowledging specific 
limitations, to avoid inflation of public expectations or interpreta-
tion going beyond the actual scope of the specific study. Lastly, a 
prospective validation of the established machine learning bio-
marker with pre-registration of any settings and analyses is essen-
tial to establish its true generalizability. In particular, this last step, 
involving the collection of additional data in clinical populations 
that are typically difficult to recruit, requires prospective planning 
from researchers and clear commitment from grant and regulatory 
agencies to support such validation studies.

While these aims appear to be time and resource expensive, the 
benefit of the alternative (that is, investing resources into research 
with probably limited replicability, interpretability and generaliz-
ability) should be seriously questioned from a long-term perspec-
tive. From a research perspective, enticing but poorly replicable 
findings come with the danger of investing public resources on 
shaky scientific evidence and hence the risk of a public resource 
waste. Finally, from a societal and ethical perspective, there cannot 
be any doubt that treatment and medical intervention should build 
on strong and large evidence for the validity and efficacy of the pro-
posed intervention in the clinical condition.

methods
To perform the analyses reported here with respect to parameter choices 
and random group labelling, original code (http://www.ccbi.cmu.edu/
Suicidal-ideation-NATHUMBEH2017/Just-NatHumBeh2017-code1.tgz) 
and data (http://www.ccbi.cmu.edu/Suicidal-ideation-NATHUMBEH2017/
Just-NatHumBeh2017-data-and-code.html) used by Just et al. were downloaded 
from the respective public repositories. Random accuracy variation estimates 
were obtained by randomly permuting group labels between patients and controls 
800 times and computing classification accuracies using the default settings from 
Just et al. In addition, to estimate the effect of parameter choices, each parameter 
was systematically changed (as displayed in Fig. 1) with recomputing of the 
classification accuracy while keeping all of the other parameters as default.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Fig. 1 | Effects of parameter choices on the accuracy for differentiation between suicide ideators and controls. Accuracies obtained for differentiation 
between suicide ideators and controls in the dataset used in Just et al. by systematically evaluating different parameter choices, while keeping all other 
parameters as default.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The code and data used in this study were adopted from the original publication by Just et al. (2017). This original data are available at: 
http://www.ccbi.cmu.edu/Suicidal-ideation-NATHUM BEH2017/Just-NatHumBeh2017-data-and-code.html

Data analysis The original data analysis code is available at:  
http://www.ccbi.cmu.edu/Suicidal-ideation-NATHUMBEH2017/Just-NatHumBeh2017-code1.tgz

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

ll data used in this study were derived from the publication by Just et al. and are kindly provided by the authors of the respective manuscript: 
http://www.ccbi.cmu.edu/Suicidal-ideation-NATHUMBEH2017/Just-NatHumBeh2017-data-and-code.html 
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size 34

Data exclusions n.a

Replication n.a

Randomization n.a

Blinding n.a

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type Task-based cross-sectional fMRI study

Design specifications event-related design

Behavioral performance measures n.a

Acquisition

Imaging type(s) functional

Field strength 3

Sequence & imaging parameters 20 slices, voxel size 3.125 x 3.125 x 5mm3, repetition time 1s

Area of acquisition whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software n.a
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Normalization n.a

Normalization template n.a

Noise and artifact removal n.a

Volume censoring n.a

Statistical modeling & inference

Model type and settings n.a

Effect(s) tested n.a

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

n.a

Correction n.a

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis Group labels (suicidal ideators vs controls) were used as labels for prediction using whole-brain derived 
contrast estimates as described in Just et al. (2017)
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