
Artificial Induction of Sox21 Regulates Sensory Cell
Formation in the Embryonic Chicken Inner Ear
Stephen D. Freeman*, Nicolas Daudet*

UCL Ear Institute, University College London, London, United Kingdom

Abstract

During embryonic development, hair cells and support cells in the sensory epithelia of the inner ear derive from progenitors
that express Sox2, a member of the SoxB1 family of transcription factors. Sox2 is essential for sensory specification, but high
levels of Sox2 expression appear to inhibit hair cell differentiation, suggesting that factors regulating Sox2 activity could be
critical for both processes. Antagonistic interactions between SoxB1 and SoxB2 factors are known to regulate cell
differentiation in neural tissue, which led us to investigate the potential roles of the SoxB2 member Sox21 during chicken
inner ear development. Sox21 is normally expressed by sensory progenitors within vestibular and auditory regions of the
early embryonic chicken inner ear. At later stages, Sox21 is differentially expressed in the vestibular and auditory organs.
Sox21 is restricted to the support cell layer of the auditory epithelium, while it is enriched in the hair cell layer of the
vestibular organs. To test Sox21 function, we used two temporally distinct gain-of-function approaches. Sustained over-
expression of Sox21 from early developmental stages prevented prosensory specification, and abolished the formation of
both hair cells and support cells. However, later induction of Sox21 expression at the time of hair cell formation in
organotypic cultures of vestibular epithelia inhibited endogenous Sox2 expression and Notch activity, and biased
progenitor cells towards a hair cell fate. Interestingly, Sox21 did not promote hair cell differentiation in the immature
auditory epithelium, which fits with the expression of endogenous Sox21 within mature support cells in this tissue. These
results suggest that interactions among endogenous SoxB family transcription factors may regulate sensory cell formation
in the inner ear, but in a context-dependent manner.
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Introduction

The vertebrate inner ear comprises a series of interconnected

fluid-filled cavities lined with distinct sensory patches responsible

for hearing in the cochlea, and the perception of acceleration and

gravity in the vestibular system. Each sensory patch contains

a regular mosaic of mechanosensory hair cells, interspaced by non-

sensory support cells. The entire inner ear is derived from

a thickening of the head ectoderm called the otic placode. In birds

and mammals, the placode invaginates to form the otic cup, which

in turn closes to create a hollow vesicle known as the otocyst. The

otocyst then transforms into the inner ear with its distinct sensory

epithelia and their associated non-sensory compartments. The

development of these different structures and their specialized cell

types involves complex interplays between intercellular signalling

pathways and cell-intrinsic regulators of gene expression, which

are still poorly understood [1–4]. One such interaction appears to

link two major players during inner ear development: the Notch

pathway and the Sox2 transcription factor.

Notch signalling plays distinct roles during inner ear de-

velopment. An early phase of Notch activity dependent on the

Notch ligand Jagged1 (Jag1) promotes the formation of the

prosensory domains – from which sensory epithelia develop.

Subsequently, lateral inhibition mediated by the ligand Delta1-

like 1 (Dll1) regulates hair cell versus support cell fate decisions

within sensory epithelia – with Notch activity opposing hair cell

differentiation [5,6]. Sox2, a member of the SoxB1 subgroup of

Sox (SRY related HMG box) transcription factors, is expressed in

sensory progenitors and later on in support cells [7–9], and is

required for the development of all inner ear sensory epithelia in

mice [10]. Over-expression studies have shown that Sox2 can

induce prosensory fate and ectopic formation of hair cells if it is

transiently expressed at early stages of inner ear development

[11]. However, hair cells downregulate Sox2 expression when

they differentiate [11] and sustained over-expression of Sox2

prevents hair cell formation in the mammalian cochlea [12]. The

parallel with the dual effects of Notch activity on hair cell

formation is striking, and several studies have implicated Notch

signalling in the regulation of Sox2 expression. At prosensory

stages, loss of Notch activity or Jagged1 function leads to a down-

regulation of Sox2 expression in prosensory domains [12–14].

Conversely, forced activation of the Notch pathway promotes

prosensory character and Sox2 expression in the embryonic

inner ear [11,12,15–17]. This suggests that the prosensory

function of Notch activity could be dependent – at least in part

- on its ability to maintain adequate levels of Sox2 within

progenitor cells. However, additional factors are likely to impact

on Sox2 function during inner ear development. Insights from
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neurogenesis led us to hypothesize that Sox21 could be among

such factors.

During vertebrate neurogenesis, Sox2 and other members of the

SoxB1 family (Sox1 and Sox3) suppress neural differentiation and

contribute, along with Notch activity, to the maintenance of a pool

of cycling progenitors [18–21]. On the other hand Sox21,

a member of the closely related subgroup of SoxB2 genes (which

also comprises Sox14), counteracts the effects of SoxB1 factors and

promotes neural differentiation. The SoxB2 and SoxB1 proteins

share a very similar DNA-binding domain, however the SoxB1 are

transcriptional activators, while the SoxB2 proteins are repressors

[22,23]. Therefore, it has been proposed that the balance of SoxB1

and Sox21 expression could determine whether progenitor cells

commit to neural differentiation or not [20,22].

Previous studies have reported that Sox21 is expressed in the

embryonic chicken and mouse inner ear [23,24], which makes it

a good candidate regulator of Sox2 activity in this tissue. It has

recently been reported that absence of Sox21 in a knock-out mouse

model causes mild patterning defects in the organ of Corti, but the

precise role of Sox21 in this context remains unclear [24]. Here we

investigated the function of Sox21 during the development of the

chicken inner ear. We show that Sox21 is expressed in sensory

domains at the time of hair cell formation and that differences in

the localization of Sox21 transcripts exist between the auditory and

vestibular sensory patches. Sustained over-expression of Sox21

from an early stage of ear development leads to a loss of Sox2

expression and inhibits prosensory specification. However in-

duction of Sox21 after prosensory specification down-regulates

Sox2 expression and Notch activity, strongly promoting hair cell

differentiation in vestibular patches. Surprisingly, Sox21 over-

expression does not have the same effect in the auditory

epithelium, despite its inhibitory effect on Sox2 expression. This

study identifies Sox21 as a regulator of hair cell differentiation and

highlights temporal as well as regional differences in the function

of SoxB transcription factors in the inner ear.

Materials and Methods

Animals
Fertilized White Leghorn chicken (Gallus gallus) eggs were

obtained from Henry Stewart UK and incubated at 38uC and 30–

80% humidity for designated times. Embryonic stages are either

from Hamburger-Hamilton (HH) tables [25] or embryonic days

(E), E1 corresponding to 24 hours of incubation. Embryos older

than E5 were killed by decapitation. The UK Home Office and

the University College London animal ethics committee approved

all procedures that were performed.

Plasmids
The following plasmid DNA constructs were used: 1) RCAS(B)-

Sox21, which consists of a Myc-tagged version of the chicken

Sox21 coding sequence in the replication-competent avian specific

retroviral vector RCAS(B) [22]; 2) pT2K-TRE-B1-eGFP (herein

named pTRE-eGFP), which consists of a cassette of bidirectional

transcriptional units (one controlling transcription of eGFP, the

other empty) under the control of a tetracycline-responsive

element (TRE) between the left and right ends of Tol2 [26]; 3)

pT2K-TRE-B1-FP635 (herein named pTRE-FP635), which is

a modified version of pTRE-eGFP where the far-red fluorescent

protein FP635 (Evrogen) has been cloned in place of eGFP; 4)

pT2K-TRE-B1-eGFP-Sox21 (herein named pTRE-eGFP-Sox21),

which is a modified version of pTRE-eGFP in which the Myc-

tagged chicken Sox21 cds was cut from RCAS(B)-Sox21-Myc with

Xba1 and Sma1 and directionally cloned downstream of the

empty transcriptional unit into the Nhe1/EcoRV sites of the

vector multiple cloning site; 5) pCAGGS-T2TP, which consists of

a transposase controlled by a CAGGS promoter and facilitated

genomic integration of the Tol2 flanked sequences [26]; 6) pT2K-

TRE-B1-FP635-Sox21 (herein named pTRE-FP635-Sox21),

which is the FP635 version of pTRE-eGFP-Sox21; 7) pT2K-

CAGGS-rtTA-M2, which consists of the tetracycline-on activator

between the left and right ends of Tol2 [26]; 8) pBS-SK+Sox21,
which was used to generate the in situ hybridization probe and

consists of a 718 bp fragment from the Sox21 cds (position 1208–

1925) [23]; 9) pT2K-Hes5::nd2eGFP, which is a promoter-less

Tol2 vector in which a 0.8 kb fragment of the promoter of the

mouse Hes5 gene [27] regulates the expression of a nuclear-

localized and destabilized version of eGFP; 10) pT2K-Atoh1::n-

Tomato is an Atoh1 reporter that was generated by digesting

pT2K-CAGGS-nTomato with Sal1-BamH1 to remove the

CAGGS promoter and replacing it with a Sal1-BamH1 digested

fragment of the 39 Math1 enhancer originally contained in the

J2X-nGFP plasmid (kind gift from Dr. J. Johnson). Details of

cloning procedures are available upon request.

In-ovo Electroporation
Microelectroporation of the otic cup of E2 embryos was

performed using a BTX ECM 830 Electro Square PoratorTM as

previously described [15]. The plasmid DNA constructs were

purified using PureYieldTM Plasmid Midiprep System kit (Pro-

mega) and used for electroporation at a final concentration

ranging between 0.5 and 1 mg/ml. Further details of the

experimental procedures for in ovo electroporation of the chicken

otic cup and use of the Tol2 transposon vectors in this tissue are

available in [28].

Immunocytochemistry and in situ Hybridisation
The following antibodies were used: monoclonal mouse IgG1

anti-HCA (Hair Cell Antigen; supernatant used at 1:1000) [29];

monoclonal mouse IgG2a anti-otoferlin (HCS1; used at 1:200)

[30]; rabbit anti-Serrate1 (used at 1:100) [31] and rabbit anti-

Delta1 (used at 1:100) [32]; rabbit anti-Prox1 (used at 1:250;

Abcam AB11941); monoclonal mouse IgG1 anti-Myc (used at

1:100; Santa Cruz 9E10); mouse monoclonal anti-beta tubulin

class III (used at 1:1000; Sigma T8578). Goat anti-mouse IgG or

anti-rabbit IgG secondary antibodies conjugated to Alexa-405,

488, 546, 633, 647 (Invitrogen) were used at 1:1000. Immunocy-

tochemistry experiments and in situ hybridization for chicken

Sox21 were performed as described in [15]. Specimens were

analysed on a Zeiss LSM510 inverted confocal microscope.

Cryosections
Wholemount in situ hybridisation samples were cryoprotected in

PBS with 20% sucrose then washed in a 1:1 solution of 20%

sucrose and TissueTekTM, before being embedded in Tissue-

TekTM and frozen in liquid nitrogen. Frozen sections (20 mm)

were collected using a Leica CM1850 Cryostat, mounted on

SuperFrost PlusTM slides (Microm) and images were taken using

a Zeiss Axioplan microscope fitted with a digital camera.

Measurements of Sensory Patch Size
Sensory patch size was measured according to patch span,

which was defined as the distance between the two furthest points

within a patch. Patch span was measured using LSM Image

Browser software (Zeiss) in whole-mount preparations immunos-

tained with the prosensory marker Prox1.

Sox21 and Inner Ear Development
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Quantification of Sox2 Expression, Hes5::nd2eGFP, and
Atoh1::nTomato Fluorescence
For comparison of Sox2 expression levels in cells transfected

with either pTRE-Sox21-eGFP or pTRE-eGFP, five samples of

each condition were treated for 12 hours with doxycycline in

vitro and processed for immunostaining with Sox2 and HCA/

otoferlin antibodies. Measurement of mean intensity values for

the eGFP and Sox2 channels (12-bits) were made on randomly

selected support cell nuclei using ImageJ. Transfected nuclei

were defined by a mean value of eGFP.mean eGFPback-

ground+106stdev (typically between 150–250 raw fluorescence

values, depending on the samples) and Sox2 expression levels

were standardized for each sample using Z-scoring [z = (x-

mean)/stdev] then pooled across each experimental condition

(i.e. Sox21-GFP or GFP alone). Statistical analyses of Z-score

values of Sox2 expression within cells transfected with either

Sox21-GFP or GFP alone were computed using SPSS 19 for

Mac. Some data did not follow a normal distribution, so

nonparametric tests were used; all p values are two-tailed. A

similar approach was used to analyse levels of nuclear

Hes5::nd2eGFP fluorescence in samples transfected with

pT2K-Hes5::nd2eGFP and either pTRE-Sox21-FP635 or

pTRE-FP635.

For quantification of Atoh1::nTomato fluorescence, embryos

electroporated with pT2K-Atoh1::nTomato and pTRE-Sox21-

eGFP were treated in ovo at E6 with 10 mg of Dox and incubated

for a further 15 or 24 hours. After fixation, inner ear tissue was

dissected and processed for whole-mount imaging on a confocal

microscope. Confocal stacks were collected and ImageJ was used

to measure the mean red and green fluorescence values (12-bits)

within the nuclei of randomly selected Atoh1-positive cells located

in the basilar papilla and vestibular regions. Cells with a mean

value of eGFP.mean eGFPbackground+106stdev were categorized

as Sox21-induced, and Z-score values of Atoh1::nTomato

fluorescence were compared across categories of cells.

Results

Sox21 Expression Coincides with Hair Cell Formation and
Differs between Auditory and Vestibular Sensory Patches
We used in situ hybridization to investigate Sox21 expression at

different stages of chicken inner ear development. At embryonic

day (E) 3, there was strong Sox21 expression in the brain and

neural tube, but only very faint expression in the otic vesicle

(Fig. 1A). At E5, Sox21 transcripts were detected in the inner ear,

in the location of presumptive posterior and superior cristae

(Fig. 1B). By E7, Sox21 transcripts were clearly visible in all of the

sensory epithelia (posterior, superior and lateral cristae, utricle,

saccule) and in the auditory epithelium, the basilar papilla

(Fig. 1C). In the basilar papilla, Sox21 transcripts were restricted

to the support cell layer and were absent from the hair cell layer

(Fig. 1C’), which is consistent with Sox21 expression pattern in the

mouse organ of Corti [24]. However in the striola region of the

utricle (Fig. 1C’’), and in the cristae (Fig. 1C’’’), Sox21 transcripts

were preferentially located in the hair cell layer. This expression

pattern was also found at E15 (Fig. 1D; 1D’; 1D’’; 1D’’’), when

hair cell differentiation has stopped in the basilar papilla, but is still

ongoing in vestibular patches. These results showed that Sox21 is

upregulated within sensory progenitors at the time of hair cell

formation, however the cells with highest levels of Sox21 expression

are either hair cells in the vestibular patches, or support cells in the

basilar papilla.

Over-expression of Sox21 at Early Stages of Inner Ear
Development Leads to a Loss of Prosensory Identity
The expression data suggested that Sox21 plays a role in sensory

patch development and hair cell differentiation, and that this role

may differ between the vestibular and auditory organs. To test the

function of Sox21, we first used an RCAS retroviral vector to drive

constitutive expression of a MYC-tagged version of chicken Sox21

protein in the developing inner ear. Following in ovo electropora-

tion of the otic placode/cup with RCAS-Sox21-MYC plasmid

DNA, the embryos were incubated until E9, a stage at which

morphogenesis of the inner ear and hair cell production are well

advanced. Sox21 over-expression produced a distinct and re-

producible phenotype in which the vestibular part of the inner ear

was systematically smaller than in control ears (n = 12/12). In the

most extreme cases, all three cristae appeared smaller in size when

compared with controls, and a single sensory patch of reduced size

was in place of the utricle and saccule (n = 8/12). To quantify the

differences in sensory patch size we measured in whole-mount

preparations immunostained for Prox1 expression the maximum

span of each vestibular patch, and the length and apical and basal

width of the basilar papilla. We compared these measurements

and found that all of the vestibular sensory patches were

significantly reduced in size (t-test, p,0.05; control: n = 12,

Sox21: n= 13; Fig. 2B). The length of the basilar papilla in

Sox21-transfected samples was slightly shorter than that of

controls (t-test, p,0.05; control: n = 12, Sox21: n= 13), however

the widths of the basilar papilla, measured in basal and apical

regions, were unchanged (Fig. 2C).

To assess the effects of Sox21 over-expression on sensory

specification, we immunostained the samples for Prox1 and Sox2,

which are markers of sensory progenitors and support cells in the

inner ear [8,9,33,34]. Prox1 expression was reduced or completely

absent in Sox21 over-expressing cells when compared to

neighbouring untransfected cells (Fig. 2 D–D’, white arrowheads).

Likewise, Sox2 expression was consistently reduced in Sox21-

MYC positive cells (Fig. 2 E–E’).

As they mature, hair cells downregulate Sox2 and Prox1

expression [9,34]. Hence, the loss of Sox2 and Prox1 in cells

infected with RCAS-Sox21 may have been an indication that

these cells had differentiated into hair cells. To investigate this

possibility we analysed the expression of two hair cell markers, the

hair cell antigen (HCA) [29] and otoferlin [30], as well as beta-

tubulin class III (Tuj1), which labels immature hair cells and the

nerve fibres that innervate them [35]. In both the auditory and

vestibular sensory patches, cells over-expressing Sox21 were not

labelled with HCA/otoferlin antibodies (Fig. 2F–F’, white arrow-

heads). Nerve fibres, labelled by Tuj1, were absent from large

patches of infection located within sensory epithelia, further

confirming the absence of neurons or hair cells among Sox21-

over-expressing cells (Fig. 2G–G’, white arrowhead). These results

showed that over-expression of Sox21 in otic cells prevented them

from adopting a prosensory fate.

Temporal Control of Sox21 Over-expression Reveals
a Potential Role in Hair Cell Formation in Vestibular
Patches, but not in the Basilar Papilla
Endogenous expression of Sox21 in the chicken inner ear does

not reach high levels until E5 (Fig. 1), which coincides with the

time of hair cell formation [36]. In our previous experiments,

RCAS-mediated over-expression of Sox21 began at E2.5. This

prevented us from assessing the specific effect of Sox21 over-

expression upon hair cell versus support cell differentiation, at

times when endogenous Sox21 is expressed in the inner ear.

Sox21 and Inner Ear Development
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To overcome this problem, we used a Tet-on inducible Tol2

transposon system [37] in which a bidirectional tetracycline-

responsive element (TRE) drives the expression of both eGFP and

a gene of interest following doxycycline (Dox) treatment (Fig. 3A).

Embryos co-electroporated at E2 with either pTRE-eGFP or

pTRE-eGFP-Sox21 plasmids (along with plasmids encoding Tol2

transposase and the rtTA-M2 tet-on activator) were killed at E7–

E10 and their inner ear maintained in vitro for up to 48 hours in

the presence of Dox (see Fig. 3A for schematic). For ease of

analysis we used the presence of eGFP as a marker for the

presence of Sox21 in samples electroporated with pTRE-eGFP-

Sox21. Immunostaining for MYC-tagged Sox21 confirmed that

there was very good correlation with eGFP expression in Dox-

treated samples (Fig. 3B). Analysis of cell morphology and

molecular markers allowed us to assess whether the eGFP-positive

cells were hair cells or progenitor/support cells. The eGFP-

positive cells were counted and categorised into 4 phenotypic

classes according to their morphologies and expression of HCA

and otoferlin (Fig. 3C, see legend for description of phenotypic

classes). Because the subcellular localisation of HCA and otoferlin

differs within hair cells, and was not modified by Sox21

overexpression induced by Dox treatment (data not shown), we

labelled the two epitopes with the same secondary antibody in

these experiments.

Induction of Sox21 over-expression was performed at E10 in

vestibular (utricle and crista) epithelia. In these samples, we found

the majority of pTRE-eGFP transfected cells had support cell

rather than hair cell morphologies. In contrast, the majority of

cells transfected with pTRE-eGFP-Sox21 had hair cell morphol-

ogy and were otoferlin and HCA-positive (Fig. 4A). Surprisingly,

this result was not observed in organotypic cultures of the auditory

epithelium, the basilar papilla. In this instance the induction of

Sox21 over-expression was performed at E7, at a time when

mitotic sensory progenitors are still present and few auditory hair

cells have differentiated [29]. After 48 hours, the phenotypic

distribution of Sox21-induced cells appeared very similar to that of

samples transfected with the pTRE-eGFP construct (Fig. 4A).

To investigate the timing of Sox21 effects on hair cell

differentiation, we analysed the molecular and morphological

phenotype of eGFP-positive cells within the vestibular and

auditory sensory patches after 12, 24 and 48 hours in Dox. Three

independent samples were analysed for each time point. Cell

counts were then pooled before the percentages of the four cell

phenotypes were calculated. In agreement with previous work

[30], we noted that expression of HCA at the apical surface always

preceded that of otoferlin within the cytoplasm of immature hair

cells (Fig. 3C). In controls transfected with pTRE-eGFP,

a comparable distribution of cell phenotypes was observed across

specimens at the three time points (Fig. 4B,C). In vestibular

epithelia, the most common eGFP-induced cell type was the

uncommitted progenitor/support cell type, with lower percentages

of hair cell progenitors, immature hair cells and mature hair cells

observed. In contrast, the proportion of Sox21-induced support-

ing/progenitor cells decreased as the time spent in the presence of

Dox increased (Fig. 4B). After 12 hours of Dox treatment, the

majority of Sox21-induced cells in the vestibular samples were

very immature hair cells (44.7%) and by 48 hours of treatment, the

majority were either immature or mature hair cells (83.1%;

Fig. 4B). These data suggested that, at least in the vestibular

epithelia, induction of Sox21 was able to bias progenitor cells

towards a hair cell fate.

The induction of Sox21 in cultures of E7 basilar papilla did not

have such effect. The pTRE-eGFP and pTRE-eGFP-Sox21

transfected cells exhibited similar distribution of cell phenotypes

after 12, 24 or 48 hours of Dox treatment. In all samples, the most

common phenotype was that of supporting/progenitor cells (63–

68%) and the percentage of mature hair cells remained

comparable between the control and experimental samples after

48 hours of Dox treatment (,23%; Fig. 4C).

Induction of Sox21 Causes a Reduction in Sox2
Expression
Sox2 can antagonize hair cell differentiation [9,12] and our

previous results showed that Sox21 could inhibit Sox2 expression

at early stages of inner ear development. Hence, it seemed possible

that transient over-expression of Sox21 could result in a down-

regulation of Sox2 expression, which in turn might bias un-

committed progenitor cells towards a hair cell fate. To test this

hypothesis, we analysed Sox2 expression in vestibular and auditory

organs transfected with either pTRE-eGFP or pTRE-eGFP-Sox21

and treated for 12 hours with Dox (Fig. 5). Despite important cell-

to-cell variations, there was no apparent difference in the levels of

Sox2 expression between eGFP-positive and eGFP-negative cells

in pTRE-eGFP transfected samples (Fig. 5A). On the other hand,

levels of Sox2 expression appeared frequently reduced in both hair

cells and uncommitted progenitor/support cells over-expressing

eGFP-Sox21 when compared to neighbouring untransfected cell

types (Fig. 5B). To ascertain this effect, we measured the levels of

Sox2 expression within individual progenitor/support cells with

a basal nucleus in samples transfected with either Sox21-eGFP or

eGFP alone (Fig. 5B,C; see methods). The normalized intensity

values for Sox2 expression were lower and statistically different in

Sox21-eGFP-expressing cells when compared to eGFP-expressing

cells in both auditory (Sox21-eGFP/n= 66; eGFP/n= 93; Mann-

Whitney U=2268; p = 0.005) and vestibular (Sox21-eGFP/

n=249; eGFP/n=326; Mann-Whitney U=32335; p=0.000)

epithelia. This suggested that elevating the levels of Sox21

expression could inhibit Sox2 expression in sensory progenitors

and support cells.

Induction of Sox21 Reduces Endogenous Levels of Notch
Activity
Hair cell fate decisions are regulated by lateral inhibition: the

precursor cells that down-regulate Notch activity become hair

cells and express Delta1, and signal to neighbouring cells to

Figure 1. Expression of Sox21 during chicken inner ear development. (A) Sox21 mRNA showed faint levels of expression at E3 in the otic
vesicle. (B) Upregulation of Sox21 expression was observed in the presumptive posterior crista and the presumptive superior crista regions at E5. (C)
At E7 Sox21 transcripts were detected in the basilar papilla, the utricle, the saccule and the posterior, superior and lateral cristae. (C’) in the utricle,
Sox21 is strongly expressed in the striola region (entire utricle is marked with black dotted line). (C’’) Transverse cryosection through the basilar papilla
reveals Sox21 transcripts are restricted to the support cell layer. (C’’’) Transverse cryosection through the utricle reveals that Sox21 transcripts are
enriched in the hair cell layer. (D) At E15 Sox21 transcripts were still present in the basilar papilla, the utricle, the saccule and the posterior, superior
and lateral cristae. D’) Transverse cryosection through the E15 basilar papilla reveals Sox21 transcripts remain restricted to the support cell layer. (D’’)
Transverse cryosection through the E15 utricle reveals Sox21 transcripts are enriched in the hair cell layer. (D’’’) Transverse cryosection through the
E15 cristae reveal Sox21 transcripts are enriched in the hair cell layer. Picture shown is of a lateral crista; all cristae exhibited the same expression
pattern. ov: otic vesicle; sc: superior crista; pc: posterior crista; lc: lateral crista; ut: utricle; bp: basilar papilla; HC: hair cell layer; SC: support cell layer.
doi:10.1371/journal.pone.0046387.g001
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remain as mitotic progenitors or to differentiate into support cells

by activating their Notch receptors [5,6]. To determine the

potential effects of Sox21 on Notch signalling, we used a Tol2

pT2K-Hes5::nd2EGFP reporter construct, in which the mouse

Hes5 promoter [27] regulates the expression of a short-lived,

nuclear-localized form of eGFP. This Hes5 reporter is sensitive to

Figure 2. Over-expression of Sox21 at early stages of inner ear development leads to a loss of prosensory identity. (A) Brightfield and
Prox1/Myc/Dapi immunostained views of inner ear dissected from E9 unelectroporated controls and RCAS-Sox21 electroporated embryos. Inner ears
over-expressing Sox21 exhibit morphogenesis defects, including a reduction in the size of the cristae (white asterisks) and the presumptive utricle
(marked as ’’ut/sac’’ because identification is based on its position, and the reduced patch may also represent the saccule; images are composites of
projections of distinct confocal stacks). Box plots of vestibular sensory patch maximum span (B; dashed line in panel A illustrates span of the utricle)
and widths and length of the basilar papilla (C) in control (n = 12) and Sox21 (n = 13) transfected whole-mount preparations. Minimum, first quartile,
median, third quartile and maximum are displayed. Prox1 (D–D’) and Sox2 (E–E’) expression is reduced in both vestibular and auditory sensory cells
over-expressing Sox21 (white arrowheads). Immunostaining for otoferlin/HCA (F–F’) and Tuj1 (G–G’) show that cells over-expressing Sox21 from E2
onwards do not form hair cells or neurons and are not innervated. sc: superior crista; pc: posterior crista; lc: lateral crista; ut: utricle; bp: basilar papilla.
doi:10.1371/journal.pone.0046387.g002
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Notch signalling throughout the developing chicken inner ear,

and can be used to monitor reductions in endogenous levels of

Notch activity (E. Chrysostomou, J. Gale and N. Daudet, in

press). We focused our analysis on vestibular patches in which

induction of Sox21 had clear effects on hair cell differentiation.

We co-electroporated either the pTRE-FP635 or pTRE-FP635-

Sox21 (these inducible constructs included the red fluorescent

protein Turbo-FP635 instead of eGFP to identify induced cells)

with the pT2K-Hes5::nd2eGFP reporter at E2, let the embryos

develop to E10 stages, then dissected and cultured vestibular

patches from three independent samples in the presence of Dox.

After 12 hours of treatment, we found endogenous Notch activity

(defined as Hes5::nd2eEGFP levels .500 above background in

a 12-bits image) in 68.1% of control FP635-induced cells

(n = 94/138), versus only 49% of FP635-Sox21 induced cells

(n = 51/104; Fig. 6A,B). This difference was even greater after 48

hours: Notch activity was observed in an average of 64.5% of

FP635 induced cells (n = 71/110), but in only 21.2% of FP635-

Sox21 cells (n = 23/108; Fig. 6B). In some cases, a striking

checkerboard-like pattern of FP635-Sox21 induced cells sur-

rounded by strongly nd2EGFP-positive cells was observed

(Fig. 6A, lower panels). We next quantified Hes5::nd2EGFP

fluorescence levels of individual progenitor/support cells after 12

hours of Dox treatment. In control samples, there was no

statistically significant difference in levels of Hes5::nd2EGFP

fluorescence of FP635-induced versus non-induced cells (Mann

Whitney U test; p = 0.000; total n nuclei = 180 transfected/432

untransfected in n= 3 samples). However, there was a significant

decrease (Mann-Whitney U test = 11232; p= 0.000) in the levels

of nd2EGFP expression in FP635-Sox21 transfected cells

(n = 178; n= 3 samples) when compared to FP635-transfected

cells (n = 180; n= 3 samples) (Fig. 6C). On the other hand,

expression of the Notch ligands Delta1 and Serrate1 did not

appear to differ between control and Sox21-induced cells at this

time point (Fig. 7A–F), suggesting that the reduction in

endogenous Notch activity was not consecutive to stronger

lateral inhibition delivered by Sox21-induced cells. These data

suggested that artificial elevation of Sox21 expression in

vestibular sensory progenitors results in a rapid reduction of

endogenous Notch activity, which is consistent with the pro-

gression of Sox21-induced cells towards a hair cell phenotype.

Induction of Sox21 does not Upregulate Activity of the
Atoh1::nTomato Reporter
The Atoh1 transcription factor is required for hair cell

formation [38], and artificial induction of Atoh1 expression can

promote hair cell formation in the immature inner ear [39]. To

test whether Sox21 might regulate Atoh1 gene expression, we

investigated the consequences of a relatively short induction of

Sox21 expression on the activity of a fluorescent reporter of Atoh1

expression, pT2K-Atoh1::nTomato (Fig. 8A). This Tol2 construct

consisted of the 39 enhancer of the mouse Atoh1 gene [40],

regulating the expression of a nuclear-localized Tomato fluores-

cent protein. Previous experiments showed that high levels of

nTomato are present in the nuclei of pT2K-Atoh1::nTomato

transfected hair cells, identifiable by HCA and otoferlin expres-

sion, from E6 onwards (data not shown and Fig. 7B).

Following electroporation of the Atoh1 reporter and the pTRE-

Sox21-eGFP constructs at E2, embryos were treated in ovo with

Dox at E6 to induce Sox21, and then incubated for a further 15

(n= 4) and 24 (n = 4) hours. At both time points and in both

vestibular and auditory epithelia, we found that levels of

Atoh1::nTomato fluorescence were variable from cell to cell, but

did not appear elevated in Sox21-eGFP expressing cells (Fig. 8C–

H). In both vestibular and auditory regions, Atoh1::nTomato

positive cells were located within the sensory epithelia, with the

exception of a subset of Sox21-eGFP expressing cells in the lateral

wall of the basilar papilla (n = 3/4 samples; arrowhead in Fig. 8C–

C’). At 24 hours post-induction, the distribution of the mean values

Figure 3. Tol2 system for Dox-inducible gene expression and classification of cell phenotypes. (A) The pTRE-Sox21-eEGFP Dox-inducible
expression vector and experimental design for testing the effects of Sox21 induction at late stages of ear development. (B) MYC-tagged Sox21 was
detected in the nuclei of all eGFP positive cells. (C) Classification of eGFP-positive cells into 4 phenotypes: uncommitted progenitor/support cell, in
which otoferlin and HCA are not expressed, and with a cytoplasmic process contacting the basal lamina (arrows); immature hair cell type I (imHC (I))
in which HCA is present (arrowhead) but otoferlin is not, and which can exhibit a basal cytoplasmic process (arrows); immature hair cell type II (imHC
(II)), with an elongated cell shape and both otoferlin and HCA expressed; Mature hair cell (HC), with a flask-shaped cell body and both otoferlin and
HCA expressed.
doi:10.1371/journal.pone.0046387.g003
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Figure 4. Induction of Sox21 expression at late embryonic stages promotes hair cell formation in vestibular patches, but not in the
basilar papilla. (A) cultures of transfected inner ear tissue treated for 48 hours with Dox, then immunostained for otoferlin/HCA. With the pTRE-
eGFP vector, eGFP-positive cells are mainly uncommitted progenitor/support cell types but include some hair cells (red asterisks). Induction of Sox21-
eGFP in vestibular sensory epithelia for 48 hours results in a large majority of induced cells exhibiting a hair cell phenotype (red asterisks). In the
basilar papilla, induction of Sox21-eGFP for 48 hours produces a phenotype indistinguishable from that of the control. (B–C) Phenotypic distribution

Sox21 and Inner Ear Development

PLOS ONE | www.plosone.org 8 October 2012 | Volume 7 | Issue 10 | e46387



of Atoh1::nTomato fluorescence of Sox21-eGFP expressing and

non-expressing cells (Fig. 8E, 8H) were not statistically different in

the basilar papilla (total n nuclei = 113 transfected/162 untrans-

fected; Mann-Whitney U test = 9818, p = 0.305) and in the

vestibular epithelia (total n nuclei = 76 transfected/57 untrans-

fected; Mann-Whitney U test = 2560, p = 0.073). These results

suggested that Sox21 does not directly regulate Atoh1 gene

expression.

Discussion

The SoxB1 transcription factor Sox2 has essential roles during

sensory development in the inner ear, but the mechanisms

regulating its expression or function are still poorly understood.

Here, we found that the SoxB2 family member Sox21 could be an

important regulator of Sox2 function in the inner ear. We show

that over-expression of Sox21 leads to inhibition of Sox2

expression and Notch activity, two of the major players implicated

in both prosensory specification and the terminal differentiation of

hair cells and support cells. Furthermore, over-expression of Sox21

(colors correspond to those used in Figure 3D) of eGFP-positive cells after 12, 24 and 48 hours Dox treatment. In vestibular sensory epithelia, Sox21
induction caused a strong shift towards hair cell phenotypes over time. Total cell counts from 3 separate ear samples are shown above bars.
doi:10.1371/journal.pone.0046387.g004

Figure 5. Short induction of Sox21 reduces Sox2 expression in organotypic cultures of E10 utricle and E7 basilar papilla. (B)
Representative images of Sox2 immunostaining in pTRE-Sox21-eGFP samples after 12 hours of Dox treatment. Induced cells are marked with
asterisks, and tend to exhibit reduced levels of Sox2 expression compared to neighbouring untransfected cells (C). Box plot of Z-score values [Z = (x-
mean)/stdev] for levels of Sox2 expression in supporting/progenitor cells of the basilar papilla (B; 3 samples) or of the utricle (C; 5 samples),
expressing either eGFP only or Sox21-eGFP. Outliers, minimum, first quartile, median, third quartile and maximum are displayed, n = numbers of
transfected cells. Sox2 expression levels were significantly lower in Sox21-eGFP expressing cells than in eGFP expressing cells in both the auditory
(Mann-Whitney U= 14873; p = 0.00) and vestibular (Mann-Whitney U= 32335; p=0.00) epithelia.
doi:10.1371/journal.pone.0046387.g005
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has the ability to promote hair cell formation in a context-

dependent manner. Thus, we suggest that antagonistic interactions

among SoxB family transcription factors could regulate sensory

cell development in the inner ear.

Context and Dosage Determine the Function of SoxB
Transcription Factors in the Inner Ear
A strict regulation of the level of Sox2 expression is critical for its

functions. In mammals, the complete absence of the Sox2 gene is

embryonic lethal [41], and the phenotypes resulting from partial

inactivation of Sox2 expression are highly sensitive to dosage in the

central nervous system [42]. Similarly, in the inner ear, complete

absence of Sox2 expression in Lcc/Lcc mutant mice leads to a total

failure of sensory development, but partial formation of sensory

patches occurs in the Ysb/Ysb mutant that has reduced levels of

Sox2 [10]. Furthermore, hair cell numbers are increased in the

organ of Corti of Sox2 hypomorphic mice, suggesting that partial

reduction of Sox2 expression can enhance hair cell formation [12].

Here we found that a related member of the SoxB family, the

SoxB2 subgroup member Sox21, is a potent regulator of sensory

cell formation in the inner ear.

Over-expression of Sox21 from an early stage of ear de-

velopment severely disrupted inner ear morphogenesis. Otic cells

over-expressing Sox21 failed to express Sox2 and the prosensory

marker Prox1, and the drastic morphological abnormalities of

sensory and non-sensory structures of the vestibular region were

Figure 6. Induction of sox21 causes a progressive reduction in levels of Notch activity. (A) surface views of E10 vestibular patches
transfected with the pT2K-Hes5::nd2eGFP reporter and either pTRE-FP635 (control) or pTRE-FP635-Sox21 and treated in vitro with Dox for 12 or 48
hours. In control samples, the proportion of FP635-positive cells that were either positive (arrowheads) or negative (arrow) for nuclear Hes5::nd2eGFP
expression was comparable after 12 or 48 hours Dox treatment. In contrast, the number of Sox21-FP635 induced cells positive for Hes5::nd2eGFP
expression was reduced at both 12 hours and 48 hours of Dox treatment. In the 48 hours example shown, all FP635-Sox21 are negative for Notch
activity (white arrows); the transverse reconstruction of the same region (z-view panel) also demonstrate expression of otoferlin/HCA in FP635-Sox21
induced cells. (B) Graph showing the proportion of Notch-active (mean intensity of nuclear d2eGFP signal .500 above background in a 12-bits
image) cells among cells induced for FP635-only (FP635) or FP635-Sox21 (Sox21) expression after 12 and 48 hours Dox treatment; n = total number of
transfected cells analysed in 3 samples. Standard error bars are shown. (C) Box plots of Z-scores values for Hes5::nd2eGFP fluorescence levels in
supporting/progenitor cells transfected with either pTRE-FP635 (n = 180) or pTRE-Sox21-FP635 (n = 178) and treated for 12 hours with Dox. Minimum,
first quartile, median, third quartile, and maximum are displayed. There were significantly lower levels of Hes5::nd2eGFP fluorescence in Sox21-FP635
expressing cells than in FP635 expressing cells (Mann-Whitney U=11232; p= .00; n = total number of transfected cells analysed in 3 samples).
doi:10.1371/journal.pone.0046387.g006

Figure 7. Overexpression of Sox21 does not influence Delta1 and Serrate1 expression. (A–C) After 12 hours Dox treatment, Delta1
expression does not differ between immature hair cells overexpressing Sox21, and control untransfected immature hair cells (white arrowheads
denote the location of immature hair cells; white asterisk denotes Sox21 induced cell. Mature hair cells overexpressing Sox21 do not continue to
exhibit Delta1 expression (yellow arrowhead), consistent with untransfected mature hair cells. (D–F): Apical view of Serrate1 expression shows no
obvious changes in expression levels between regions of induced Sox21 overexpression and untransfected regions.
doi:10.1371/journal.pone.0046387.g007
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reminiscent of those seen in the Sox2 mutant mice [10]. This

suggests that Sox21 can antagonize the early phase of Sox2 activity

linked to prosensory specification in the inner ear. Nevertheless,

our expression data indicate that Sox21 acts at later stages of ear

development, when hair cells are produced. Using a Dox-inducible

system to specifically activate Sox21 expression at late embryonic

stages, we found that Sox21 can promote hair cell differentiation

in embryonic vestibular epithelia, but not in the basilar papilla. On

the other hand, over-expression of Sox21 reduced Sox2 expression

in both the vestibular epithelia and the basilar papilla. This

suggests that SoxB transcription factors exert a greater influence

on hair cell fate decisions in the vestibular sensory epithelia than in

the auditory sensory epithelium. The variation in the expression of

endogenous Sox21 between vestibular and auditory epithelia

further suggests a difference in the role of SoxB transcription

factors in the two sensory systems. In the vestibular epithelia, Sox21

is enriched in the hair cell layer, which is consistent with a ‘‘pro

hair cell’’ role for the endogenous Sox21. In the auditory epithelia

of the chicken and the mouse [24], Sox21 is progressively restricted

to the support cell layer, which suggests an alternative function,

possibly in fine-tuning the function or expression levels of Sox2

within support cells. This could explain why the organ of Corti of

Sox21 knock-out mice has only occasional and subtle defects in

hair cell patterning [24]. However, reduced or delayed hair cell

formation may occur in the vestibular epithelia of the Sox21

mutant mice, which have not been examined yet.

Finally, it is worth noting that the antagonistic effect of Sox2 on

hair cell differentiation is not systematic either: in the adult

vestibular system of birds and mammals, at least one subtype of

hair cell appears to maintain high levels of Sox2 expression [7,43].

In the zebrafish inner ear, Sox2 is not required for hair cell

formation and it does not prevent the overproduction of hair cells

induced by Atoh1 over-expression [44,45]. Hence, the functions of

SoxB transcription factors and the outcomes of their interactions

in the inner ear are strongly influenced by dosage and the cellular

context in which they operate.

Sox21 could Promote Vestibular Hair Cell Formation by
Regulating Sox2 Expression and Notch Activity
The Sox2 and Sox21 proteins have similar DNA binding

domains but exhibit opposite transcriptional activities, suggesting

that their antagonistic functions during neurogenesis could stem

from their contrasting effects on a common set of target genes

[22,23]. In the inner ear, these targets could include some genes

required for hair cell versus support cell differentiation, such as

Atoh1 [38,46,47]. However our experiments using a reporter of

Atoh1 expression suggest that Sox21 does not strongly regulate

Atoh1 gene expression. On the other hand, we found that

sustained as well as transient induction of Sox21 can inhibit Sox2

expression, a result similar to that previously obtained in human

glioma cell lines [48]. Given that Sox2 is thought to antagonize

Atoh1 function in the inner ear [12], the reduction of Sox2 levels

induced by Sox21 could indirectly promote hair cell differentia-

tion. Artificial induction of Sox21 also resulted in a progressive loss

of Hes5::nd2EGFP fluorescence in transfected cells, which was

already visible 12 hours after the onset of Dox treatment. This cell-

autonomous reduction in Notch activity could either reflect the

rapid progression of Sox21-induced cells towards a hair cell fate,

or be partly responsible for this process because of the well-known

implication of Notch signalling in the lateral inhibition of hair cell

formation [5]. How could Sox21 inhibit Notch activity? One

interesting possibility, suggested by Notch1 promoter studies and

ChiP experiments in the mouse CNS, is that Sox2– and by

extension, interactions among SoxB family members- could

regulate the expression of the Notch1 receptor [42]. Future

studies will be needed to determine whether this is the case in the

inner ear. It will be equally important to identify the upstream

factors directing Sox21 expression in sensory progenitor cells,

particularly since analysis of the Sox21 promoter region has

revealed highly conserved elements that direct its expression to the

zebrafish CNS and inner ear [49].

SoxB Transcription Factors and Hair Cell Regeneration
Our findings establish Sox21 as an important regulator of hair

cell differentiation. This in turn makes Sox21 a potential target for

hair cell regeneration therapies. Fish and birds can regenerate

inner ear hair cells throughout life, while in mammals limited

capacities for post-traumatic regeneration exist in the vestibular

organs, but not in the mature organ of Corti [50–52]. Over-

expression of the ‘‘pro-hair cell’’ transcription factor Atoh1 [38] is

currently the favoured approach for hair cell regeneration

therapies. Atoh1 can induce the formation of supernumerary hair

cells in the embryonic inner ear [39,53–55], and it promotes hair

cell production in mature vestibular epithelia [56]. However, the

competence of Atoh1-transfected embryonic progenitors to

differentiate into hair cells is regionally restricted and regulated

by additional factors, including Sox2 [45,47]. As they mature,

support cells of the organ of Corti gradually lose their potential to

convert into hair cells even upon forced expression of Atoh1

[57,58] or to proliferate [59] arguing that Atoh1 gene therapy

alone will not be sufficient to induce complete regeneration in this

tissue [51]. In vestibular epithelia, the competence of support cells

to regenerate new hair cells may be limited by a number of

inhibitory signals, such as Notch activity [60,61] and perhaps

Sox2. If this was the case, the combination of Atoh1 gene therapy

with additional factors antagonizing Notch and SoxB1 activities,

such as Sox21, could improve hair cell regeneration processes in

the mammalian inner ear.

Figure 8. Fluorescence of the pT2K-Atoh1::nTomato reporter is not elevated in Sox21-induced cells. (A) Schematic representation of the
Tol2 Dox-inducible Sox21 and the Tol2 Atoh1 reporter constructs. (B) A vestibular crista transfected with pT2K-Hes5::d2eGFP and the pT2K-
Atoh1::nTomato reporters and immunostained with otoferlin antibodies; the Atoh1::nTomato fluorescence is strong in hair cells (asterisks), but not in
Hes5::d2eGFP positive cells surrounding them (arrowheads). (C–D) Surface views of a BP transfected with pTRE-Sox21-eGFP and pT2K-
Atoh1::nTomato at E2 and treated in ovo for 24 hrs with Dox at E6. Atoh1::nTomato-positive cells were found primarily in the central-distal region of
the BP (asterisk), but a few Sox21-induced cells in the lateral wall were also positive (arrowheads in C–C’). At higher magnification (D–D’), note that
the levels of Atoh1::nTomato fluorescence varied greatly in both Sox21-induced (white arrows and arrowheads) and non-induced (yellow arrows and
arrowheads) cells. (E) Box plots of Z-scores values for Atoh1::nTomato fluorescence levels in untransfected (ø) versus Sox21-induced cells in the basilar
papilla. Minimum, first quartile, median, third quartile, and maximum are displayed. There was no significant difference between the two categories
of cells (Mann-Whitney U=9818; p= 0.305; n = number of cells analysed in 2 samples). (F–G) surface views of a crista transfected with pTRE-Sox21-
eGFP and pT2-Atoh1::nTomato at E2 and treated in ovo for 24 hrs with Dox at E6. Variations in levels of Atoh1 reporter fluorescence are also clearly
visible. (H) Box plots of Z-scores values for Atoh1::nTomato fluorescence levels in untransfected (ø) versus Sox21-induced cells in vestibular epithelia.
Minimum, first quartile, median, third quartile, and maximum are displayed. There was no significant difference between the two categories of cells
(Mann-Whitney U= 2560; p=0.073; n = number of cells analysed in 2 samples).
doi:10.1371/journal.pone.0046387.g008
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