User control of adaptive facades:

Observations from case studies on users' interaction

Acknowledgment

COST Action TU14030

ISO/AWI 52016-3

ISO/TC 163/SC2/WG 15

Energy in Buildings and Communities Programme

IEA Annex 80

Resilient Cooling (2019-2023) Advanced Solar Control

Architectural Facades and Products research group

To what extent are occupants satisfied with blind/glazing control strategies ?

Attia, S. (2018). Evaluation of adaptive facades: The case study of AI Bahr Towers in the UAE. Bilir, S., & Attia, S. (2018). Performance Evaluation of Adaptive Façades: A case study with electrochromic glazing

Adaptive Facades

Smartness: The Great Disruptor

Cyclical Trends: Well-being (light: circadian rhythm), User Interaction, how Augmented Reality, IoT: smart workspace

Light and the Circadian System

- Personalized dynamic building envelopes
- Advanced Sensor Technology (Measure more accurate occupant satisfaction)

Structural Trends: Personalization & Artificial Intelligence personalized conditioning systems, envelope control, comfort models and connected homes

Future trends and main concepts of adaptive facade systems

Regulation Landscape, State of Technology Advancement, Future Market Technology

adaptive façades families

ynamic Shading Facades

Chromogenic Facades

AF technologies, categories & characteristics

TABLE 1 Adaptive facade technologies, categories, and characteristics

		Shutter o equivale
		Roller bli equivale
		Venetian or equiv CCF: nat ventilate
		Chromoger
		glazing
Dynamic shadings	Chromogenic facades	
	KKK	Liquid cr glazing Thermoc glazing
	MXD	Solar active Double s facade
Solar active facades	Active ventilative facades	Green fao roof
	N	
		Phase ch

	Application/purpose	Control	Building type	Technology/materials	
Dynamic shadings					
Shutter or equivalent	Obstruction of sunlight, thermal insulation, security, summer comfort, cooling savings, security, heat retention	Manual, motorized or automated (with different levels of automation)	Residential and nonresidential (schools, hospital, offices, public buildings)	Often large wood or PVC, aluminum, integrated blinds in the ceiled glazing	
Roller blinds or equivalent	Obstruction of sunlight, thermal insulation, summer comfort, privacy, glare protection, cooling savings			Cellular shades and fabrics (different types and properties)	
Venetian blinds or equivalent	See above			Tilting slats and glare control, aluminum and ceiled glazing	
CCF: natural ventilated	Sunlight adjustment, daylight control, summer comfort, glare protection, privacy, cooling savings	Electric (motorized) or magnetic	Office buildings	Venetian blinds: aluminum Electrostatic: thin film	
Chromogenic glazing					
Electrochromic glazing	Solar gain and daylight control, reduce cooling needs, summer comfort, glare reduction	On demand (active), automated (different levels of automation)	Residential and nonresidential (schools, hospital, offices, public buildings)	Suspended particles, organic and nonorganic coating, colloidal nanocrystal	
Liquid crystal glazing	Create privacy spaces, projection screen, and control (solar heat, visible light)				
Thermochromic glazing	Solar gain and daylight control, reduce cooling needs, summer comfort, glare reduction	Environmentally activated (passive)		Thin film or interlayer which changes its crystal structure	
Solar active facades					
Double skin facade	Solar gain and daylight control, reduce cooling needs, summer and winter comfort, glare reduction	Active control, environmentally activated, automated	Residential and nonresidential buildings	Two skins with a ventilated cavity (natural or mechanical)	
Green facade and roof	See above	Environmentally activated (passive)		Different foliage layers and functional substrates for plant growing	
Phase change materials	Solar gain control, reduce cooling needs, winter and summer comfort, heat and solar energy store	Environmentally activated (passive)		Salt or paraffin materials, micro or macro encapsulated into building components	
AVF					
CCF: active ventilated	See above	On demand (active), automated (different levels of automation)	Office buildings		

Façade Functions & Control Strategies

ISO 52016-3 – Control Factors (draft)

	Special	< Only if daytime>					Only if		
			< Only if occupied>				nighttime		
Factors:	interventio n	Day/Night	Thermal needs	Solar gains	Occupation	Glare	Energy override	Daylight & view out	View in
Status 1 ("if") Status 2 ("if not")	User intervenes Instant \$ \$ \$ \$ \$ \$ \$ Back to automatic Delayed	Daytime Instant ↓ ↓ ↓ ↓ ↓ ↓ Nighttime Delayed	Heating needs Instant ↓ ↓ ↓ ↓ ↓ Cooling needs Delayed	High solar gains Instant ↓ ↓ ↓ ↓ ↓ ↓ Low solar gains Delayed	Occupied Instant \$ \$ \$ \$ \$ \$ Unoccupied Delayed	Protect against glare Instant ↓ ↓ ↓ ↓ ↓ ↓ No glare risk Delayed	Energy override requested Instant $\Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow$ Not (= normal) Delayed	Daylight & view out needed Instant \$ \$ \$ \$ \$ \$ Not needed Delayed	"Building use dependent" Instant
Method ("how?")	Algorithm ^e	Sensor? or Algorithm	Sensor Algorithm	Sensor Algorithm	Sensor? or Algorithm	Sensor Algorithm ^f	Sensor Algorithm	f(Day;Occup.) Algorithm	f(Night;Occ.) Algorithm
Effect ("what?")	State change forced	<	- Parametersin	decision matrix-	>	Priority 1 to avoid glare	Daylight & View out overruled	Priority 2 to allow daylight and view out	Priority to avoid view in

Dick van Dijk, 2020. Control strategy adaptive building envelope elements level: automated control type

LIÈGE université

Façade Functions & User Experience

Adaptive facades may include functionalities like:

- External shading for solar energy control
- Internal shading for daylighting and glare control
- Demand controlled ventilation
- Window opening for ventilation and cooling

10/23

Control strategies

- 1. Automated control (programmed)
 - a. User Profiles and Occupancy Modes
 - b. Sensor based
 - i. Predictive Model Control
 - ii. Artificial Intelligence models

User Interactions

FEEDBACK SIGNAL

- 2. Automated + Manual (human user action)
 - a. Manual controller

LIEGE

- b. Graphical User Interface (GUI)
- c. Voiceover technology

SENSORS

Key Elements of Control Strategies

- 1. Automated control (programmed)
 - a. User Profiles and Occupancy Modes
 - b. Sensor based
 - i. Predictive Model Control
 - ii. Artificial Intelligence models

- i. If unoccupied: Energy saving mode
- ii. If occupied after sunrise: comfort mode
 - -Glare safe mode
 - -Thermal comfort mode
 - -Daylight mode
 - -View mode
 - -Energy saving mode
- iii. If occupied after sunset: depend on building function
- iv. Safety
- v. Privacy
- vi. Energy Saving
- 2. Automated + Manual control (human user action)
 - a. Manual controller
- 🗆 🛄 (
- c. Voiceover technology

GUI / Dashboard

- i. Hysteresis and/or delay in reponse
- ii. Only during assumed actual occupany
- iii. Manual or motorized operation

b.

User Interaction & experience

To what extent are occupants satisfied with blind/glazing control strategies ?

Smart Shading vs. Chromogenic Glazing: Façade Strategy for West Side

14/23 📄 SBI

Control strategies

_IEGE

université

Optimized control strategy with respect to visual and thermal comfort and energy use.

- * Cut-off angle, with minimum tilt angle of 15°.
- ** Cut-off angle, with minimum tilt angle of 15° and stepwise increase of 10° until E_v < 1500 lux.

Occupant satisfaction with blind control strategies

Attia, S. (2018). Evaluation of adaptive facades: The case study of Al Bahr Towers in the UAE. Bilir, S., & Attia, S. (2018). Performance Evaluation of Adaptive Facades: A case study with electrochromic glazing université

Occupant satisfaction with glazing control strategies

Attia, S. (2018). Evaluation of adaptive facades: The case study of AI Bahr Towers in the UAE. Bilir, S., & Attia, S. (2018). Performance Evaluation of Adaptive Façades: A case study with electrochromic glazing

Average weighted percent of number of blind/glazing movement/switches in different study periods

Average percent of blinds that moved once during the season55%Average percent of blinds that moved at least once per day16%Average percent of blinds that moved at least once per hour9%

Average percent of glazing that switched once during the season ^{38%} Average percent of glazing that switched at least once per day ^{9%} Average percent of glazing that switched at least once per hour ^{4%}

18/23

User and adaptation control 'clusters'

- There is a slight positive correlation between clear sky conditions and closing/switching of blinds/glazing.
- A remarkable share of occupants tends to not interact with automatically controlled adaptive facades
- When users lower the blinds (occlusion) or switch the glazing, most of the time, they don't raise them again until the end of the day.

User and adaptation control 'clusters'

- Users override solar shading control to enjoy view or improve privacy (increase risk of overheating as well as larger heating energy use)
- According to our observations, shading blinds are more frequently closed/switched than EC glazing.

20/23

category.

Conclusions

Conclusion and Recommendations

There is low interaction between occupants and adaptive facades

- Make users feel in control by encouraging the possibilities to override and interact. Empower users (displays, dashboard, personalization)
- We must cluster users according to the usage intensity and preferences patterns. (active, passive users) allow different degrees of user interaction
- Self-learning automated control and advanced control algorithms require more attention

Attia, S. (2018) Net Zero Energy Buildings (NZEB), Elsevier

Future Work: Adaptive Façade Control Framework

• Occupant-centered controller framework with reminders based on mobile devices with notifications and alerts.

LIÈGE université and daylight control strategies

User control of adaptive facades:

Observations from case studies on users' interaction

Journal Papers:

- Attia, S., Garat, S., & Cools, M. (2019). Development and validation of a survey for well-being and interaction assessment by occupants in office buildings with adaptive facades. *Building and Environment*, 157, 268-276.
- Attia, S., Bilir, S., Safy, T., Struck, C., Loonen, R., & Goia, F. (2018). Current trends and future challenges in the performance assessment of adaptive façade systems. *Energy and Buildings*, *179*, 165-182.
- Attia, S., Navarro, A. L., Juaristi, M., Monge-Barrio, A., Gosztonyi, S., & Al-Doughmi, Z. (2018). Post-occupancy evaluation for adaptive facades. *Journal of Facade Design and Engineering*, 6(3), 1-9.
- Attia, S. (2018). Evaluation of adaptive facades: The case study of AI Bahr Towers in the UAE. QScience Connect, 2017(2), 6.

References II

Conference Papers

- Luna-Navarro, A., Loonen, R. C. G. M., Attia, S., Juaristi, M., Monge-Barrio, A., Donato, M., ... & Overend, M. (2018, November). Occupant-adaptive façade interaction: relationships and conflicts. In *Facade 2018-Adaptive!, Proceedings of the COST Action TU1403 Adaptive Facades Network Final Conference* (pp. 371-377). Lucerne University of Applied Sciences and Arts.
- Attia, S. (2018). Challenges and Future Directions of Smart Sensing and Control Technology for Adaptive Façades Monitoring. *Lucerne University of Applied Sciences and Arts*, 505-514.
- Bilir, S., & Attia, S. (2018). Performance Evaluation of Adaptive Façades: A case study with electrochromic glazing. Adaptive Facades, 315-324.
- Luible, A., Gosztonyi, S., Overend, M., Aelenei, L., Krstic-Furundzic, A., Perino, M., Attia, S., ... & Knaack, U. (2018). Facade 2018-Adaptive!: Proceedings of the COST Action TU1403 Adaptive Facades Network Final Conference.
- Luna-Navarro, A., Loonen, R. C. G. M., Attia, S., Juaristi, M., Bilir, S., Favoino, F., ... & Overend, M. (2017). A roadmap for capturing user-adaptive facade interaction. In *NE-XT facades cost action TU1403 adaptive facades network mid-term conference* (pp. 84-85). TU Delft Open.
- Attia, S., & Bashandy, H. (2016). Evaluation of adaptive facades: The case study of AGC headquarter in Belgium. *Challenging Glass 5.*
- Attia, S., Favoino, F., Loonen, R., Petrovski, A., & Monge-Barrio, A. (2015). Adaptive façades system assessment: An initial review. Advanced building skins, 1265-1273.
- Attia, S. (2015). Adaptive Façades Systems: procedures and protocols for performance monitoring & evaluation. Adaptive facade network-Europe, 46.

Reports:

• Attia, S., & Bashandy, H. (2015). Evaluation of Adaptive Facades, AGC Building a case study of an automated glass facade: Interviews and Process Mapping with the Design Team. SBD Lab.

