Supporting Information for "Morphology of Jupiter's Polar Auroral Bright Spot Emissions via Juno-UVS Observations"

K. Haewsantati^{1,2,3}, B. Bonfond¹, S. Wannawichian ^{3,4}, G. R. Gladstone⁵, V.

Hue⁵, M. H. Versteeg⁵, T. K. Greathouse⁵, D. Grodent¹, Z. Yao^{6,1}, W.

Dunn^{7,8,9}, J.-C. Gérard¹, R. Giles⁵, J. Kammer⁵, R. Guo¹, M. F. Vogt¹⁰

 $^1\mathrm{LPAP},$ STAR Institute, Université de Liège, Liège, Belgium

²Ph.D. program in Physics, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai,

Thailand

³National Astronomical Research Institute of Thailand (Public Organization), Chiang Mai, Thailand

⁴Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand

⁵Southwest Research Institute, San Antonio, Texas, USA

⁶Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

⁷Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, Dorking, UK

 $^8\mathrm{The}$ Centre for Planetary Science at UCL/Birkbeck, London, UK

⁹Harvard-Smithsonian Center for Astrophysics, Smithsonian Astrophysical Observatory, Cambridge, MA USA

¹⁰Center for Space Physics, Boston University, Boston, MA, USA

Contents of this file

1. Figures S1 to S4

Additional Supporting Information (Files uploaded separately)

January 28, 2021, 1:06pm

X - 2

1. Captions for large Table S1

Introduction

The supporting information materials are following.

1. We show the polar projection of bright spots and the SIII longitude position after extrapolation to location that can be mapped by Vogt's mapping model.

:

2. The color ratio plot shows bright spot detected during PJ1 in high color ratio region.

3. We also show the power variation for PJ4 which has quasiperiodic behaviors as same as the PJ16 power variation plot (Figure 7.)

4. Based on period analysis using Lomb-Scargle periodogram method for bright spots during PJ4 and PJ16, the Lomb Normalized Periodogram will be presented.

References

- Bonfond, B., Gladstone, G. R., Grodent, D., Greathouse, T. K., Versteeg, M. H., Hue, V., ... Kurth, W. S. (2017). Morphology of the UV aurorae Jupiter during Juno's first perijove observations. *Geophysical Research Letters*, 44(10), 4463–4471. doi: 10.1002/2017GL073114
- Bonfond, B., Saur, J., Grodent, D., Badman, S. V., Bisikalo, D., Shematovich, V., ... Radioti, A. (2017). The tails of the satellite auroral footprints at Jupiter. *Jour*nal of Geophysical Research: Space Physics, 122(8), 7985–7996. doi: 10.1002/ 2017JA024370
- Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., ... Levin, S. M. (2018). A New Model of Jupiter's Magnetic Field From Juno's First Nine Orbits. *Geophysical Research Letters*, 45(6), 2590–2596. doi:

January 28, 2021, 1:06pm

Vogt, M. F., Bunce, E. J., Kivelson, M. G., Khurana, K. K., Walker, R. J., Radioti, A., ... Grodent, D. (2015). Magnetosphere-ionosphere mapping at Jupiter: Quantifying the effects of using different internal field models. *Journal of Geophysical Research: Space Physics*, 120(4), 2584–2599. doi: 10.1002/2014JA020729

:

Vogt, M. F., Kivelson, M. G., Khurana, K. K., Walker, R. J., Bonfond, B., Grodent, D., & Radioti, A. (2011). Improved mapping of Jupiter's auroral features to magnetospheric sources. Journal of Geophysical Research: Space Physics, 116(A3). doi: 10.1029/ 2010JA016148

Figure S1. Polar projections (Left: Northern, right: Southern) show positions of bright spots and local times according to Vogt's magnetic flux equivalent mapping with JRM09 model. The grid represents meridians and parallels in the SIII jovi-centric system, spaced every 10°. The two dash contours are the statistical locations of the main emission for the compressed and expanded cases (Bonfond, Gladstone, et al., 2017). The yellow asterisk represents the magnetic pole of each hemisphere (Bonfond, Saur, et al., 2017; Connerney et al., 2018). The lines represent the tracing paths from the magnetic pole to the bright spots' peak positions in the directions toward system III longitudes and latitudes, which can be mapped by Vogt's mapping model.(Vogt et al., 2011, 2015)

January 28, 2021, 1:06pm

Figure S2. The color ratio map observed from PJ1 shows the bright spots positions (plus symbols) in high color ratio region. The asterisk represents the magnetic pole. The grid coordinates and two dashed contours are the same as in figure S1.

Table S1. The bright spot characteristics observed during PJ1 to PJ25 are presented. The power is calculated from the total brightness in bright spot's elliptical area. This power is different from the power variation plot (Figure 7 and Figure S3) which is the integrated area corresponding to all bright spots detected during a perijove. The last two columns are mapped positions in magnetosphere and the local times from Vogt's magnetic flux equivalent using JRM09 model.

Figure S3. The power variation as a function of time for the southern bright spots during PJ4. The black arrows indicate the times that bright spots appear in UVS view. The red arrow presents the peak at which no bright spot appears but there is the increase in the brightness in the region of interest. The grey areas indicate times when the region of interest is covered by UVS view less than 50%.

Figure S4. Fitted result from Lomb-Scargle periodogram for PJ4 (top) and PJ16 (bottom). The dashed lines represent significant levels. The lower significant level implies the high probability for the period to be important. The highest peak of normalized power for PJ4 corresponds to period 28.18 minutes. In addition, for PJ16, the clearest peak of normalized power in our period range is 22.68 minutes.