

Water footprint and regionalization: the case study of Walloon corn

Saïcha Gerbinet, Florence Van Stappen and Angélique Léonard saicha.gerbinet@ulg.ac.be Products, Environment, and Processes (PEPs) Department of Chemical Engineering Université de Liège www.chemeng.uliege.be

Life Cycle Assessment

Defined by ISO 14040 – 14044 standards

Goal and Scope definition

- ► What?
- ► How much? 1 hectare of corn crop
- ► How long? **During 1 year**
- ► How? Traditional agricultural practices

Life Cycle Assessment

Defined by ISO 14040 – 14044 standards

Data inventory: time consuming !

Life Cycle Assessment

Defined by ISO 14040 – 14044 standards

Impact evaluation

SimaPro

Specific data

In this study

► 3 methods:

- ► AWARE
- ILCD recommended
- ▶ ReCiPe 2012

Impact evaluation - Characterization

Characterization factor (CF) - AWARE

Available WAter REmaining

Impact evaluation - Characterization

Characterization factor (CF) - ILCD

Based on the ration between water consumption and water availability

Impact evaluation - Characterization

Characterization factor (CF) - ReCiPe

Water depletion

Water origin?

AWARE

22

Water depletion

Inventory

	GaBi dataset in GaBi	Ecoinvent in GaBi E	coinvent in Simapro
Water input	0.0319	0.0486	0.0513
Water output	0.0314	0.0478	0.0504
X CF for	X CF for —	X CF for Belgium	
Belgium: 2.84	unspecified	for ½ of the	
	water: 0.162	water	
	GaBi dataset in G	aBi Ecoinvent in GaB	Ecoinvent in Simapro
Total	0.0886	0.00353	0.0002
Water input	• 0.0886	• 0.00353	0.0703
Water outpu	ıt O	0	-0.0701

Same dataset in two different software: different results!

Conclusions

Conclusions

- Different method: different definition of water depletion
- → Choice the good one!

Importance of the regionalization

- Same dataset, with same method, in different software: different results!
- Method documentation should avoid confusion