

LEMTIRI Aboulkacem, ALABI Taofic, FRANCIS Frédéric & COLINET Gilles

University of Liege – Gembloux Agro-Bio Tech

« Functional & evolutionary Entomology - Soil - Water - Plant Exchanges »

RESEARCH OBJECTIVES

MATERIAL AND METHODS RESULTS
AND
DISCUSSION

CONCLUSION

- . Soil is an interactive system, in which characteristics are strongly linked
- . Soil influenced by mesological and anthropic constraints

- . Earthworms drive soil fertility « Ecosystem Engineers » .
- . Environmental conditions and human pressures regulated earthworm dynamics.

To better understand interactions between all components of soil.

RESEARCH OBJECTIVES

MATERIAL AND METHODS RESULTS AND DISCUSSION

CONCLUSION

Industrial scale of production

Increase of the intputs

Intensification of agriculture

?

Decrease of soil biodiversity

Decline in soil organic matter

Degradation of soil quality

How to sustain soil fertility?

New soil conservation management practices are required.

RESEARCH OBJECTIVES

MATERIAL AND METHODS RESULTS
AND
DISCUSSION

CONCLUSION

Impact of agricultural practices on earthworm communities and soil properties

Soil fauna Earthworms

Soil structure,
Physico-chemical
properties
of soil

1. How is earthworm community influenced by agricultural practices?

2. How are soil properties and nutrient elements influenced by agricultural practices?

Some questions

- Changes in the earthworm community in different cropping systems?
- Link between agricultural practices and earthworms?
- Impact of different agricultural practices on soil properties (Physical / Chemical)?

RESEARCH OBJECTIVES

MATERIAL AND METHODS RESULTS
AND
DISCUSSION

CONCLUSION

Study design

- . Located in Gembloux, Belgium.
- . The experimental design = latin square

4X4 (16 plots: 15*40 m)

. Agricultural practices:

- Conventional-tillage / Residues incorporation
 (CT/ IN)
- Conventional-tillage / Residues exportation
 (CT/ OUT)
- Reduced-tillage / Residues incorporation (RT/ IN)
- Reduced-tillage / Residues incorporation (RT/ IN)

Fig. 1. Experimental design, tillage management, and cropping systems.

RESEARCH OBJECTIVES

MATERIAL AND METHODS RESULTS
AND
DISCUSSION

CONCLUSION

Experimental protocols

. Earthworm sampling

Extraction of earthworms by hand

Formalin method

Soil excavation

Species identification (Key of Cluzeau, 1996)

Counting and weighing of earthworms, preservation in formalin 4%

RESEARCH OBJECTIVES

MATERIAL AND METHODS RESULTS
AND
DISCUSSION

CONCLUSION

Experimental protocols

. Soil sampling

Composite samples from soil plough layer

Soil bulk density, Penetration resi<u>stance</u>

Soil analysis

Total Organic
Carbon, pH,...

Nutrient elements water- extraction

RESEARCH OBJECTIVES

MATERIAL AND METHODS RESULTS AND DISCUSSION

CONCLUSION

Impact of agricultural practices on earthworm communities and soil properties

Soil fauna Earthworms

1. How is earthworm communities influenced by agricultural practices?

Earthwom abundance and biomass

No significant difference in earthworm abundance and biomass between CT and RT

Exportation of crop residues affect significantly earthworm abundance and biomass

Fig. 2. Earthworm abundance and biomass in four agricultural practices (mean ± S.D).

RESEARCH OBJECTIVES

MATERIAL AND METHODS RESULTS
AND
DISCUSSION

CONCLUSION

Earthwom abundance and biomass

. No effect of conv. tillage on earthw. abund and biom.

Tolerance of tillage and species mobility

. Significant effect of crop residues exportation on earthw. abund and biom.

Reduction of SOM: primary food source of earthw

Stimulation of earthworm activity by reduced soil disturbance and incorporation of residues.

RESEARCH OBJECTIVES

MATERIAL AND METHODS RESULTS AND DISCUSSION

CONCLUSION

Species	Functional group	CT/IN	CT/OUT	RT/IN	RT/OUT	
Dendrobaena mammalis	Epigeic	16				
Lumbricus rubellus castaneus	Epigele	1	2	29	29	
Lumbricus terrestris	Epi-anecic	189	142	276	187	
Aporrectodea caliginosa meridionalis	Anecic	184				
Aporrectodea caliginosa caliginosa		390	354	599	284	
Allolobophora chlorotica chlorotica typica	Endogeic	48	17			
Allolobophora rosea rosea		78	35	33	3	
Octolasium cyaneum		2				

Fig. 3. Total abundance of functional groups and earthworm species recorded at Belgian sites in 2012 in the four agricultural practices.

- . Despite their sensitivity, Epi- anecic and endogeic species were dominants.
- . Epigeic species are sensitive to tillage residue incorporation at a 25 cm depth + Conv. tillage + wheat monoculture

RESEARCH OBJECTIVES

MATERIAL AND METHODS

RESULTS AND DISCUSSION

CONCLUSION

Impact of agricultural management on earthworm community and physical properties of soil

Soil physico-chemical, properties

2. How are soil properties and nutrient elements influenced by agricultural practices?

RESEARCH OBJECTIVES

MATERIAL AND METHODS RESULTS AND DISCUSSION

CONCLUSION

Soil penetration resistance

Fig. 5. Penetration resistance determined in the field at 0 – 50 cm depth for the four agricultural practices

PR increased with soil depth at all agricultural practices

Soil compaction significantly higher in RT compared with CT

- . Natural compaction (4 years of RT).
- . Tillage practice decreased the soil strength.
- . Association of decompacting and compacting species.

RESEARCH OBJECTIVES

MATERIAL AND METHODS RESULTS AND DISCUSSION

CONCLUSION

Soil properties

Depth	EC	RH	HWC	P	K	Mg	Na	Ca	
0 – 10 cm									
	$S m^{-1}$	%		mg kg ⁻¹					
CT/IN	81.5	16.3	411	4.2 a	16.5 ac	3.7	26.2	54.0	
CT/OUT	79.2	16.3	448	4.2 a	14.5 a	3.7	32.3	52.3	
RT/IN	76.5	17.3	463	5.8 b	21.7 b	3.6	22.4	48.8	
RT/OUT	73.7	16.8	443	4.9 ab	18.5 bc	3.4	22.6	47.3	
Depth				-	-		-	.	
10 – 20 cm									
CT/IN	68.8	17.7	434	3.8 a	13.2 a	3.4	24.5	50.3	
CT/OUT	69.1	17.6	403	3.8 a	12.1 a	3.3	22.3	47.8	
RT/IN	71.0	17.4	388	3.9 a	11.6 b	3.3	21.5	52.1	
RT/OUT	66.7	17.0	397	3.7 b	9.1 b	3.1	20.8	45.8	
Depth	_			-	-	-	-		
20 – 30 cm									
CT/IN	68.5 a	18.2 a	384	4.0 a	14.9 a	3.4 ab	23.5	50.2 ab	
CT/OUT	67.6 a	18.2 a	378	4.1 a	14.8 a	3.1 a	23.0	44.3 a	
RT/IN	84.5 b	17.1 ab	380	3.3 b	14.1 ab	4.1 b	21.7	58.5 b	
RT/OUT	77.4 b	17.0 b	382	3.2 b	12.3 b	3.7 ab	21.5	52.9 ab	

Table.1. Mean of soil physical and chemical properties among the four agricultural practices

. Increase of HWC (0 – 10 cm) earthworm dynamics + soil fertility

Indicator of

. Higher conc. Ca Earthworm gut processes (humif, mineraliz,...)

- . Our findings don't confirm the negative impacts of conv. tillage on earthw. abund and biom.
- . The exportation of crop residues affect significantly earthw, abund and biom.
- . Exportation of crop residues effect was strong than tillage effect.
- . Endogeic and epi-anecic groups were impacted by exportation of crop residues.
- . The CT treatment was depressive for epigeic group.
- . R- tillage depth caused an increase in: PR, P, K and HWC conc.

RESEARCH OBJECTIVES

MATERIAL AND METHODS RESULTS
AND
DISCUSSION

CONCLUSION

. Prof. COLINET Gilles

. Prof. FRANCIS Frédéric

Dr. ALABI Taofic

. Prof. CLUZEAU Daniel

RESEARCH OBJECTIVES

MATERIAL AND METHODS RESULTS AND DISCUSSION

CONCLUSION

