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Surfactin is a lipoheptapeptide produced by several Bacillus species and identified for

the first time in 1969. At first, the biosynthesis of this remarkable biosurfactant was

described in this review. The peptide moiety of the surfactin is synthesized using huge

multienzymatic proteins called NonRibosomal Peptide Synthetases. This mechanism is

responsible for the peptide biodiversity of the members of the surfactin family. In addition,

on the fatty acid side, fifteen different isoforms (from C12 to C17) can be incorporated so

increasing the number of the surfactin-like biomolecules. The review also highlights the

last development in metabolic modeling and engineering and in synthetic biology to direct

surfactin biosynthesis but also to generate novel derivatives. This large set of different

biomolecules leads to a broad spectrum of physico-chemical properties and biological

activities. The last parts of the review summarized the numerous studies related to the

production processes optimization as well as the approaches developed to increase

the surfactin productivity of Bacillus cells taking into account the different steps of its

biosynthesis from gene transcription to surfactin degradation in the culture medium.

Keywords: surfactin, lipopeptide, Bacillus spp., biosurfactant, nonribosomal peptide

INTRODUCTION

Surfactin was firstly isolated in 1968 by Arima et al. as a new biologically active compound produced
by Bacillus with surfactant activities, leading to its appellation. Its structure was elucidated firstly
through its amino acid sequence (Kakinuma et al., 1969a) and then its fatty acid chain (Kakinuma
et al., 1969b). Surfactin was thus characterized as a lipopeptide composed of a heptapeptide with
the following sequence: L-Glu1-L-Leu2-D-Leu3-L-Val4-L-Asp5-D-Leu6-L-Leu7, forming a lactone
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ring structure with a β-hydroxy fatty acid chain. Bearing
both, a hydrophilic peptide portion and a lipophilic fatty acid
chain, surfactin is of amphiphilic nature, leading to exceptional
biosurfactant activities and diverse biological activities.

Surfactins are actually considered as a family of lipopeptides,
sharing common structural traits with a great structural diversity
due to the type of amino acids in the peptide chain and the length
and isomery of the lipidic chain (Ongena and Jacques, 2008).
More than one thousand variants can potentially be naturally
synthesized. This remarkable biodiversity mainly results from
their biosynthetic mechanism.

This review is composed of 4 main sections. At first, a
detailed description of the biosynthesis mechanisms will allow
to understand origin of the biodiversity. Secondly, the diversity
of variants will be seen, as well as its enhancement possibilities.
Thirdly, the link between surfactin’s varying structure and its
properties and activities will be described. Lastly, the production
process and its optimisation will be discussed, either for the whole
surfactin family or for specific variants.

BIOSYNTHESIS OF SURFACTINS

Peptide Moiety
Surfactins, as most of the cyclic lipopeptides (CLPs), are not
synthesized ribosomally, but rather by specialized systems,
termed non-ribosomal peptide synthetases (NRPSs). NRPSs are
multimodular mega-enzymes, consisting of repeated modules. A
module is defined as a portion of the NRPS that incorporates one
specific amino acid into a peptide backbone. The order of the
modules is usually co-linear with the product peptide sequence.
Each module can in turn be dissected into the following three
domains: the adenylation (A) domain, the thiolation (T) domain
(“-syn. peptidyl-carrier protein (PCP)-”) and the condensation
(C) domain (Marahiel et al., 1997; Roongsawang et al., 2011). The
A-domain recognizes, selects, and activates the specific amino
acid of interest (Dieckmann et al., 1995). Taking into account
the 3D-structures of several adenylation domains and their active
site, several tools have been set up to correlate the amino acid
residue present in this active site and their substrate specificity.
A NRPS code was so defined that it is based on 8 amino acid
residues from the active site (Stachelhaus et al., 1996; Rausch
et al., 2005). The activated amino acid is hereby covalently
bonded as a thioester to the flexible 4′-phosphopantetheinyl (4′-
Ppant) arm of the T-domain. The 4′-Ppant prosthetic group is
20 Å in length and can swing from one to another adjacent
catalytic center. Exactly this flexibility enables the transfer of the
activated amino acid substrate to the C-domain, which catalyzes
in turn (i) the formation of a peptide bond between the nascent
peptide and the amino acid carried by the adjacent module and
allows afterwards (ii) the translocation of the growing chain
to the following module. Various functional subtypes of the
C domain have been described. For example, an LCL domain
catalyzes the formation of a peptide bond between two L-
amino acids while a DCL domain between a L-amino acid and
a growing peptide ending with a D-amino acid (Rausch et al.,
2007). The first module (A-Tmodule) is considered the initiation
module, while the subsequent (C-A-T) modules are defined

as elongation modules. After several module-mediated cycles
of peptide extension, the complete linear intermediate peptide
is released by the terminal thioesterase (TE) domain which,
often, catalyzes an internal cyclization (Marahiel et al., 1997;
Trauger et al., 2000). Besides the above mentioned domains,
the NPRS assembly line can furthermore comprise additional
optional domains, which catalyze modifications of amino acid
building blocks e.g. their epimerization (E-domains) (Süssmuth
and Mainz, 2017). The lipid moiety of surfactins and most of
the microbial lipopeptides is introduced directly at the start of
the biosynthesis. The initiation module features a C-A-T- instead
of a classic A-T-structure (Sieber and Marahiel, 2005; Bloudoff
and Schmeing, 2017). It contains a special N-terminal C-domain,
termed C-starter (CS) domain and is in charge of the linkage of
a CoA-activated β-hydroxy fatty acid to the first amino acid. The
activated fatty acid stems foremost from the primary metabolism
(Figure 1).

Three decades ago, the biosynthetic gene cluster (BGC) of
the CLP surfactin was described in parallel by different research
groups (Nakano et al., 1988; Cosmina et al., 1993; Fuma et al.,
1993; Sinderen et al., 1993). The structural genes were identified
in B. subtilis and are formed by the four biosynthetic core NRPS
genes srfAA, srfAB, srfAC, and srfAD (Figure 1) which code
together for a heptamodular NRPS assembly line. The three-
modular enzyme SrfAA contains N-terminally the typical CS-
domain of CLP-BGCs and acylates the first amino acid Glu1 with
various 3-OH-fatty acids stemming from primary metabolism.
The peptide is subsequently extended in a co-linear fashion by
the elongation modules of SrfAA, SrfAB and SrfAC to yield a
linear heptapeptide (FA-L-Glu1-L-Leu2-D-Leu3-L-Val4-L-Asp5-
D-Leu6-L-Leu7). The inverted stereochemistry can be readily
attributed to the presence of E-domains in modules M3 and M6
and DCL domains in modules M4 and M7 (Figure 1). Finally,
the TE domain of SrfAC releases the lipopeptide and performs
the macrocyclization between Leu7 and the hydroxy-group of
the 3-OH fatty acid. Notably, SrfAD consist solely of a second
TE-domain, which represents rather a supportive repair enzyme
and is able to regenerate misprimed T-domains during NRPS
assembly (Schneider et al., 1998; Schwarzer et al., 2002; Yeh et al.,
2004).

Beside the structural NRPS genes, the surfactin BGC
comprises one built-in and several adjacent accessory genes
encoding e.g. transporters and regulatory proteins (MiBIG
Accession No: BG0000433). Amongst these, we would like to
further highlight the genes sfp, ycxA, krsE, yerP and comS, which
are particularly related with the production yield of surfactin.

Sfp represents a phosphopantetheinyl transferase (PPTase)
and is located ∼4 kb downstream of the srf BGC. The T-domain
of an NRPS is, upon its expression, not directly active but
rather exists nascent in its non-functional apo-form. For full
functionality, the flexible 4′-Ppant arm needs to be fused to
the T-domain. The latter process is mediated by the PPTase
Sfp, thereby converting all T-domains of the surfactin BGC
into their active holo form (Quadri et al., 1998; Mootz et al.,
2001). This fact makes Sfp indispensable for the production of
surfactin (Tsuge et al., 1999). For example, in the reference strain,
Bacillus subtilis 168, the sfp locus is truncated and therefore
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FIGURE 1 | Top: The surfactin biosynthetic gene cluster. Structural NRPS genes are indicated in red. The regulatory gene comS, which is co-encoded in SrfAB is

indicated in purple. Bottom: Classic module and domain architecture of SrfAA-SrfAD.

non-functional, which abolishes in turn surfactin production.
However, the production can be restored by the transfer of a
complete sfp locus (Nakano et al., 1988, 1992).

Further important genes in the context of surfactin
production are genes encoding transporters which are efflux
pumps. From a physiologically point of view, the pumps avoid
intracellular surfactin accumulation and constitute an essential
self-resistance mechanism (Tsuge et al., 2001). In particular
since surfactin inserts into biomembranes and at higher
concentration causes membrane disruption. An ecological
rationale for transporters could be that surfactin is extracellularly
at the correct site where it can exert its beneficial activity. So
far, three transporters have been identified in Bacilli, that are
involved in surfactin efflux, i.e. YcxA, KrsE, and YerP. It has
been demonstrated that the separate overexpression of the
corresponding genes enhanced release rates of surfactin (Li et al.,
2015) by 89, 52, and 145%, respectively.

Finally, the surfactin BGC exhibits a unique peculiarity on the
genetic level, in bearing a co-encoded regulatory gene, termed
comS inside itself (D’Souza et al., 1994). It is located in the open
reading frame of the NRPS gene srfAB (Hamoen et al., 1995),
more precisely within the A-domain of module 4 (Figure 1).
ComS is on the one hand involved in the positive regulation of
the genetic competence of the cell (Liu and Zuber, 1998) and
on the other hand part of the quorum sensing system comQXPA
(Ansaldi et al., 2002; Schneider et al., 2002; Auchtung et al., 2006)
which in turn regulates surfactin production. Beyond this brief
explanation, for an excellent overview about the role of ComS,
the reader is referred to a review, written by Stiegelmeyer and
Giddings (2013). Since the production yield is coupled with the
presence and functionality of ComS in the coding region of srfAB,
the genetic engineering of the surfactin synthetase in this region
requires special attention.

Fatty Acid Chain Synthesis
Since fatty acid biosynthesis plays a critical role in surfactin
production, and strongly determines its activity and properties,
in this section we briefly summarize this central metabolic
pathway and the subsequent steps leading to themodification and
activation of the fatty acyl-CoA precursor.

All organisms employ a conserved set of chemical reactions
to achieve the de novo Fatty Acid (FA) biosynthesis, which
works by the sequential extension of the growing carbon chain,
two carbons at a time, through a series of decarboxylative
condensation reactions (Wakil et al., 1983) (Figure 2). This
biosynthetic route proceeds in two stages: initiation and iterative
cyclic elongation. The acetyl-CoA carboxylase enzyme complex
(ACC) performs the first committed step in bacterial FA
synthesis to generate malonyl-CoA through the carboxylation
of acetyl-CoA (Marini et al., 1995; Tong, 2013). The malonate
group from malonyl-CoA is transferred to the acyl carrier
protein (ACP) by amalonyl-CoA:ACP transacylase (FabD) (Serre
et al., 1994, 1995; Morbidoni et al., 1996). The first reaction
for the synthesis of the nascent carbon chain comprises the
condensation of malonyl-ACP with a short-chain acyl-CoA
(C2–C5) catalyzed by a 3-keto-acyl carrier protein synthase III
(FabH). Acetyl-CoA is used as a substrate for the synthesis
of straight-chain FA, while branched-chain fatty acids (BCFA)
arise from isobutyryl-CoA, isovaleryl-CoA and methylbutyryl-
CoA priming substrates. These precursors derive, from the
catabolism of the branched-chain amino acids valine, leucine
and isoleucine, respectively. The crucial branched-chain α-keto
acid decarboxylase (BKD) complex catalyzes the decarboxylation
of α-keto acids to generate the corresponding branched-chain
acyl-CoA primers (Willecke and Pardee, 1971; Kaneda, 1991; Lu
et al., 2004). The substrate specificity of FabH plays a determining
role in the branched/straight and even/odd characteristics
of the fatty acid produced. B. subtilis possesses two FabH
isoenzymes, FabHA and FabHB, both of which preferentially
utilize branched-chain acyl-CoA primers (Choi et al., 2000).
Therefore, BCFA are the main components of phospholipids,
where iso-C15:0, anteiso-C15:0, iso-C16:0, iso-C17:0, and
anteiso-C17:0 represent the major FA found in Bacillus species
(Kaneda, 1969; Kämpfer, 1994). The pattern of the BCFA can
be modified by environmental conditions such as temperature
(Graumann and Marahiel, 1999).

Next, the keto-acyl-ACP product of FabH condensation enters
the elongation/reducing cycle of the fatty acid synthase II (FAS-
II). There, the keto group is reduced by the NADPH dependent
β-ketoacyl-ACP reductase (FabG) to give β-hydroxy-acyl-ACP.
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FIGURE 2 | Biochemical steps for the formation of fatty acid and their channeling to surfactin biosynthesis. The first step of fatty acid synthesis involves the

production of malonyl-CoA by the acetyl-CoA carboxylase complex (ACC). The malonyl-CoA-ACP transacylase, FadD, transfers the malonyl groups to the acyl carrier

protein (ACP) to produce malonyl-ACP. FabH, condensates the malonyl-ACP and a priming acyl-CoA substrate to produce the first new C-C bond. The keto group of

the β-ketoacyl-ACP is completely reduced by the reducing enzymes of the cycle, FabG, FabZ, FabI, and then the condensing enzyme FabF initiates a new round of

elongation of the growing carbon chain utilizing malonyl-ACP. The acyl-ACP product is primarily channeled to PL biosynthesis or alternatively to surfactin biosynthesis.

For this, at least two additional biochemical steps are required, a hydroxylation of a free FA by YbdT and its activation by an ACS.

The β-hydroxyacyl-ACP intermediate is then dehydrated to
trans-2-enoyl-ACP by a 3-hydroxyacyl-ACP dehydratase (FabZ).
Then, the cycle is completed by an enoyl-ACP reductase, which
reduces the double bond in trans-2-enoyl-ACP to form acyl-
ACP (Fujita et al., 2007). B. subtilis possesses two enoyl-ACP
reductases (FabI and FabL) with opposite preferences for the
NADPH or NADH cofactor (Heath et al., 2000).

In all the successive steps of FA elongation, the acyl-ACP
intermediate and malonyl-ACP are the substrates of FabF
condensing enzyme (3-oxoacyl-ACP-synthase II) that elongates
the growing acyl chain and initiate each new round of the
cycle (Schujman et al., 2001). Finally, the acyl-ACPs of the
proper chain length are substrates of acyltransferases involved
in cell membrane phospholipid synthesis. Alternatively, some
structurally specific FA are not integrated in the cell membrane
phospholipids. Those modified FA could be, under specific
environmental or growth conditions, channeled into secondary
metabolic pathways. They are then a of specialized molecules, as
it is the case of lipopeptides.

Once the long chain FA is synthesized, the next steps needed
for surfactin biosynthesis involves the production of the 3-
hydroxy-acyl-coenzyme A (CoA) substrates. Youssef et al. based
on in vitro assays, suggested that acyl 3-hydroxylation occurs
prior to CoA ligation (Youssef et al., 2011). These authors
reported that YbdT, a cytochrome P450 enzyme, catalyzes the
hydroxylation of the FA precursors to be incorporated in
the lipopeptide biosynthetic pathway (Youssef et al., 2011).
Cytochrome P450 are monooxigenases capable of introducing
an oxygen atom into FA and in other lipidic and non-lipidic
molecules. The B. subtilis genome contains eight genes coding
for cytochrome P450 enzymes (Hlavica and Lehnerer, 2010).
In vitro, high-performance liquid chromatography (HPLC) and
gas chromatography–mass spectrometry analyses demonstrated
that the recombinant ybdT gene product hydroxylates myristic

acid in the presence of H2O2, to produce β-hydroxymyristic
acid and α-hydroxymyristic acid (Matsunaga et al., 1999).
Furthermore, a ybdT mutant strain of B. subtilis OKB105
produces biosurfactants with only 2.2% of 3-hydroxylated C14,
while the 97.8% contained non-hydroxylated FA with chain
lengths of C12, and C14–C18 (Youssef et al., 2011) and are
thus linear.

Finally, the surfactin synthetase assembly line can be initiated
in presence of a CoA-activated FA (Steller et al., 2004). Fatty
acids are converted into their corresponding acyl-CoA derivative
by fatty acyl CoA ligases (FACS). Of the four putative FACS
identified in homology searches in the genome of B. subtilis, two
of them, LcfA and YhfL, were characterized in vitro to be involved
in surfactin production. HPLC-MS based FACS activity assays
indicated that LcfA and YhfL catalyze the thioester formation
with CoA and various FA substrates (3-OH C8, 3-OH C10, C12,
and C14). All four single mutants in the FACS homolog genes,
lcfA, yhfL, yhfT and yngI, decreased surfactin production by
38% - 55%, compared with the wild-type levels. Interestingly,
a quadruple mutant in the FACS did not completely abolish
surfactin biosynthesis, such strain still presents 16% surfactin
production, compared with the levels produced by the wild-
type strain. This observation suggests that other non-canonical
FACS are present in B. subtilis or that other pathways, such
as transthiolation from ACPs to CoA, could be involved in
providing the fatty acyl moiety.

The hydroxylated and CoA activated FA derivative is finally
transferred onto the surfactin synthetase assembly line, in
a reaction performed by the N-terminal condensation (CS)
domain, that is as mentioned above responsible for the
lipoinitiation mechanism. In vitro, the recombinant dissected C
domain, catalyzed the acylation reaction using glutamate-loaded
PCP domain and 3-OH-C14-CoA as substrates (Kraas et al.,
2010).
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VARIANTS OF SURFACTIN

The surfactin biosynthesis mechanism previously described is
responsible for the high biodiversity of surfactin-like molecules.
In addition, the assembly line machinery of surfactin synthetases
can be easily modified by synthetic biology in order to
increase this biodiversity. Both aspects will be developed in the
following chapter.

Natural Variants
Three main peptide backbones and the NRPSs responsible
for their biosynthesis, produced by different Bacillus species,
have been so far described in literature: surfactin as previously
described from B. subtilis, B. amyloliquefaciens, B. velezensi, and
B. spizizeni amongst others, pumilacidin from B. pumilus (Naruse
et al., 1990) and lichenysin from B. licheniformis (Horowitz
et al., 1990). Compared to surfactin, pumilacidin has a leucine in
position 4 instead of a valine, as well as an isoleucine or a valine in
position 7 instead of a leucine. Lichenysin differs from surfactin
by a change in the first amino acid residue: a glutamine (Gln)
instead of a glutamic acid (Figure 3).

This first biosynthetic diversity in surfactin is increased by
the promiscuous specificity of adenylation domains of modules
2, 4, and 7 of surfactin synthetases which are able to accept L-
Leu, L-Val or L-Ile amino acids residues as well as L-Ala for
module 4. Similarly low levels of specificity have been observed
for lichenysin (Peypoux et al., 1991; Bonmatin et al., 2003).

Based on all these results, it appears that the aspartic acid in
position 5, as well as the D-Leucine in position 3 and 6 are present
in all the members of the surfactin family. The only mention of
an asparagine (Asn) for lichenysin (Yakimov et al., 1995) was
quickly refuted by the same author after the use of fast atom
bombardment mass spectrometry (Yakimov et al., 1999). The
specificity of M3 and M6 could result from (i) an enzyme of the
assembly line machinery such as the epimerisation domain which
could accept only leucine as substrate, (ii) from the specificity
of the adenylation domain or (iii) from the specificity of the
involved condensation domains.

The changes in the peptide chain are not the only source of
diversity in the surfactin family. As mentioned before, surfactin is
a heptapeptide linked to a fatty acid chain. Regarding this chain,
the length of it can vary from 12 to 17 carbons atoms, mainly
being C14 and C15.

Another change in this lipid chain is its isomery, it can
have a linear, n, configuration, but it can also be branched,
iso and anteiso. Anteiso can only be in an uneven carbon
chain length, while iso can be found in all chain lengths (odd
and even-numbered carbon chain). These derivatives can be
mainly explained by the promiscuity of the CS-domain present
in module M1 toward its relaxed substrate specificity.

Finally, natural linear surfactins (Figure 3) have been also
identified in the culture supernatant of Bacillus strains (Gao
et al., 2017). The molecular mechanism responsible for this
linearization is not yet known. It could result from an incomplete
efficacy of TE domain which could release some surfactin
without cyclization or from enzymatic or chemical degradation
of cyclic surfactin.

In addition, heterologous enzymes are also capable to
catalyze linearization. An in vitro study showed the linearisation
effect of a purified V8 endoprotease from Staphylococcus
aureus (Grangemard et al., 1999). Furthermore, an in vivo
study demonstrated that Streptomyces sp. Mg1 produces, as a
mechanism of resistance, an enzyme that hydrolyses surfactin
into its linear form (Hoefler et al., 2012).

Surfactin methyl ester was observed in the supernatant of
Bacillus subtilis HSO121 (Liu et al., 2009), and a methylated
product of surfactin with a valine in position 7 was discovered
in the supernatant of a Bacillus mangrove bacteria strain (Tang
et al., 2007). This change was also discovered in the supernatant
of Bacillus licheniformis HSN221 with surfactin and lichenysin
methyl esters (Li et al., 2010) and in the culture medium of
Bacillus pumilus through surfactinmethyl ester (Zhuravleva et al.,
2010).

Synthetic and Biosynthetic Variants
In addition to the natural surfactins seen before, synthetic
variants can be obtained through chemical modifications or
genetic engineering of the NRPS. This leads to new forms or to
a controlled production of a specific form. Reasons for structural
changes are manifoldly given, foremost to reduce the toxicity
of surfactin, but also to optimize its biological activities or to
increase its water solubility.

Esterification can be achieved through chemical treatment
with alcohol, reacting with the Asp-β- and/or Glu-γ-carboxyl
group, producing monoester, and/or diester-surfactin (Figure 3).

For example, reaction of surfactin with n-hexyl alcohol lead to
mono- and di-hexyl-surfactin, with 2-methoxyethanol to mono-
and di-2-methoxy-ethyl-surfactin (Shao et al., 2015). Amidation
through a reaction with alcohol and then NH4Cl was also
observed (Morikawa et al., 2000). Esterification and amidation
of aspartic and glutamic acid eliminate the negative charge of
those amino acid residues, creating an even greater diversity
in the surfactin family because of the charge change that they
bring and thus the modification in surfactin biological and
surfactant properties.

Linearization of the cyclic surfactin previously mentioned
as a natural process can also be obtained by chemical alkaline
treatment (Figure 3) (Eeman et al., 2006).

In addition to those chemical modifications of surfactin
naturally produced, synthetic forms can be chemically produced
(Figure 3). Liquid phase techniques have been used at first (Nagai
et al., 1996) but, because of the many steps and the purification
of intermediates needed, it was replaced with a quicker solid
phase peptide synthesis (SPPS) technique. Different forms of
surfactins have been produced, such as standard surfactin, but
also analogs with a change in the amino acid sequence, such as
an epimerisation (D-Leu2), a change in charge (Asn5) and the
switch of two residues (Asp4-Leu5) (Pagadoy et al., 2005). Linear
surfactin was also produced, as well as linear with an amidated
carboxy-terminus function (Dufour et al., 2005). Finally, the
fatty acid chain length was likewise changed, with C10 and C18
(Francius et al., 2008). However, due to the complexity of the
production, these lipopeptides are intended only for research use.
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FIGURE 3 | Natural and synthetic variants of surfactin. The natural variants can be obtained through specific strains, the non specificity of the adenylation domain or

the first condensation domain, a non cyclization or a linearization and through the genetic engineering of the NRPS. The synthetic variants can be obtained through a

chemical modification of a natural product or through total chemical synthesis. The first three molecule naturally produced are surfactin produced by B. subtilis and

others, pumilacidin from B. pumilus and lichenysin from B. licheniformis.

As said before, in addition to the chemical changes, the
genetic engineering can be also applied to the genes coding for
the NRPS, in order to modify the structure of surfactin. The
generation of novel derivatives by rational design can hereby
be achieved by site directed mutagenesis, module- insertion,
deletion, and substitution (Alanjary et al., 2019). Application of
the site directed mutagenesis technique, an A-domain specificity
of an NRPS module shift from L-Glu to L-Gln and from L-Asp
to L-Asn at position 5 in modules 1 and 5 was accomplished,
respectively (Eppelmann et al., 2002).

Concerning the concept of module substitutions, particularly
the Marahiel group showed in a ground breaking way from
the mid 90s onwards the feasibility of module swaps which
allowed single or multiple variations concerning all seven amino
acids (Stachelhaus et al., 1995, 1996; Schneider et al., 1998;
Eppelmann et al., 2002). As a practical aspect, beside the gain
in basic research knowledge, for several modified surfactins,
such as Cys7-surfactin, a decreased hemolytic activity was
observed. Furthermore, ring contracted surfactin derivatives
were obtained by deletion of complete NRPS modules. In
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this way, the corresponding knockouts yielded hexapeptidic
surfactin congeners, individually lacking Leu2, Leu3, Asp5 and
Leu6. Notably, the 1Leu2 1Leu3 and the 1Leu6 surfactin
variants showed a reduced toxicity toward erythrocytes and
enhanced antibacterial activities, while the 1Asp5 surfactin
exhibited an even higher inhibitory ability for Gram positive
bacteria, but kept the hemolytic capabilities of the native surfactin
(Mootz et al., 2002; Jiang et al., 2016). However, each genetic
manipulation mentioned above resulted in a significant decrease
in the production yield. Nevertheless, these studies showed the
feasibility and moreover demonstrated in an encouraging way
that the surfactin scaffold can be fine-tuned concerning its
intended activity and its undesired side effects.

Very recently, the Bode group revolutionized the concept
of module swapping. It includes the finding that C-domains
have to be subdivided into a CDonor (CD) and CAcceptor (CA)
portion and that both are amino-acid specific (Bozhüyük
et al., 2019). This redefines nowadays the borders of an
exchange unit. Instead of a classic A, A-T or C-A-T domain
swap, it is preferable to exchange a CD-A-T-CA domain unit
(Figure 4). The huge advantage of these findings is that peptide-
variants can be generated by genetic engineering at a much
higher success rate and without any production loss. The
technique will be an incentive to modify highly bioactive
structures, such as surfactin. The exchange units can be derived
from other Bacilli or codon-optimized from other bacterial
genera. Particularly, in combination with synthetic biology, in
future numerous genetically-engineered modifications can be
envisioned: beside the exchange of amino acids, ring contractions
by module deletion and ring expansions, by addition of an
exchange unit, can be generated, respectively (Figure 4). Since
peptides, containing D-configured amino acids are less prone
to degradation, the change of the absolute configuration by
insertion of epimerization domains could lead to derivatives
that are less prone to enzymatic degradation. Furthermore, since
the biotechnological production of surfactin always results in
the production of complex mixtures, e.g., varying in the fatty
acid portion, it would be desirable to produce surfactin with a
more defined lipid moiety. For this purpose, the biobrick-like
exchange of the CDonor-portion of the CS-domain could lead to
the incorporation of the desired 3-OH fatty acid. Finally, it can be
also envisioned to modify the surfactin NRPS assembly line even
further, e.g. by introduction of catalytic domains which drive
intramolecular cyclization-, N-methylation-, hydroxylation-,
and redox-reactions.

STRUCTURE AND PROPERTIES
RELATIONSHIP

Surfactins and surfactin-like molecules are amphiphilic
molecules with a polar part mainly constituted by the two
negatively charged amino acid residues Glu and Asp (in native
surfactin) and an apolar domain formed by the lateral groups
of aliphatic amino acid residues (mainly Leu) and the fatty
acid chain. This amphiphilic structure is responsible for its
attractive physico-chemical properties as well as its various
biological activities.

Surfactin Structure and Its Influence on
Physico-Chemical Properties and
Biological Activites
The amphiphilic structure of surfactins leads to strong surface
activity, i.e., their capacity to reduce the surface/interfacial
tension and to self-assembly in nanostructures, and the presence
of negative charge(s). Thus, they display as physico-chemical
properties foaming (Razafindralambo et al., 1998; Fei et al., 2020),
emulsifying (Deleu et al., 1999; Liu et al., 2015; Long et al.,
2017; Fei et al., 2020) and dispersing properties, solid surface
wetting and surface hydrophobicity modification performance
(Ahimou et al., 2000; Shakerifard et al., 2009; Marcelino et al.,
2019; Fei et al., 2020), and chelating ability (Mulligan et al.,
1999; Grangemard et al., 2001; Eivazihollagh et al., 2019). This
strong surface activity leads to detergent applications (Zezzi do
Valle Gomes and Nitschke, 2012), but they also show promising
perspectives of applications in the environmental sector to
enhance oil recovery in oil-producing wells (Liu et al., 2015; Joshi
et al., 2016; Long et al., 2017; de Araujo et al., 2019; Alvarez
et al., 2020; Miyazaki et al., 2020), to increase the biodegradation
rate of linear and aromatic hydrocarbons (Wang et al., 2020),
and for metal removal from soil or aqueous solutions (Zouboulis
et al., 2003; Eivazihollagh et al., 2019). Very recently, it was also
suggested that surfactin can effectively demulsify waste crude oil
(Yang et al., 2020). Their emulsifying property also confers them
a potential of application in the food and cosmetics area for the
product formulation (Mnif et al., 2013; Varvaresou and Iakovou,
2015; Zouari et al., 2016) as well as in the pharmaceutical area for
the formulation of stable microemulsion drug delivery systems
(Ohadi et al., 2020).

The variations in the molecular structure of the peptidic part
and/or of the hydrocarbon chain greatly impact their physico-
chemical properties. In term of self-aggregation behavior, the
critical micellar concentration (CMC) value decreases with a
longer fatty acid chain (CMC Surfactin C15 = 20µM; CMC
surfactin C14 = 65µM; CMC surfactin C13 = 84µM in
Tris-HCl pH 8) (Deleu et al., 2003; Liu et al., 2015). It also
decreases with the presence of a methyl ester on the Glu residue
(Grangemard et al., 2001) or the replacing of the Glu residue
by a Gln as in lichenysin (Grangemard et al., 2001; Bonmatin
et al., 2003). On the contrary, the linearization of the peptide cycle
(CMC linear surfactin C14 = 374µM in Tris pH 8.5) (Dufour
et al., 2005) and the presence of a Leu4 instead of the Val4
as in pumilacidin (de Araujo et al., 2019) increase it. Different
self-assembled nanostructures like sphere-likemicelles, wormlike
micelles and unilamellar bilayers coexist with larger aggregates
in aqueous solution depending on the surfactin concentration,
pH, temperature, ionic strength and metal ions (Zou et al., 2010;
Taira et al., 2017; Jahan et al., 2020). These parameters can induce
conformational changes in the secondary structure of the cyclic
peptide moiety and thereby affect the shape and the packing
parameter of surfactin (Jahan et al., 2020).

The capacity of surface tension reducing is also influenced by
themolecular structure of surfactin. Depending of environmental
conditions, lichenysin is or not more efficient than surfactin to
reduce the surface tension (in Tris pH 9.4 γcmc =35 and 37
for lichenysin and surfactin respectively and in NaHCO3 pH
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FIGURE 4 | Top: Re-defined module and domain architecture of SrfAA-SrfAD with dissected C subdomains. The new module definition CA-A-T-CD is indicated in light

green. BOTTOM: Examples of biobrick-like exchanges and deletions using a synthetic biology concept. The resultant changes in the molecule are indicated in red. R

represents the rest of the fatty acid moiety, which has numerous possibilities regarding chain length, degree of saturation and branching.

9.4 γcmc =30 and 29 for lichenysin and surfactin respectively)
(Grangemard et al., 2001), while pumilacidin is less (de Araujo
et al., 2019). Linearization of the peptide cycle lessens this
capacity (34 mN/m in Tris pH 8.5). Nevertheless, the replacing
of carboxyl group by a sulfo methylene amido group leads to a
complete loss of activity (Bonmatin et al., 2003). The chain length
but also the branching type also impact the surface tension. A
longer chain is more efficient and the normal configuration is
more active than the iso one which is more powerful than the
anteiso (Yakimov et al., 1996).

The effect of the chain length on the foaming properties does
not follow this trend as it was shown that a lipidic chain with
14 carbon atoms provides surfactin with best foaming properties
compared to that with 13 or 15 carbon atoms (Razafindralambo
et al., 1998).

Lichenysin was also demonstrated to be a better divalent
cation chelating agent than surfactin (Grangemard et al., 2001).
This effect is assigned to an increase accessibility of the carboxyl
group to the cation in the case of lichenysin (Habe et al., 2018).
The complexation of divalent cations with the lipopeptide in
a molar ratio of 2:1 for lichenysin leads to the formation of
an intermolecular salt bridge, stronger than the intramolecular
complexation in a 1:1 ratio with surfactin (Grangemard et al.,
2001; Habe et al., 2018).

Globally speaking, the few studies focused on the structure-
properties relationships of surfactin family emphasize three
main facts. The first is that the unique feature of the peptide
loop provides surfactin with a fascinating molecular behavior
at interfaces (Liu et al., 2020). Furthermore, the peptide cycle

linearization leads to a structural distortion of the molecule
reducing or annihilating its surface active power. The second fact
is that the surface activity of surfactin is dictated by the interplay
of hydrocarbon chain and peptide sequence (Liu et al., 2020).
The more distant and distinct the polar and apolar domains are,
the stronger the surface active power is. The last fact is that
the charges of the polar part also play a primordial role in the
physico-chemical properties. A monoanionic surfactin is more
efficient than a dianionic one, due to a reduced repulsive effect
between the molecules at the interface.

The remarkable physico-chemical properties of surfactin are
also responsible for their biological activities which, in most
of the cases, involve perturbation or disruption of membrane
integrity. It was demonstrated for haemolytic (Kracht et al.,
1999; Dufour et al., 2005), antibacterial (Bernheimer and Avigad,
1970), antiviral (Yuan et al., 2018; Johnson et al., 2019), and
antimycoplasma (Vollenbroich et al., 1997) activities of surfactin
as well as its ability to inducing systemic resistance in plant
(Ongena et al., 2007; Ongena and Jacques, 2008). Some of those
activities leading to promising results in the agricultural field
(Chandler et al., 2015; Loiseau et al., 2015). But surfactin was
also characterized for anti-inflammation (Takahashi et al., 2006;
Zhao et al., 2017), anti-sepsis (Hwang et al., 2007), anti-tumor
(Wu et al., 2017) and immunomodulatory (Park and Kim, 2009)
activities for which another target than membranes is involved.
A synergistic effect has been observed between surfactin and
other lipopeptides. The addition of surfactin at an inactive
concentration to iturin increase its haemolytic activity (Maget-
Dana et al., 1992). The combination of surfactin and fengycin
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lead to a decrease in disease in tomato and bean plants (Ongena
et al., 2007). Furthermore, while surfactin has no effect against
fungi, it has been shown to enhance the biological activities of
other lipopeptides against fungi and oomycetes (Deravel et al.,
2014; Tanaka et al., 2015; Desmyttere et al., 2019).

Use of Molecular Modeling for Mechanism
of Action Investigation
Molecular modeling methods are powerful theoretical tools
to investigate structure functions relationship of surfactin and
its mode of action. Docking and Molecular Dynamic (MD)
simulations have been used in various studies involving surfactin
for the characterization of diverse properties to predict activities
and domains of applications.

For membrane interactions, Hypermatrix (Brasseur et al.,
1987), was used to simulate the interaction of surfactin
with a membrane monolayer in order to determine the
lipid specificity for insertion and membrane destabilization.
It was shown that surfactin interacts specifically with 1,2-
dipalmitoylphosphatidylcholin (DPPC) localized at the
DPPC/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)
domain boundaries (Lins and Brasseur, 1995; Deleu et al., 2003,
2013).

For medical applications, the interaction of surfactin with the
amyloid β -peptide (A β 42) has been studied withMD simulation
and docking experiments [with GROMACS (Abraham et al.,
2015) and AutoDock (Morris et al., 2009) respectively].

Further investigations have shown that surfactin binds
protofibrils by forming a stable hydrogen bond with residues
involved in salt bridges responsible ofamyloid aggregation
and plaques stability (Verma et al., 2016). Another docking
investigation, employing Swiss Dock (Lien Grosdidier et al.,
2011), has shown that surfactin binds favorably via hydrogen
bonds to porcine pancreatic lipase and inhibits its activity, which
could lead to a novel and potent body weight reducer for obesity
control (Meena et al., 2018).

Beside these investigations on monomeric surfactin
interacting with potential targets, MD simulations proved
to be an efficient tool to study molecular assemblies. A surfactin
monolayer at the air-water interface was studied under various
interfacial concentrations. It was shown that packed structures
are formed via intra- and inter-molecular hydrogen bonds,
stabilizing the β-turn structure of the peptide ring, favoring
the β-sheet domain organization and hydrophobic contacts
between molecules Another simulation was applied to study
the self-assembly of surfactin in water and more particularly
the structural organization of the micelles (Lebecque et al.,
2017). Micelles were pre-formed with PackMol (Martinez et al.,
2009) and were simulated to analyse their behavior. The optimal
aggregation number, i.e., 20, predicted by this approach is in
good agreement with the experimental values. Two parameters
were analyzed, the hydrophilic (phi)/hydrophobic (pho) surface
and the hydrophobic tail hydration (Lebecque et al., 2017). A
higher phi/pho surface ratio means a more thermodynamically
favorable organization of the hydrophilic and hydrophobic
domains, but steric and/or electrical repulsions between polar

heads have also to be considered. For surfactin, it was shown
that the phi/pho surface ratio undergoes a decrease for the
largest micelles of surfactin because they have to rearrange
themselves to reach a more favorable organization. The low
value of apolar moieties hydration observed for surfactin
micelles is due to the very large peptidic head that efficiently
preserves hydrophobic tails from contact with water. The Coarse
Grain (CG) representation MARTINI (Marrink et al., 2007)
(grouping atoms into beads to speed up the simulation process)
was similarly applied to analyse the structural properties and
kinetics of surfactin self-assembly in aqueous solution and at
octane/water interface (Gang et al., 2020). With complementary
MD of a pre-formed micelle and a monolayer, the authors
showed that their CG model is in agreement with atomistic MD
and experimental data, for micelle self-assembly and stability,
as well as for the monolayer. Furthermore, this study allows the
development of a set of optimized parameters in a MARTINI
CG model that could open further investigations for surfactin
interaction with various biofilms, proteins or other targets of
interest with a better sampling than atomistic MD.

PRODUCTION

This last part of this review is dedicated to the improvement of
the production of surfactin like compounds. It will first consider
the techniques for the identification and the quantification of
these lipopeptides and then focus on strain, culture conditions,
and bioprocess optimization. Not to forget, the purification
process allows for a greater recovery of the surfactin produced
and lower the losses.

Identification and Quantification of
Surfactin and Its Variants
In order to discover new natural variants or verify the production
of synthetic ones, the identification is an important process.
The first surfactin structure elucidation was made through
hydrolysis of the peptide and fatty acid chain into fragments,
their identification and alignment (Kakinuma et al., 1969b).
However, with the continuous innovations of analytical-chemical
techniques such as mass spectrometry MS/MS (Yang et al.,
2015a), nuclear magnetic resonance (NMR) (Kowall et al., 1998)
and Fourier transform IR spectroscopy (FT-IR) (Fenibo et al.,
2019), the analysis of new variants can be determined quicker
and without hydrolysis. While FT-IR provides the functional
groups, NMR leads to a complete structural characterization of
the compounds but requires completely purified products at the
level of mg quantities. Mass spectrometry does not enable the
differentiation of compounds having the same mass (such as
leucine and isoleucine for example), nor the type of fatty acid
chain (linear, iso or anteiso), but provides the global mass and
the peptide moiety primary sequence.

An overview of surfactin’s dosage techniques can be found in
Table 1. The first ones rely on surfactin’s amphiphilic nature, so
that its production can be detected through its surfactant activity.

Indirect methods, such as emulsification measure, haemolytic
activity (blood agar plate) or cell surface hydrophobicity can
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TABLE 1 | Techniques for detection and/or quantification of lipopeptide production.

Technique Advantages Disadvantages

Blood agar lysis Ease of use Not specific and not reliable

Drop collapse Ease of use Not specific

Oil spreading Ease of use, better prediction than drop collapse Not specific

Surface tension measurement Ease of use, reliable Not specific

Color shift Ease of use, high-throughput Not specific

HPLC-UV Can discriminates the different lipopeptides if standard, quantification possible Expensive equipment

LC-MS Discriminates the different lipopeptides Expensive equipment

PCR or genome sequencing Production capacity measurement Observes only genes

RT-PCR Production capacity measurement Observes only gene transcription

be used. However, the correlation between those activities and
surfactant activity has been refuted. Youssef et al. (2004) does not
recommend the use of blood agar lysis as a screening method.
Therefore, direct methods to measure the surface activity, such
as interfacial tension measurement, drop shape analysis, drop
collapse assay or oil spreading should be used (Youssef et al.,
2004). Newer techniques have been developed the last few years
for a rapid detection and quantification, based on color shifts
or fluorescence.

The first color shift approach is based on the higher affinity
of a mediator, initially forming a complex with a color indicator,
for surfactin and thus the release of the color indicator in
the solution (Yang et al., 2015b). The fluorescence technique
is based on the same principle, but with fluorescein instead of
a color indicator (Heuson et al., 2018). This leads to a more
sensitive and stable procedure. However, another color shift
approach has been developed based only on the interaction
between bromothymol blue solution and lipopeptides (Ong and
Wu, 2018). However, since they are not specific for surfactin,
the best and most sensitive quantification method is still the
use of reversed phase HPLC-UV or MS (Geissler et al., 2017).
This method also allows the discrimination between the various
homologs of the surfactin family. Indeed, the molecules are
separated based on their hydrophobic properties, giving a shorter
retention time for lipopeptides with a leucine in position 7 and a
longer retention time for lipopeptides with a valine in position
7. The separation is also based on the fatty acid chain, the
shorter the fatty acid chain length is, the shorter the elution
time is (Dhali, 2016). Furthermore, the production capacity
of a micro-organism can be discovered through PCR, with
primers specific to the surfactin biosynthesis genes (sfp and srf )
(Mohammadipour et al., 2009) or genome sequencing. However,
these methods do not reflect the real lipopeptide production,
since only the presence of the genes is observed. RT-PCR allows
the detection of the transcribed genes, but does not allow to
reflect the post-transcriptional modifications.

Optimisation of Surfactin Production
In order to enhance the surfactin production, in addition
to fermentation optimization, the genetic engineering of the
producing strains is of great significance. It was already covered

in the past by other teams (Hu et al., 2019) and will be more
developed here.

A first strategy would be to allocate more resources of the
cell to surfactin biosynthesis by suppressing different cellular
processes. It was successful with the plipastatin operon disruption
(Coutte et al., 2010a) or biofilm formation related genes (Wu
et al., 2019). However, a strain with a 10 % genome deletion,
comprising genes for plipastin, bacilysin, toxins, prophages
and sporulation, had a lower surfactin production (Geissler
et al., 2019). Then, concerning surfactin production itself, the
strategy can take place at different stages of the surfactin cell
production: at the transcription level by promoter substitution
or modification of the transcriptional regulatory genes of srfA
operon, at the level of surfactin synthesis by increasing the
precursor availability, during the molecule’s excretion and finally
during its degradation (Figure 5).

Transcription
As seen before, surfactin NRPS is coded by four genes, srfA-
A, srfA-B, srfA-C, and srfA-D, that are controlled by the Psrf
antoinducible promoter, triggered by signal molecules from a
quorum sensing pathway. Studies were performed to exchange
this promoter with inducer-specific or constitutive ones. It
emerged that a replacement with a constitutive promoter in
a weak surfactin producer strain leads to an increase in the
production, but that the opposite effect is observed for strong
surfactin producers (Willenbacher et al., 2016). However, the use
of novel artificial inducible promoters leads to an increase in
surfactin production of more than 17 times (Jiao et al., 2017).

In addition to the promoter, transcriptional regulatory genes
also control the expression of the NRPS genes. The cell density
dependent quorum sensing system plays a regulatory role in
many pathways in Bacillus, and among others in the regulation of
the srfA operon. Ohsawa et al. (2006) showed that the inhibition
of the ComQXP quorum sensing locus lead to a decrease in
the expression of srfA genes and Jung et al. (2012) showed that
the overexpression of ComX and PhrC increases the production
of surfactin.

In addition to the quorum sensing system itself, regulators also
impact the srfA operon, the quorum sensing system or even other
mechanisms that indirectly impact surfactin. There are positive
regulators such as PerR (Hayashi et al., 2005) and negative
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FIGURE 5 | Steps involved in the overproduction of surfactin in Bacillus, from the gene expression to the degradation. The main steps are in purple, the yellow arrow

represent hypothetical reactions.

regulators such as CodY (Coutte et al., 2015), Rap (Hayashi et al.,
2006), SinI (López et al., 2009) and Spx (Zhang et al., 2006).

Increasing Precursor Supply of NRPS by Feeding or

Metabolic Engineering
Modifying media and fermentation condition is a strategy to
overproduce the lipopeptide precursors as well as to favor the
production of certain isoforms. For example it was seen that
the feeding of leucine as 50% of the nitrogen source lead
to an increase in specific surfactin production of three times
(Coutte et al., 2015). Another strategy is the application of
rational metabolic engineering approaches such as: (i) blocking
competitive pathways for building blocks, as well as, those
pathways that consume products; (ii) pulling flux through
biosynthetic pathways by removing regulatory signals; and (iii)
by overexpressing rate-limiting enzymes.

Amino Acids Precursors
One way to develop this metabolic engineering approach is to
use knockout of genes which negatively influence the intracellular
pool of amino acids precursors. To implement the knock-out of
gene which negatively influence the intracellular pool of amino

acid precursor, their metabolic pathways have to be modeled as a
reaction network taking into account the regulation processes.

Firstly, the various pathways involved in the metabolites
needed for the amino acid production should be addressed. In
this research for compounds from the glycolysis that influence
the amino acid production, pyruvate is interesting from multiple
points of view. It is the entry point of the Krebs cycle
through its conversion into acetyl-CoA, but it is also used as a
substrate for the production of amino acids that compose the
surfactin. Indeed, pyruvate is converted into valine and leucine.
Furthermore, the production of isoleucine is made through
threonine and pyruvate. The Krebs cycle also contributes to the
amino acid production, with oxoglutarate and oxaloacetate, they
belong to the metabolism of aspartic and glutamic acid. Secondly,
the various enzymes that regulates metabolite production should
be addressed. The search can also go a level above, with the
regulators and promoters of those enzymes, such as pleiotropic
regulators CodY or TnrA (Dhali, 2016). Lastly, the transporters
of the amino acid precursors can be addressed. Indeed, the amino
acid can be transported into the cell from the environment.

Wang et al. (2019), showed that the knockout of murC,
yrpC and racE, negative regulators involved in the metabolism
of glutamate, lead to an increase in surfactin production. The
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choice of those knock-outs can also be directed by methods from
computational biology, to narrow them down and reduce the
laboratory time needed.

Some prediction methods are based on formal reasoning
techniques based on abstract-interpretation (Niehren et al.,
2016). This is a general framework for abstracting formal models
that is widely used in the static analysis of programming
languages. Formal models are reaction networks with partial
kinetic information with steady state semantics define systems
of linear equations, with kinetic constraints, that are then
abstracted. Here, the methods were to be developed further, so
that they could be applied to reaction networks rather than other
kinds of programs. This approach has been used for the branched
chain amino acids (leucine, valine, and isoleucine) that mainly
compose the surfactin peptide chain (Coutte et al., 2015).

The quite complex metabolic pathway of leucine production
from threonine and pyruvate was modeled, by rewriting the
informal model from SubtiWiki (Coutte et al., 2015) into
this formal modeling language, while adding and adapting
some reactions. It selected gene knock-outs that may lead to
leucine overproduction, for which some of them an increase in
surfactin production in Bacillus subtilis 168 was observed after
experimental verification (Dhali et al., 2017).

Since single gene deletion is successful, multiple gene deletion
must be the next aim. To be able to perform various deletions
and/or insertions in the same strain, a markerless strategy
is required. Various strategies can be performed such as
temperature sensitive plasmid, pORI vectors, auxotrophy based
methods, but also the cre/lox system (Yan et al., 2008), the pop-
in pop-out technique (Tanaka et al., 2013) and the CRISPRi
technology (Wang et al., 2019).

Fatty Acid Precursors
As mentioned, fatty acids are one of the crucial components
of surfactin, and modifications of this part of the molecule,
such as length and isomerism, demonstrated to impact on the
physicochemical properties and on the biological activity of
lipopeptides (Dufour et al., 2005; De Faria et al., 2011; Henry
et al., 2011; Liu et al., 2015; Dhali et al., 2017). Different
metabolic engineering strategies were applied to improve
surfactin production, in terms of the branched-chain fatty acid
supply included: (i) enhancing the branched-chain α-ketoacyl-
CoA supply (Dhali et al., 2017; Wang et al., 2019; Wu et al.,
2019); (ii) enhancing malonyl-ACP synthesis (Wu et al., 2019);
(iii) overexpressing the whole fatty acid synthase complex (Wu
et al., 2019); and (iv) pulling substrates flux toward surfactin
biosynthesis by enhancing srfA transcription (Jiao et al., 2017;
Wu et al., 2019).

Another study showed that the overexpression of the bkd
operon produces less surfactin, besides being detrimental
for cell growth (Wu et al., 2019). As the BKD complex
requires lipoylation for its dehydrogenase activity, this enzyme
competes with other lipoic acid dependent complexes (pyruvate
dehydrogenase complex (PDH), 2-oxoacid dehydrogenase,
acetoin dehydrogenase and the glycine cleavage system),
generating a suppression of cell growth and, eventually, of
surfactin production. By overexpressing the enzymes responsible

for lipoic acid synthesis (lipA, lipL, and lipM) (Christensen et al.,
2011; Martin et al., 2011), this suppressive effect is reversed. The
competitive lipoylation process between BKD and other lipoic
acid dependent complexes is eliminated (Wu et al., 2019) and
thus generates a higher production of surfactin with respect to
the parental strain.

A further pathway, targeted to modification, represents
the malonyl-ACP synthesis. Acetyl-CoA is converted into
malonyl-CoA through the activity of ACC (accDABC).
Thus, overexpression of these genes in combination with
that of fabD, the malonyl-CoA:ACP transacylase, has been
reported to increase the levels of surfactin production (Wu
et al., 2019). Furthermore, these authors applied systematic
metabolic engineering in B. subtilis 168 to construct surfactin
hyperproducer strains. Other successful interventions related
to FA biosynthesis have also been described. The simultaneous
overexpression of most FAS II coding genes; fabH and fabGZIF
(Runguphan and Keasling, 2014) and expression of the E. coli
tesA thioesterase (Steen et al., 2010), to “pull” through the
pathway. The combination of the mentioned interventions, in
an already modified B. subtilis 168 chassis, further improved
surfactin production by 220% (Wu et al., 2019).

Acetyl-CoA, is a key intermediate metabolite, which is not
only used for surfactin biosynthesis, but fundamentally for
cell growth and proliferation. Acetyl-CoA is generated from
pyruvate by PDH; overexpression of enzymes of the glycolytic
pathway and the KO of genes coding for enzymes associated
with the acetyl-CoA consumption are common strategies to
increase the supply of this key intermediate. Wu et al.
(2019) showed that the simultaneous overexpression of the
PDH genes and that of the glycolysis enzymes produce an
increase in biomass but not a significant increase in the levels
of surfactin. However, if these interventions were combined
with the overexpression/deregulation of the srf gene cluster,
the surfactin production could be further improved to 12.8
g/l, achieving a 42% (mmol surfactin/mol sucrose) of the
theoretical yield.

Directed Biosynthesis of Surfactin
D Due to the non-specificity of some adenylation domains,
the proportion of natural variants of surfactin can be modified
through the feeding of certain amino acids as the nitrogen
source in the culture medium. In the peptide moiety, this
only affects L amino acid residues located in position 2, 4,
and 7, and with a greater variation in position 4. Indeed, the
feeding of valine leads to an increase of valine in position 7
(Menkhaus et al., 1993), the feeding of isoleucine (Ile) leads to
the apparition of isoleucine in position 2 and/or 4 (Grangemard
et al., 1997) and the feeding of alanine (Ala) lead to a surfactin
with alanine in position 4 (Peypoux et al., 1994). Also, the
culture medium can also influence the proportion of surfactin
variants with different acyl moieties. For example, Liu et al.
(Liu et al., 2015) found that the strain B. subtilis BS-37 has
lower surfactin titers with higher proportions of C15-surfactin
when grown in LB compared with glucose medium. Another
team analyzed the influence of amino acid residues on the
pattern of surfactin variants produced by B. subtilis TD7 (Liu
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et al., 2012). The β-hydroxy fatty acid in surfactin variants was
C15>C14>C13>C16, when no amino acid was added in the
culture medium. On the other hand, when Arg, Gln, or Val was
added to the culture medium, the proportion of surfactins with
even β-hydroxy fatty acid chain significantly increased; whereas
the addition of Cys, His, Ile, Leu, Met, Ser, or Thr significantly
enhanced the proportion of surfactins with odd β-hydroxy fatty
acid. Some of these results can be explained by the mode of
biosynthesis of branched fatty acids, the precursors of which
are branched chain amino acids (Kaneda, 1991). Thus, valine
feeding enhances the proportion of iso variants with even fatty
acid chains, while leucine and isoleucine feeding enhances the
proportion of uneven iso or anteiso fatty acids chains respectively
(Liu et al., 2012).

Modification of the variant pattern can also be obtained
by genetic engineering of precursor pathways. As previously
mentioned, increasing the branched chain 2-ketoacyl-CoAs
intermediates is one of the strategies used for enhancing the
synthesis of surfactin. The deletion of gene codY, which encodes
a global transcriptional regulator and negatively regulates the
bkd operon lead to a 5.8-fold increase in surfactin production
in B. subtilis BBG258 with an increase by a factor 1.4 of the
amino acid valine in position 7 instead of leucine (Dhali et al.,
2017). On the other hand, Wang et al. (2019), using CRISPR
interference (CRISPRi) technology, were able to repress the
bkdAA and bkdAB genes of the bkd operon; provoking a modest
improvement in surfactin concentration, but a significant change
in the proportion of the nC14 component. Similar results were
observed in B. subtilis BBG261, a derivative lpdV mutant strain,
where the interruption of this 2-oxoisovalerate dehydrogenase of
the BKD complex led to higher percentage of the nC14 isoform
(52,7% in the lpdV mutant in comparison with the 21,2% of the
control strain) (Dhali et al., 2017).

Excretion
The excretion of surfactin is another important step for its
overproduction. Even if, as mentioned before, surfactin can insert
itself in the membrane of the cell, the transmembrane efflux is
mediated by protein transporters.

As mentioned before, thanks to its amphiphilic structure,
surfactin can interact with the membrane of the cell. Under or
at the CMC, the surfactin can insert itself in the membrane,
and above the CMC it can even solubilize it (Deleu et al., 2003,
2013). However, it was hypothesized by Tsuge et al. that the gene
yerP, homolog to the RND family efflux pumps, is involved in
the surfactin efflux (Tsuge et al., 2001). Later, Li et al. (2015)
showed that the overexpression of three lipopeptide transporters,
dependent on proton motive force, YcxA, KrsE and YerP lead to
an increase in surfactin export of 89, 52, and 145% respectively.

Those studies are promising and the efflux proteins need to be
further investigated to fully understand the excretion of surfactin.

Degradation
Lastly, the importance of surfactin degradation should not be
underestimated. Indeed, a decrease in surfactin concentration of
59 and 73% has been observed during the fermentation process

(Nitschke and Pastore, 2004; Maass et al., 2016), leading to the
presence of degradation mechanisms by the cell themselves.

Three hypotheses are considered by the different teams
observing this phenomenon. Since that, for different mediums
with the same carbon content, the surfactin decrease happened
at the same time, it could be that surfactin is used as a carbon
source after glucose depletion. Or, since the decrease happened
at the same surfactin concentration, that it is degraded because
of its possible inhibitory effect at higher concentration (Maass
et al., 2016). It was also shown that the surfactin decrease is linked
to the increase in protease activity in the culture medium and
thus the produced enzymes could be involved in this degradation
(Nitschke and Pastore, 2004).

As for the excretion, this degradation process was
seldomly researched but could greatly influence the
surfactin production.

Culture Medium and Conditions
Landy culture medium, based on glucose and glutamic acid,
is one the main culture medium usually used for surfactin
production. Furthermore, some studies have been performed to
ameliorate it (Jacques et al., 1999; Akpa et al., 2001; Wei et al.,
2007; Ghribi and Ellouze-Chaabouni, 2011; Huang et al., 2015;
Willenbacher et al., 2015).

However, another type of approach for the culture medium
is rising. Indeed, the use of cheap substrate such as waste or
by-products from the agro-industrial field is more and more
researched (De Faria et al., 2011; Gudiña et al., 2015; Moya
Ramírez et al., 2015; Paraszkiewicz et al., 2018), since this
approach enables a sustainable production of surfactins. The
recent review of Zanotto et al. develops specifically this approach
(Zanotto et al., 2019).

Concerning the fundamental parameters of culture condition,
a pH of 7 and a temperature of 37◦C leads to a higher production
rate (Ohno et al., 1995a). However, when up-scaling from a
flask culture to a larger scale, the main challenge in surfactin
production appears. Indeed, the agitation rate and oxygenation
of the culture medium play an important role in the production
(Hbid et al., 1996; Guez et al., 2008; Ghribi and Ellouze-
Chaabouni, 2011). As surfactin is a surfactant and thus increases
the stability of a gas-liquid dispersion, this agitation leads to
the abundant production of foam. Nonetheless, even if this
foam production is often considered as a drawback, it can be
used with the appropriate reactors as an advantage to easily
recover surfactin.

Production Processes
For an overproduction of surfactin, the addition of a solid carrier
to an agitated liquid culture can enhance surfactin production by
stimulating cell growth and by promoting a biofilm formation.
Yeh et al. (2005) added activated carbon, agar and expanded clay,
observing a 36 times increase with activated carbon.

Nonetheless, as mentioned before, due to the high foam
generation in surfactin production, classical stirred reactors
are not optimal for this bioprocess. Indeed, adding antifoam
to the culture medium has many drawbacks. Antifoams may
have a negative effect on cell growth and are costly, but
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even more, they have to be eliminated during purification.
Thus, multiple strategies can be applied: (i) to use this
foam production to its advantage or (ii) to reduce or avoid
foam production.

For the first strategy, the foam fractionation method consists
in a continuous removal of the foam from a liquid agitated
culture to a sterile vessel. So, this removal is a first purification
step and by the continuous extraction avoids any possible
feedback inhibition from the products (Cooper et al., 1981; Davis
et al., 2001). However, the foam can carry a part of the culture
medium and cells out and thus decrease the production. For the
second strategy, a rotating disk bioreactor was used by Chtioui
et al. (2012) where a biofilm formation occurs on a rotating
disk in a liquid medium. The process is simple and can easily
be upscaled, but the oxygen transfer is quite low and thus not
optimal for surfactin production.

Bacillus biofilm formation capacity can also be used in other
type of biofilm reactors such as packed bed reactors, where the
liquid medium recirculates on a packing in the reactor (Zune
et al., 2016). The purification is easily performed, but the biofilm
growth is difficult to control because it depends on the liquid
distribution in the packing. Recent studies have considered the
genetic engineering of the bacterial cells to modify their biofilm
formation ability or their filamentous growth in order to enhance
their adhesion on the packing (Brück et al., 2019, 2020).

A membrane reactor allows for a bubbleless oxygen transfer
through a membrane between the air and the culture medium.
Furthermore, a first surfactin purification can be made through
ultrafiltration coupled to the fermentation (Coutte et al., 2010b).
However, there is a surfactin adsorption on the membrane and
they can be costly when upscaled.

Lastly, a solid medium can be used with solid state
fermentation that avoids the mechanical stirring of liquid
cultures and thus the foam production. It represents a simple
process but with parameters more difficult to control than in a
liquid culture. However, many waste and by-products used as
novel substrate are in a solid state and could thus be used without
pretreatment (Ohno et al., 1995b).

Most studies are performed on the enhancement of one of the
steps of the production process, but some studies are performed
to decrease the costs in a large scale production (Czinkóczky and
Németh, 2020).

Purification
The purification process is a major step in the surfactin
production and depends on the fermentation process used.
Linked to the techniques mentioned before, foam can be
recovered during the fermentation and lead to 70% of
recovery (Davis et al., 2001; Willenbacher et al., 2014). For a
fermentation process with the surfactin in the liquid medium,
acid precipitation, linked to the negative charge of surfactin, is
the oldest andmore common used technique. It can lead to a high
recovery rate, but has a low purity (55%) and is the only technique
that cannot be continuously coupled to the production. Solvent
extraction can also be used alone but it is mostly coupled with
acid precipitation to enhance the purity (Kim et al., 1997; Geissler

et al., 2017). One of the most common type of purification,
membrane filtration, can especially be used for surfactin through
its micelle forming ability above its critical micelle concentration.
The aggregated molecule is larger an thus can be retained
by membranes with a MWCO of 10–100 kDa (Jauregi et al.,
2013) with recovery rates and a purity above 90% depending
on the applied membrane. Furthermore, hybrid methods have
been successfully employed, i.e., precipitation before filtration
(Chen et al., 2007), which facilitated the process or increased the
final purity.

The techniques mentioned above are mostly used for the
extraction of surfactin from the culture medium. Some uses
of surfactin require a higher purity that can be obtained with
the following methods. The physico-chemical properties of
surfactin can be used through its adsorption on resin or active
charcoal (Liu et al., 2007), leading to variable recovery rates
and purity. Chromatographic derived methods can also be used
to get a better purity and to separate individual variants or
isoforms of the lipopeptide (Smyth et al., 2010). Reverse phase
chromatography, based on hydrophobic interactions, is the most
common technique employed.

CONCLUSIONS

With the improved genetic toolbox which is now available,
a larger and more diverse chemical space of the surfactin
scaffold can be generated and explored. This endeavor will
create novel surfactin derivatives with improved, specialized,
or expanded biological activities. And even if this molecule’s
potential applications range is already broad and reaches different
industrials sectors, it may be enhanced with those novel
compounds. However, despite the advancements in surfactin
production, its production cost is still withholding it for a
widespread commercial use in low added-value applications.
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