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This article presents the construction of a new non-overlapping domain decomposition 
method (DDM) for two-dimensional elastic scattering problems. The method relies on a 
high-order Transmission Boundary Condition (TBC) between sub-domains, which accurately 
approximates the exact Dirichlet-to-Neumann map. First, we explain the derivation of this 
new TBC in the context of a non-overlapping DDM. Next, a mode-by-mode convergence 
study for a model problem is presented, which shows the new method to be quasi-optimal, 
i.e. with an optimal convergence rate for evanescent modes and an improved convergence 
rate for the other modes compared to the standard low-order Lysmer-Kuhlemeyer TBC. 
Finally, the effectiveness of the new DDM is demonstrated in a finite element context by 
analyzing the behavior of the method on high-frequency elastodynamic simulations.

© 2019 Elsevier Inc. All rights reserved.

0. Introduction

The accurate numerical modeling of high-oscillatory elastic phenomena is a timely research field with a large panel of 
applications, from seismology and non-destructive testing to medical ultrasound. Amongst the various numerical techniques 
that can be used to solve such problems [33], the Finite Element Method (FEM) is one of the most versatile. Applying the 
FEM in the frequency domain leads however to the solution of very large, complex and possibly indefinite linear systems. To 
overcome the limits of direct sparse solvers and/or the possibly slow convergence of Krylov subspace iterative solvers [17]
for such problems, we investigate non-overlapping Domain Decomposition Methods (DDM), which allow to work onto sub-
problems of smaller sizes. Such methods were first introduced by Lions [26] for the Laplace equation, before being adapted 
by Després to the Helmholtz equation [13]. The first step of the method consists in partitioning the domain by introducing 
fictitious boundaries. Then, continuity conditions are imposed onto these artificial interfaces and the problem is solved by 
iterating over the sub-domains to obtain the final solution on the overall domain. For wave-type problems, the continuity 
conditions must be Transmission Boundary Conditions (TBC) of Robin type [3], also referred to as impedance or generalized 
impedance conditions. The subdomain partitioning makes these methods particularly well suited for implementations on 
parallel computers.

A key point to get an efficient iterative algorithm lies in the derivation of non-expensive and accurate TBCs. The optimal 
convergence is obtained by using the exact Dirichlet-to-Neumann (DtN) map as transmission conditions. However, the exact 
DtN operator is a non-local operator and leads to an expensive procedure in practice. For time-harmonic acoustic and 
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electromagnetic waves, various approximations of the DtN have been proposed over the years, giving rise to so-called 
optimized Schwarz methods (see e.g. [14]). Quasi-optimal local transmission conditions were proposed in [6,5] based on 
high-order Padé approximations of the DtN operator. For time-harmonic elastic waves however the state-of-the-art in DDM 
is much younger. The only attempt so far at constructing an optimized Schwarz method can be found in [7], which relies 
on a local Taylor transmission condition and necessitates an overlap between the subdomains. In addition, this condition 
only ensures the convergence of the DDM algorithm for non-grazing modes, under a minimal overlap-width constraint. 
Designing domain decomposition schemes that do not require an overlap between the subdomains is however desirable 
from a practical point of view, as they lead to smaller subproblems and easier grid management on parallel computers. In 
this paper, we propose a new square-root based transmission condition for 2D elastodynamics based on the regularized DtN 
map described in [28,8], that can be used for both overlapping and non-overlapping DDM. We prove with a mode-by-mode 
convergence study on a model problem that the resulting non-overlapping DDM is quasi-optimal, i.e. with an optimal 
convergence rate for evanescent modes and an improved convergence rate for the other modes compared to the standard 
low-order Lysmer-Kuhlemeyer TBC [27]. We then present a Padé-localized version of this TBC and its implementation in a 
Finite Element context, and discuss the performance of the new algorithm on numerical examples.

The paper is organized as follows. After describing the Navier problem and the non-overlapping DDM in Section 1, we 
introduce the new high-order transmission boundary condition in Section 2. In Section 3, we analyze the convergence of 
the resulting DDM for a model problem and prove its quasi-optimality. Section 4 is devoted to the localization procedure of 
the transmission operator and Section 5 to the implementation with finite elements. Finally, we discuss the pros and cons 
of the new TBC around several 2D numerical results which validate the conclusions of the modal analysis from Section 3.

1. Navier exterior problem and non-overlapping domain decomposition method

Let us consider a two-dimensional time-harmonic scattering problem of an incident elastic wave by an impenetrable 
body �− with a closed boundary � := ∂�− of class C2 at least. Let �+ denote the associated exterior domain R2\�− . We 
are interested in finding the scattered field u+ solution to the exterior Navier equation with a Dirichlet boundary condition 
and satisfying the Kupradze radiation conditions [25] at infinity⎧⎪⎪⎨⎪⎪⎩

div σ(u+) + ρω2u+ = 0 in �+,

u+
|� = −uinc|� on �,

lim
r→∞

√
r

(
∂ψ{p,s}

∂r
− iκ{p,s}ψ{p,s}

)
= 0, r = |x|,

(1)

with uinc an incident wave field which is assumed to solve the Navier equation in the absence of any scatterer. The Lamé 
parameters, μ and λ, the angular frequency ω and the density ρ are positive constants. In the case of 2D isotropic elas-

todynamics, the stress and strain tensors are given by σ(u+) = λ(div u+)I2 + 2με(u+) and ε(u+) = 1

2

([∇u+] + [∇u+]t
)

respectively, where I2 is the 2-by-2 identity matrix and [∇u+] is the matrix whose j-th column is the gradient of the j-th 
component of u+ . The displacement field u+ is decomposed into the longitudinal field u p = ∇ψp and the transverse field 
us = u+ − up = curlψs , where the Lamé potentials ψp and ψs satisfy{

ψp = −κ−2
p div u+


ψp + κ2
pψp = 0

and

{
ψs = κ−2

s curl u+

ψs + κ2

s ψs = 0
(2)

with respective P- and S-wavenumbers κ2
p = ρω2/(λ + 2μ) and κ2

s = ρω2/μ. Notice that in two dimensions, the vector 
rotational operator is defined for a scalar function ϕ by curlϕ = (∂yϕ, −∂xϕ)t , whereas the scalar rotational operator acting 
on a vector field v = (vx, v y)

t is given by curl v = ∂x v y − ∂y vx . The wavelengths are defined by λ{p,s} = 2π/κ{p,s} .
To numerically compute the solution to problem (1), we combine Absorbing Boundary Conditions (ABCs) with an opti-

mized Schwarz domain decomposition method. The infinite propagation domain �+ is truncated with a fictitious boundary 
�∞ enclosing the obstacle. Let us denote by � the bounded domain delimited by � and �∞; and by n = (nx, ny)

t the 
outer unit normal vector to the boundary �∞ . The Absorbing Boundary Condition introduced on �∞ simulates the radiation 
condition and the resulting bounded boundary-value problem is the following: find u solution to⎧⎨⎩

div σ(u) + ρω2u = 0, in �,

u|� = −uinc|� , on �,

t |�∞ = Bu|�∞ , on �∞.

(3)

The Neumann trace, defined by t |�∞ := σn =: Tnu, is given by the traction operator

Tn = 2μ
∂

∂n
+ λn div+μn × curl, (4)

where n ×ϕ = (ϕny, −ϕnx)
t for a given scalar function ϕ . Using Perfectly Matched Layers (PMLs) [4,10] is another standard 

technique to truncate the propagation domain and all what follows can be adapted to that case.
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Fig. 1. Example of partition of the domain �.

Let us focus on the algorithm of optimized Schwarz Domain Decomposition Method (DDM) [13,26] without overlap for 
the bounded boundary-value problem (3). The first step of the non-overlapping DDM is to make a partition of the domain 
� with Ndom sub-domains �i , i = 1, · · · , Ndom, see Fig. 1. Thus, the sub-domains satisfy �̄ = ∪Ndom

i=1 �̄i and �i ∩ � j = ∅ for 
all i 
= j, i, j = 1, · · · , Ndom. For neighboring sub-domains �i and � j , we denote i j := �̄i ∩ �̄ j their interface. Problem (3)
can be rewritten as follows on the sub-domains �i , i = 1, · · · , Ndom⎧⎨⎩

div σ(ui) + ρω2ui = 0, in �i,

ui = −uinc
i , on �i,

T ui = Bui, on �∞
i ,

(5)

supplemented with the following continuity conditions on the interface between neighboring subdomains �i and � j{
ui = u j on i j,

Tni ui = −Tn j u j on i j.
(6)

Following the method introduced by Lions [26] in the context of the Laplace equation and adapted to wave propagation 
problems by Després [13], the second step consists in combining the continuity conditions (6) into transmission conditions 
between neighboring sub-domains and iteratively solving (volume) sub-problems Voli on each �i : at iteration p + 1, find 
u(p+1)

i := u(p+1)
|�i

, i = 1, · · · , Ndom solution to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

div σ(u(p+1)

i ) + ρω2u(p+1)

i = 0, in �i,

u(p+1)

i = −uinc
i , on �i,

T u(p+1)

i = Bu(p+1)

i , on �∞
i ,

Tni u
(p+1)

i − Sni u
(p+1)

i = g(p)

i j , on i j,

(7)

and then in updating the (surface) fields g(p+1)

ji by solving the surface systems Suri j

g(p+1)

ji = −g(p)

i j − (Sni + Sn j )u(p+1)

i , on i j. (8)

We denoted ni (resp. n j) the outgoing normal to �i (resp. � j), i = 1, · · · , Ndom, j = 1, · · · , Ndom, �i = ∂�i ∩ �, �∞
i =

∂�i ∩ �∞ and Sn the transmission operator. Note that by definition �i or �∞
i can be empty sets. The notations Tn and Sn

suggest a dependence with respect to the normal vector n; details will be given in Section 2.
As has already been discussed in [5,6], solving at each iteration p + 1 all the local transmission problems (7)–(8) is 

equivalent to finding g(p+1) the set of boundary data (g(p+1)

i j )1≤i, j≤Ndom solution to

g(p+1) = Ag(p) + b, (9)

where A : ×Ndom
i, j=1(L2(i j))

2 → ×Ndom
i, j=1(L2(i j))

2 is the iteration operator and b := (b|i j
)1≤i, j≤Ndom ∈ ×Ndom

i, j=1(L2(i j))
2 is the 

source term (given in our case by the Dirichlet and the absorbing boundary condition). Therefore, (7)–(8) can be seen as an 
iteration of the Jacobi method applied to the linear system

(I −A)g = b, (10)

where I is the identity operator. A consequence is that any Krylov subspace iterative solver [31] can be used instead of the 
simple Jacobi iterative process to find the solution.

2. Transmission operators

The operator Sn aims at approximating the exact exterior DtN map �ex : (H
1
2 (i j))

2 → (H− 1
2 (i j))

2 defined by

�ex(u|i j ) = t |i j . (11)

It is well-known that the choice of the operator Sn directly impacts the convergence of the domain decomposition method 
[6,5]. We propose to compare two approximations of different orders of the DtN map and the corresponding Transmission 
Boundary Conditions (TBC).
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2.1. Low-order transmission operator

We consider the following low-order approximation of the exact DtN map �ex

S0
n := i(λ + 2μ)κp In + iμκsIτ , (12)

where In = n ⊗ n and Iτ = I − In . This choice corresponds to the radiation conditions given in [25] (see Theorem 2.9 page 
127) which are equivalent to Kupradze one’s given in (1). The zeroth-order approximation (12) plays the same role as the
approximate DtN iκ (where κ is the wavenumber) associated with the Sommerfeld radiation condition in acoustics. The 
operator (12) gives the Lysmer-Kuhlemeyer boundary condition [27,23,24]. Such an approximation was also previously used 
in the framework of nonreflecting boundary conditions when the artificial boundary is a sphere [19].

Noting that I{−n} = In , the operator S0
n satisfies S0−n = S0

n =: S0. The associated last equation of (7) is called the Low-
Order Transmission Boundary Condition (LO-TBC) and is given by

Tni u
(p+1)

i − S0u(p+1)

i = g(p)

i j , on i j. (13)

Thus, the field equation (8) reads

g(p+1)

ji = −g(p)

i j − 2S0u(p+1)

i , on i j . (14)

We will see in Section 3 that the approximation (12) provides a good spectral behavior of the associated iteration oper-
ator (I −A) for the first eigenvalues (associated with propagating modes) only. A similar behavior has been observed with 
the use of the non-overlapping DDM and low-order DtN approximations for the Helmholtz [6] and Maxwell [5] equations. 
This motivates the investigation of new high-order transmission conditions.

2.2. Non-local high-order transmission operator

Recent works in 3D elastodynamics have proposed accurate approximations of the exact DtN map in the context of the 
analytical preconditioning technique for boundary integral equations [12,8] and in the context of the On-Surface Radiation 
Conditions (OSRC) method [8]. In [28], ideas of [8] have been adapted to the 2D case and were used to derive new high-
order ABCs for elasticity. For the non-overlapping DDM we study, these previous results lead us to consider the following 
high-order (non-local) transmission operator

S1,ε
n = (I + �2,ε,n)−1�1,ε,n + 2μMn, (15)

with the operators

�1,ε,n = iρω2

[
n

1

κp,ε
(


�

κ2
p,ε

+ I)−1/2n · In + τ
1

κs,ε
(

�

κ2
s,ε

+ I)−1/2τ · Iτ

]
, (16)

�2,ε,n = −i

[
τ (

∂s

κs,ε
(

�

κ2
s,ε

+ I)−1/2n · In) − n(
∂s

κp,ε
(


�

κ2
p,ε

+ I)−1/2τ · Iτ )

]
, (17)

and Mn the Günter tangential derivative which is given by

Mn = ∂s(n · In)τ − ∂s(τ · Iτ )n, (18)

where κ{p,s},ε := κ{p,s} + iε{p,s} are complexified wavenumbers, τ = (−ny, nx)
t is the unit tangential vector, s the associated 

curvilinear abscissa along i j and ∂s is the curvilinear derivative. The Laplace-Beltrami operator over i j is defined by 

� = ∂2

s and the inverse of the square-root operator ( 
�

κ2{p,s},ε
+ I)−1/2 is defined through its spectral decomposition [32]. 

As we work with complex numbers, the principal determination of the square-root with a branch-cut along the negative 
real axis will be considered. We consider the same values for the damping parameters ε{p,s} arising in the complexified 
wavenumbers κ{p,s},ε as the ones derived by solving optimization problems for a sufficiently large wavenumber in the 
spherical case [11,2,16]: εp = 0.39κ

1/3
p (H2)1/3 and εs = 0.39κ

1/3
s (H2)1/3 where H is the curvature of the boundary i j .

Noting that ∂2{−s} = ∂2
s , we have �1,ε,{−n} = �1,ε,n (we omit the subscript n in the notation of �1,ε,n), �2,ε,{−n} =

−�2,ε,n and M{−n} = −Mn . We deduce that the update equation (8) associated with the non-local high-order transmission 
operator (15) is equivalent to

g(p+1)

ji = −g(p)

i j − [(I + �2,ε,ni )
−1�1,ε + (I − �2,ε,ni )

−1�1,ε

]
u(p+1)

i , on i j. (19)

In addition, the last equation of (7) when considering the non-local high-order transmission operator (15) is called the 
non-local High-Order Transmission Boundary Condition (HO-TBC)
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Tni u
(p+1)

i − S1,ε
ni

u(p+1)

i = g(p)

i j , on i j. (20)

In Section 4, we will address an efficient local representation of the non-local operator S1,ε
n using complex Padé approxi-

mants which can be easily combined with a finite element discretization.

3. Convergence analysis for large modes on a model problem

In order to study the convergence for large modes (i.e. in the high-frequency part of the Fourier spectrum corresponding 
to evanescent waves) of the proposed DDM with the non-local HO-TBC (20), we analyze a model problem with two sub-
domains: a disk-shaped bounded sub-domain �1 of radius R and an unbounded complementary domain �0. We denote by 
� := ∂�1 the boundary of �1.

The method consists in solving separately at each iteration the following problems{
divσ(u(p+1)

0 ) + ρω2u(p+1)
0 = 0, in �0,

g(p)
0 = Tn0 u(p+1)

0 − S1,ε
n0 u(p+1)

0 = −Tn1 u(p)
1 − S1,ε

n0 u(p)
1 , on �,

(21)

with u0 satisfying the Kupradze radiation conditions, and{
divσ(u(p+1)

1 ) + ρω2u(p+1)
1 = 0, in �1,

g(p)
1 = Tn1 u(p+1)

1 − S1,ε
n1 u(p+1)

1 = −Tn0 u(p)
0 − S1,ε

n1 u(p)
0 , on �.

(22)

The convergence analysis can be developed by studying the spectral properties of the iteration operator A (a 4 × 4 matrix) 
defined by

A :=
(

02 A0

A1 02

)
, (23)

with A0 and A1 2 × 2 matrices satisfying

A0 g(p)
0 := −g(p)

0 − (S1,ε
n0

+ S1,ε
n1

)u(p+1)
0 , A1 g(p)

1 := −g(p)
1 − (S1,ε

n0
+ S1,ε

n1
)u(p+1)

1 . (24)

We will first derive an explicit mode-by-mode representation of the fields u0, u1 and the operator S1,ε
n . Then, using (21)

and (22) we will determine the coefficients of the matrices A0, A1 and A. Finally, we will study the asymptotic behavior of 
the eigenvalues and the spectral radius of A. This leads a convergence result of the non-overlapping DDM for large modes.

3.1. Spectral representation of the solutions

Since we have a cylindrical geometry, we determine the solutions u0 and u1 to problems (21) and (22) mode-by-mode 
by using a Fourier-Hankel series expansion in the cylindrical coordinates system (r, θ). A standard decomposition in elasto-
dynamics consists in splitting u� , � = 0, 1, into an irrotational potential ψ p

� and a free-divergence potential ψ s
� [30]

u� = ∇ψ
p
� + curl ψ s

�, for � = 0,1, (25)

when considering

ψ
p
� =

+∞∑
m=0

ψ
p
�,meimθ , ψ s

� =
+∞∑
m=0

ψ s
�,meimθ , � = 0,1, (26)

with ψ {p,s}
0,m solving the exterior problems⎧⎪⎨⎪⎩

1

r
∂r(r∂rψ

{p,s}
0,m ) + (κ2{p,s} − m2

r2
)ψ

{p,s}
0,m = 0, r > R,

lim
r→∞

√
r(∂rψ

{p,s}
0,m − iκ{p,s}ψ {p,s}

0,m ) = 0,

(27)

and ψ {p,s}
1,m solving the interior ones

1

r
∂r(r∂rψ

{p,s}
1,m ) + (κ2{p,s} − m2

r2
)ψ

{p,s}
1,m = 0, r ≤ R. (28)

It follows that [30,34]

ψ
{p,s} = α{p,s},m H (1)

m (κ{p,s}r) and ψ
{p,s} = β{p,s},m Jm(κ{p,s}r), (29)
0,m 1,m
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where H (1)
m and Jm are the Hankel function of the first-kind and the Bessel function of order m respectively. Let us denote 

(p�, q�) the cylindrical components of u� for � = 0, 1 and for more readability 
∑

m

vm =
+∞∑
m=0

vm . Using the Fourier expansion 

for � = 0, 1

u� :=
∑

m

u�,meimθ = (p�,q�)
t := (

∑
m

p�,meimθ ,
∑

m

q�,meimθ )t, (30)

we deduce from (25)–(29) and the expressions in cylindric coordinates of ∇ϕ = (∂rϕ, ∂θ

r ϕ)t and curlϕ = ( ∂θ

r ϕ, −∂rϕ)t that 
for a mode m at iteration p⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(p)
0,m = α

(p)
p,mκp H (1)′

m (κpr) + im

r
α

(p)
s,m H (1)

m (κsr),

q(p)
0,m = im

r
α

(p)
p,m H (1)

m (κpr) − α
(p)
s,mκs H (1)′

m (κsr),

p(p)
1,m = β

(p)
p,mκp J ′

m(κpr) + im

r
β

(p)
s,m Jm(κsr),

q(p)
1,m = im

r
β

(p)
p,m Jm(κpr) − β

(p)
s,mκs J ′

m(κsr).

(31)

3.2. Spectral representation of the operators

Let us begin with the traction operator Tn1 (4). In the usual cylindric coordinate system (r, θ ), the traction operator 
applied to u� = (p�, q�)

t , for � = 0, 1, is described by

Tn1 u� :=
⎛⎜⎝(λ + 2μ)∂r p� + λ

∂θ

R

q� + λ

R

p�

μ∂rq� + μ
∂θ

R

p� − μ

R

q�

⎞⎟⎠ . (32)

Expression (32) comes from Tnu� = σ(u�)n = (λ(div u�)I2 + 2με(u�))n when taking the divergence in cylindrical coordi-
nates, n = n1 = (1, 0)t and by definition of the strain tensor in cylindrical coordinates (see page 124 [18])

ε(u�) :=

⎛⎜⎜⎝ ∂r p�

1

2

(
1

r
∂θ p� + ∂rq� − q�

r

)
1

2

(
1

r
∂θ p� + ∂rq� − q�

r

)
1

r
(∂θq� + p�)

⎞⎟⎟⎠ . (33)

Noting that ∂θ u� = imu� (see (30)), we obtain

Tn1 u� =
∑

m

Tn1,mu�,meimθ , (34)

with Tn1,m a 2 × 2 matrix defined mode-by-mode as

Tn1,m =
⎛⎜⎝ λ

R

+ (λ + 2μ)∂r · i
λm

R

i
μm

R

−μ

R

+ μ∂r ·

⎞⎟⎠ . (35)

Similarly, using the relation ∂s = ∂θ /R on the surface � with normal n1 and the expression of the operators (16)–(17)–(18)
defining S1,ε

n1 , we obtain the following respective expansions for the Günter tangential derivative, the operators �1,ε and 
�2,ε,n1

Mn1 u� :=
∑

m

⎛⎜⎝ 0 − im

R

im

R

0

⎞⎟⎠u�,meimθ , (36)

�1,εu� := iρω2
∑(

ξε
p 0

0 ξε

)
u�,meimθ , (37)
m s
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�2,ε,n1 u� := −i
∑

m

⎛⎜⎝ 0 − im

R

ξε
p

im

R

ξε
s 0

⎞⎟⎠u�,meimθ , (38)

when considering ξε{p,s} = 1

κ{p,s},ε

(
1 − (

m

κ{p,s},εR

)2
)−1/2

. Finally, from (15) we deduce

S1,ε
n1

u� :=
∑

m

S1,ε
n1,mu�eimθ , (39)

with δ = 1 + m2

R
2 ξε

p ξε
s and

S1,ε
n1,m = iρω2

δ

⎛⎜⎜⎝ ξε
p

m

R

(ξε
p ξε

s − 2
δ

κ2
s
)

−m

R

(ξε
p ξε

s − 2
δ

κ2
s
) ξε

s

⎞⎟⎟⎠ . (40)

Remark 1. By definition of the traction operator (4) and of the high-order non-local transmission operator (20), we deduce that on the 
surface � with normal n0 = −n1 we have for m ∈N

Tn0,m = −Tn1,m, (41)

and

S1,ε
n0,m = iρω2

δ

⎛⎜⎜⎝ ξε
p −m

R

(ξε
p ξε

s − 2
δ

κ2
s
)

m

R

(ξε
p ξε

s − 2
δ

κ2
s
) ξε

s

⎞⎟⎟⎠ . (42)

3.3. Determination of the iteration matrix

We develop the iteration matrix A thanks to the Fourier expansion

Au� =
∑

m

Amu�eimθ . (43)

Using equations (21)–(22) satisfied by g(p)
0 and g(p)

1 , we first determine A0 and A1 mode-by-mode. Let us begin by ex-

panding g(p)
0 and g(p)

1

g(p)
0 :=

∑
m

g(p)
0,meimθ , g(p)

1 :=
∑

m

g(p)
1,meimθ . (44)

In addition, using (21) and Remark 1, the surface field g(p)
0 satisfies{

g(p)
0 = −(Tn1 + S1,ε

n0 )u(p+1)
0 ,

g(p)
0 = −(Tn1 + S1,ε

n0 )u(p)
1 .

(45)

We deduce from expansions of u� (30), g� (44) and the definitions of p� and q� (31), for � = 0, 1, the following relations

g(p)
0 =

∑
m

eimθ

(
A0,m A1,m

A2,m A3,m

)(
α

(p+1)
p,m

α
(p+1)
s,m

)
, (46)

and

g(p)
0 =

∑
m

eimθ

(
B0,m B1,m

B2,m B3,m

)(
β

(p)
p,m

β
(p)
s,m

)
, (47)

with {
A0,m = ap,m · hp, A1,m = bs,m · hs, A2,m = bp,m · hp, A3,m = −as,m · hs,

B0,m = ap,m · jp, B1,m = bs,m · js, B2,m = bp,m · jp, B3,m = −as,m · js,
(48)
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where the following notations were introduced:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ap,m =
(

ρω2

δ
,κp(

2μ

r
− iρω2

δ
ξε

p )

)
, bp,m = im

r

(
2μ

r
− iρω2

δ
ξε

s ,−ρω2

δ
ξε

p ξε
s κp

)
,

as,m =
(

ρω2

δ
,κs(

2μ

r
− iρω2

δ
ξε

s )

)
, bs,m = im

r

(
2μ

r
− iρω2

δ
ξε

p ,−ρω2

δ
ξε

p ξε
s κs

)
,

hp =
(

H1
m(κpr), H1′

m(κpr)
)

, hs =
(

H1
m(κsr), H1′

m(κsr)
)

,

jp = ( Jm(κpr), J ′
m(κpr)

)
, js = ( Jm(κsr), J ′

m(κsr)
)
.

(49)

Similarly, noting that{
g(p)

1 = (Tn1 − S1,ε
n1 )u(p+1)

1 ,

g(p)
1 = (Tn1 − S1,ε

n1 )u(p)
0 ,

(50)

we obtain the expansions of g(p)
1

g(p)
1 =

∑
m

eimθ

(
B4,m B5,m

B6,m B7,m

)(
β

(p+1)
p,m

β
(p+1)
s,m

)
, (51)

and

g(p)
1 =

∑
m

eimθ

(
A4,m A5,m

A6,m A7,m

)(
α

(p)
p,m

α
(p)
s,m

)
, (52)

with {
B4,m = −cp,m · jp, B5,m = ds,m · js, B6,m = dp,m · jp, B7,m = cs,m · js,

A4,m = −cp,m · hp, A5,m = ds,m · hs, A6,m = dp,m · hp, A7,m = cs,m · hs,
(53)

when considering⎧⎪⎪⎪⎨⎪⎪⎪⎩
cp,m =

(
ρω2

δ
,κp(

2μ

r
+ iρω2

δ
ξε

p )

)
, dp,m = im

r

(
−2μ

r
− iρω2

δ
ξε

s ,
ρω2

δ
ξε

p ξε
s κp

)
,

cs,m =
(

ρω2

δ
,κs(

2μ

r
+ iρω2

δ
ξε

s )

)
, ds,m = im

r

(
−2μ

r
− iρω2

δ
ξε

p ,
ρω2

δ
ξε

p ξε
s κs

)
.

(54)

Now, we identify the two relations (46)–(47) for g(p)
0 , respectively (51)–(52) for g(p)

1 , to obtain(
α

p,n+1
m

αs,n+1
m

)
=
(

A0,m A1,m

A2,m A3,m

)−1(
B0,m B1,m

B2,m B3,m

)(
β

p,n
m

β
s,n
m

)
, (55)

(
β

p,n+1
m

β
s,n+1
m

)
=
(

B4,m B5,m

B6,m B7,m

)−1(
A4,m A5,m

A6,m A7,m

)(
α

p,n
m

αs,n
m

)
. (56)

From definitions (47)–(56)–(52), we deduce

g(p+1)
0,m =

(
B0,m B1,m

B2,m B3,m

)(
B4,m B5,m

B6,m B7,m

)−1

g(p)
1,m := A1,m g(p)

1,m, (57)

and with (52)–(55)–(47), we get

g(p+1)
1,m =

(
A4,m A5,m

A6,m A7,m

)(
A0,m A1,m

A2,m A3,m

)−1

g(p)
0,m := A0,m g(p)

0,m. (58)

Finally, we have the following iterative scheme

g(p+1)
m :=

(
g(p+1)

1,m

g(p+1)
0,m

)
= Am g(p)

m :=
(

02 A0,m

A1,m 02

)(
g(p)

1,m

g(p)
0,m

)
. (59)
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Fig. 2. Spectral radius of the modal iteration matrix Am with respect to the mode m. f = 6 Hz, R = 1 m, �κp� = 22 m−1, �κs� = 38 m−1.

Fig. 3. Spectral radius of the modal iteration matrix Am with respect to the mode m for R = 1 m at two frequencies f = 3 Hz (left) and f = 10 Hz (right), 
corresponding to �κp� = 11 m−1, �κs� = 19 m−1 (left) and �κp� = 37 m−1, �κs� = 63 m−1 (right).

3.4. Spectrum of the iteration matrix

The convergence properties of the DDM are strongly related to the spectrum of the iteration operator (I − A). First, 
let us numerically study the spectrum of the modal matrices Am in the case where �1 is the unit disk. The mechanical 
parameters are normalized and defined such that the wavenumbers satisfy κs = √

3κp (i.e. λ = 1 Pa, μ = 1 Pa, ρ = 1 Kg/m3). 
We fix the maximal number of modes mmax = 4�κs�, where �x� denotes the floor function of a real x.

We report in Figs. 2–4 the modal spectral radius ρ(Am) with respect to the modes m corresponding to the transmission 
operators S0, S1,0 and S1,ε (where S1,0 is the non-local HO-TBC operator taking εp = εs = 0) for different frequencies. We 
observe that the behavior of the different spectral radius is independent of the frequency in the three zones (propagative, 
transition and evanescent) of modes. The LO-TBC operator S0 acts on propagating modes only (m � κpR). Moreover, as the 
Desprès condition in the Helmholtz case [6], the spectral radius of Am associated with S0 is equal to 1 for evanescent 
modes (m � κsR). Applying the new non-local HO-TBC without damping related to S1,0, the convergence rate is optimal 
(i.e. the spectral radius tends to 0) for the evanescent modes and an improvement over the LO-TBC in the hyperbolic part 
(m � κpR) is observed. Furthermore, the singularities of the square-root operators (see (16) and (17)) in the transition zone 
of creeping modes (m ≈ κpR and m ≈ κsR) lead to two expected amplitude peaks. Finally, adding the damping parameters 
ε{p,s} , the non-local HO-TBC leads to a smaller spectral radius for the grazing modes than without damping. A slight increase 
of the spectral radius for evanescent modes appears but it is not damaging as we will see in the next section. The same 
behavior is observed at other frequencies and other wavenumber ratios: see Figs. 3, 4.

Regarding Figs. 2–4, we may wonder about the value of the limit of the spectral radius ρ(Am) associated with the 
non-local HO-TBC for large modes m. Theorem 1 answers this question.

Theorem 1. When m → +∞, the spectrum of the iteration matrix Am associated with the non-local HO-TBC goes to 0.
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Fig. 4. Spectral radius of the modal iteration matrix Am with respect to the mode m for R = 1 m, f = 6 Hz, �κs� = 38 m−1, κs � √
2κp (left) and κs = 3κp

(right), corresponding to �κp� = 27 m−1 (left) and �κp� = 13 m−1 (right).

Proof 1. The proof will be held in three parts. First, we compute the coefficients of the iteration matrix Am and give 
an approximation of them for large modes. Then, we express the eigenvalues of Am . Finally, we detail the limit of the 
eigenvalues associated with evanescent modes.
1. Make the iteration matrix explicit.
The iteration matrix is given by

Am =

⎛⎜⎜⎜⎝
0 0 am bm

0 0 cm dm

em fm 0 0

gm hm 0 0

⎞⎟⎟⎟⎠ , (60)

where the coefficients am, bm, cm, dm, em, fm, gm, hm are detailed in Appendix A.
Let us focus on approximations of Bessel and Hankel functions when m goes to infinity. We recall the following approx-

imations for the first and second kind Bessel functions when m → +∞ [1]

Jm(κr) ∼ 1√
2πm

(eκr

2m

)m
, (61)

Ym(κr) ∼ −
√

2

πm

(
2m

eκr

)m

. (62)

The relation m! ∼ √
2πm

(m
e

)m allows to get equivalently

Jm(κr) ∼ 1

m!
(κr

2

)m
, Ym(κr) ∼ − (m − 1)!

π

(
2

κr

)m

. (63)

Thus, in the following, recalling that Hm(κr) = Jm(κr) + iYm(κr), we will use

Hm(κr) ∼ −i

√
2

πm

(
2m

eκr

)m

, (64)

J ′
m(κr) ∼

√
m

2π

(eκr

2m

)m 1

κr
, (65)

and

H ′
m(κr) ∼ i

√
2m

π

(
2m

eκr

)m 1

κr
. (66)

Let us denote d0 = c0/m, d1 = c1/(κp R), d2 = c2/(κsR) and d3 = c3m/(κpκsR
2) with c0, c1, c2, c3 defined in (A.11). We detail 

how to obtain an estimation of am for large modes m. The other coefficients are approximated similarly. For the sake of 
simplicity, we denote in the following H{p,s} = Hm(κ{p,s}r) and H ′{p,s} = H ′

m(κ{p,s}r). By definition (A.5)–(A.9), the numerator 
of am is given by

Numam = c0 H p Hs + c1 H ′
p Hs + c2 H p H ′

s + c3 H ′
p H ′

p . (67)

Taking Hankel function approximations (64)–(66) we obtain
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Numam ∼ 2

π

(
2m

e
√

κpκsR

)2m

[−d0 + d1 + d2 − d3] . (68)

Similarly, by definition (A.5)–(A.7), the denominator of am

Denam = c0 H p Hs + c1 H ′
p Hs + c2 H p H ′

s + c3 H ′
p H ′

s, (69)

is approximated thanks to (64)–(66) by

Denam ∼ 2

π

(
2m

e
√

κpκs R

)2m
[
−b0

m
+ b1

κpR

+ b2

κsR

− b3m

κpκsR
2

]
. (70)

We finally obtain the following approximation for large modes m

am ∼
[

−d0 + d1 + d2 − d3

−b0/m + b1/(κpR) + b2/(κsR) − b3m/(κpκsR
2)

]
. (71)

The other approximations are obtained in the same way and are given by

bm ∼ −2ρ2ω4ξε
p

δR

[
1

−b0/m + b1/(κpR) + b2/(κsR) − b3m/(κpκsR
2)

]
,

cm ∼ 2ρ2ω4ξε
s

δR

[
1

−b0/m + b1/(κpR) + b2/(κsR) − b3m/(κpκsR
2)

]
,

dm ∼
[

d4 + d5 + d6 + d7

−b0/m + b1/(κpR) + b2/(κsR) − b3m/(κpκsR
2)

]
,

em ∼
[

d4 + d5 + d6 + d7

b4/m + b5/(κpR) + b6/(κsR) + b3m/(κpκsR
2)

]
,

fm ∼ −2ρ2ω4ξε
p

δR

[
1

b4/m + b5/(κpR) + b6/(κsR) + b3m/(κpκsR
2)

]
,

gm ∼ 2ρ2ω4ξε
s

δR

[
1

b4/m + b5/(κpR) + b6/(κsR) + b3m/(κpκsR
2)

]
,

hm ∼
[

d0 + d1 + d2 + d3

b4/m + b5/(κpR) + b6/(κsR) + b3m/(κpκsR
2)

]
,

(72)

with d4 = c4/m, d5 = c5/(κp R), d6 = c6/(κsR) and d7 = c7m/(κpκsR
2) when considering c0, c1, c2, c3 defined in (A.11).

When m → ∞, we have ξε
p ∼ ξε

s ∼ −iR
m . We deduce cm ∼ −bm , gm ∼ − fm and

Am ∼

⎛⎜⎜⎜⎝
0 0 am bm

0 0 −bm dm

em fm 0 0

− fm hm 0 0

⎞⎟⎟⎟⎠ . (73)

2. Make the eigenvalues explicit.
The eigenvalues of Am (73) are {±λ1,m, ±λ2,m} with

λ1,m = 1√
2

√
amem − 2bm fm + dmhm + 
m,

λ2,m = 1√
2

√
amem − 2bm fm + dmhm − 
m,

(74)

and 
m := √
(amem − dmhm)2 − 4(am fm + bmhm)(bmem + dm fm). For the sake of simplicity, we omit the index m in the 

following. Denoting

invDen =
[
(−b0

m
+ b1

κpR

+ b2

κsR

− b3m

κpκsR
2
)(

b4

m
+ b5

κpR

+ b6

κsR

+ b3m

κpκsR
2
)

]−1

, (75)
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we obtain

ae − 2bf + dh ∼ invDen

(
−2(d0 + d3)(d4 + d7) + 2(d1 + d2)(d5 + d6) − 8

ρ4ω8ξ2

δ2
R

2

)
, (76)

(ae − dh)2 ∼ invDen2 [−2(d0 + d3)(d5 + d6) + 2(d1 + d2)(d4 + d7)]2 , (77)

and

(af + bh)(be + df ) ∼ invDen2 16ρ4ω8ξ2

δ2
R

2
(d1 + d2)(d5 + d6).

Finally, substituting d j , j = 0, . . . , 7, by their estimations, we get

invDen ∼ m2δ2r4/(ρ4ω8)

−(R
2 − m2ξε

p ξε
s )2 − 2imr(R

2 − m2ξε
p ξε

s )(ξε
p + ξε

s ) + R
2m2(ξε

p + ξε
s )2 + 16 m2δ2

R
2

κ4
s

, (78)

ae − 2bf + dh ∼ 2invDenρ2ω4

(
16μ2

r4
− ρ2ω4

m2δ2
(1 − m2

R
2

ξpξs)
2 + ρ2ω4(ξε

s − ξε
p )2

(δr)2
− 4ρ2ω4ξ2

(δr)2

)
, (79)

and


2 ∼ −16ρ6ω12invDen2

(rδ)2

⎛⎝64μ2ξ2

r4
+ (ξε

s − ξε
p )2

⎛⎝ (1 − m2

r2 ξpξs)
2

m2δ2
+ 4ρω2ξ2

δ2r2

⎞⎠⎞⎠ . (80)

3. Asymptotic behavior of the eigenvalues.
Let us first remark that ξε{p,s} can be written for large m as

ξε{p,s} = −iR

m

(
1 −

(
κ{p,s},εR

m

)2
)−1/2

. (81)

A Taylor expansion of the square-root leads to

ξε{p,s} = − iR

m
− iκ2{p,s},ε

2

R
3

m3
∼ − iR

m
= O (m−1), (82)

and we deduce

δ = 1 + m2

R
2

ξε
p ξε

s ∼ − R2

2m2
(κ2

p,ε + κ2
s,ε) = O (m−2). (83)

We detail also the following expressions which are useful for computations

(ξε
p + ξε

s ) ∼ −2iR

m
= O (m−1), (84)

(ξε
s − ξε

p ) ∼ iR3

2m3
(κ2

p,ε − κ2
s,ε) = O (m−3). (85)

We will now approximate invDen, ad − 2be + cf and 
 using (82)–(83)–(84)–(85)

invDen ∼ − m2δ2

16ρ4ω8
,

ae − 2bf + dh ∼ −2
m2δ2

(κsR)4
∼ − 1

2m2κ4
s

(
κ2

p,ε + κ2
s,ε

)2
,


 ∼ ± 2mδ

(κsR)2
∼ ± 1

mκ2
s
(κ2

p,ε + κ2
s,ε).

(86)

We deduce that λ{1,2},m = O (m−1/2) with the definition of the eigenvalues (74). This ends the proof.
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Fig. 5. Eigenvalues of (I − A) in the complex plane for the different transmission operators. f = 6 Hz, R = 1 m, �κp� = 22 m−1, �κs� = 38 m−1, mmax =
4�κs�.

Fig. 6. Eigenvalues of (I −A) in the complex plane for evanescent modes. f = 6 Hz, R = 1 m, �κp� = 22 m−1, �κs� = 38 m−1, 45 ≤ m ≤ mmax.

3.5. Krylov subspace solvers

We use the GMRES iterative algorithm to solve (10). It is well known that the GMRES solver converges faster when 
an eigenvalue clustering around an accumulation point (in the complex plane) occurs. The eigenvalues of the operator 
(I − A) are given by μ±

�,m = 1 ± λ�,m , for � = 0, 1 and all modes m ∈ N . We report in Fig. 5 the eigenvalue distribution 
for the different transmission operators S0, S1,0 and S1,ε . We take the same physical parameters as previously and fix 
f = 6 Hz.

We zoom in Fig. 6 on the modes 45 ≤ m ≤ mmax in order to better analyze the spectrum in the elliptic part. The 
eigenvalues associated with the LO-TBC S0 spread out in the complex plane. When comparing Figs. 5 and 6, we deduce 
that the eigenvalues associated with evanescent modes are distributed on arcs of circle of radius 1 whereas the one as-
sociated to propagative and grazing modes are located inside the unit disk. There are two accumulation points: (0, 0)

and (2, 0). For the HO-TBC (S1,ε ), we observe an excellent eigenvalue clustering around the point (1, 0) for all modes, 
and in particular for large modes as expected from Theorem 1. We also see the great influence of the damping param-
eters. Without damping (considering S1,0), we note a spreading of some eigenvalues associated with the grazing modes 
(in agreement with the results of Fig. 2). Let us now explain the localization procedure of the HO transmission opera-
tor.
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4. Localization of the high-order transmission operator by complex Padé approximants

The HO transmission operator (20) is non-local. More particularly, the inverse of the square-root operator implied in 
�1,ε (16) and �2,ε,n (17) is non-local. In a finite element context, it involves implementing full matrices at the transmission 
boundaries. To get a local and uniform representation of the function (1 + z)−1/2 (20), we use complex rational Padé 
approximants with a rotating branch-cut technique of angle α [9]: for z ∈C, one has

(1 + z)−1/2 ≈
L−1∑
�=0

Rα
�

Sα
� + z

, (87)

where⎧⎨⎩ Rα
� = eiα/2c�, Sα

� = 1 + eiα(−1 + d�), � = 0, . . . , L − 1,

c� = d�

L
, d� = 1 + tan2

( π

2L
(

1

2
+ �)

)
, � = 0, . . . , L − 1.

(88)

Finally, we propose the following regularized Padé-localized transmission boundary operator

S 1̃,ε
n = (I + �2̃,ε,n)−1�1̃,ε + 2μMn, (89)

with Mn the Günter tangential derivative and

�1̃,ε = iρω2
[

1

κp,ε
n

L−1∑
�=0

Rα
�

(

�

κ2
p,ε

+ Sα
� I

)−1

(n · In) + 1

κs,ε
τ

L−1∑
�=0

Rα
�

(

�

κ2
s,ε

+ Sα
� I

)−1

(τ · Iτ )

]
, (90)

�2̃,ε,n = −i

[⎛⎝ 1

κs,ε
∂s

L−1∑
�=0

Rα
�

(

�

κ2
s,ε

+ Sα
� I

)−1

(n · In)

⎞⎠τ

−
⎛⎝ 1

κp,ε
∂s

L−1∑
�=0

Rα
�

(

�

κ2
p,ε

+ Sα
� I

)−1

(τ · Iτ )

⎞⎠n

]
.

(91)

The low-order operator (13) is an approximation of order 0 of the high-order non-local operator (20) without damping 
noting that κ2

p = ρω2(λ +2μ)−1 and κ2
s = ρω2μ−1. By approximation of order 0, we mean replacing the surface differential 

operators by their first eigenvalue equals to zero. Moreover, noting that ∀α ∈ [0, 2π [
L−1∑
�=0

Rα
�

Sα
�

−→
L→+∞ 1, (92)

the 0th-order approximation of the regularized Padé-localized operator (89) tends to the low-order operator for large Padé-
orders L. Let us analyze the effect of the Padé approximation on the spectrum of the matrices (I −A) and A for the model 
problem of Section 3. For a mode m, the transmission operator is described by

S 1̃,ε
n1,m = iρω2

δ̃

⎛⎝ ξ ε̃
p

m
R
(ξ ε̃

p ξ ε̃
s − 2 δ̃

κ2
s
)

−m
R
(ξ ε̃

p ξ ε̃
s − 2 δ̃

κ2
s
) ξ ε̃

s

⎞⎠ , (93)

with ξ ε̃{p,s} = 1

κ{p,s},ε

L−1∑
�=0

Rα
�

Sα
� − m2/(κ{p,s},εR)2

and δ̃ = 1 + m2

R
2

ξ ε̃
p ξ ε̃

s . In the following, the angle of rotation is taken equal to 

α = π/4, which was found to be optimal choice through numerical experiments in [28]. We report in Fig. 7 the spectral 
radius of Am associated with the HO-TBC before and after a localization for different Padé orders, and in Fig. 8 the corre-
sponding eigenvalue distributions of (I − A). The eigenvalues related to both the propagative and grazing modes are well 
approximated for the different Padé orders L. Increasing the Padé order leads to a better approximation of eigenvalues for 
evanescent modes (see Fig. 7) and hence of the spectral radius.

5. Finite element formulation

We describe in this section the implementation of the domain decomposition algorithm to solve the truncated Navier 
problem (3). Let us recall that the iterative method consists in solving problems (7) and computing the transmitted quanti-
ties (8). For the sake of clarity, we omit the index (p) associated to the iteration number of the algorithm.
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Fig. 7. Impact of the Padé localization of order L. Spectral radius of the modal iteration matrix Am with respect to the mode m. f = 6 Hz, R = 1 m, 
�κp� = 22 m−1, �κs� = 38 m−1.

Fig. 8. Eigenvalues of (I − A) in the complex plane for the different transmission operators. f = 6 Hz, R = 1 m, �κp� = 22 m−1, �κs� = 38 m−1, mmax =
4�κs�. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Weak formulation. Let us denote ugi ∈ (H1(�i))
2 such that ugi |�i

= uinc
i and (H1

g(�i))
2 := {ui ∈ (H1(�i))

2 : ui = ugi on �i
}

. 
In the case �i = ∅, we have (H1

g(�i))
2 = (H1(�i))

2. Considering a test-function u′
i ∈ (H1

0(�i))
2, we get the variational 

formulation for the volume problem: find ui ∈ (H1
g(�i))

2 such that∫
�i

(σ(ui) : ε(u′
i) − ρω2ui · u′

i)dx −
∫

�∞
i

Bui · u′
id�∞

i −
∑

j

∫
i j

(Sni ui · u′
i + g i j · u′

i)di j = 0, (94)

holds for all u′
i . Then, the variational formulation for the surface update (8) consists in finding g ji ∈ (H1(i j))

2 such that∫
i j

(g ji · g ′
ji + g i j · g ′

i j + (Sni + Sn j )ui · g ′
ji)di j = 0, (95)

for all g ′
ji ∈ (H1

0(i j))
2. For more details on the term 

∫
�∞

i
Bui · u′

id�∞
i we refer to [28] where the Lysmer-Kuhlemeyer 

Absorbing Boundary Condition (ABC) and high-order ABC have been addressed for 2D elasticity. We now compare two 
transmission boundary conditions on i j : the LO condition with Sn = S0 (13) and the Padé-local HO operator which is 
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defined by Sn = S 1̃,ε
n (89). Let us explicit the terms 

∫
i j

Sni ui · u′
idi j and 

∫
i j

(Sni + Sn j )ui · g ′
ji di j in each case. We use 

the following notation for the standard scalar product on i j

(u, u′) :=
∫

i j

u · u′di j. (96)

• LO-TBC.

(S0ui, u′
i) = i(λ + 2μ)κp(n · ui,n · u′

i) + iμκs(τ · ui,τ · u′
i),(

(S0
ni

+ S0
n j

)ui, g ′
ji

) = (2S0ui, g ′
ji).

(97)

• HO-TBC.

(S 1̃,ε
ni

ui, u′
i) = ((I + �2̃,ε,ni

)−1�1̃,εui, u′
i) + 2μ(Mni ui, u′

i). (98)

Recall that the operators �1̃,ε , �2̃,ε,ni
are given by the expressions (90) and (91) respectively. The variational formula-

tion (98) is decomposed into three steps. For the sake of clarity, we omit in the following the index i relative to the 
sub-domain �i for the several auxiliary variables we will introduce.

Step 1: The coupled variational formulation for the application of the operator �1̃,ε is given by: find v i(:= �1̃,εui) and the 
auxiliary scalar variables v0, v1, h�, i� , � = 0, . . . , L − 1 such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(v i, v ′
i) = iρω2(κ−1

p,ε(v0,n · v ′
i) + κ−1

s,ε (v1,τ · v ′
i)),

(v0, v ′
0) =

L−1∑
�=0

Rα
� (h�, v ′

0),

Sα
� (h�,h′

�) − (κ−1
p,ε∂sh�, κ

−1
p,ε∂sh′

�) = (n · ui,h′
�), � = 0, . . . , L − 1,

(v1, v ′
1) =

L−1∑
�=0

Rα
� (i�, v ′

1),

Sα
� (i�, i′�) − (κ−1

s,ε ∂si�, κ
−1
s,ε ∂si′�) = (τ · ui, i′�), � = 0, . . . , L − 1,

(99)

holds for all the associated test-functions v ′
i, v

′
0, v

′
1, h′

�, i
′
� , � = 0, . . . , L − 1.

Step 2: The coupled variational formulation of the boundary differential equation (I + �2̃,ε,ni
)qi = v i on i j , with v i =

�1̃,εui obtained at the Step 1, is expressed by: find qi and the auxiliary scalar variables q0, q1, j�, k� , � = 0, . . . , L −1
such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(qi,q′
i) − i(κ−1

s,ε (∂sq0,τ · q′
i) − κ−1

p,ε

(
∂sq1,n · q′

i

)
) = (v i,q′

i),

(q0,q′
0) =

L−1∑
�=0

Rα
� ( j�,q′

0),

Sα
� ( j�, j′�) − (κ−1

s,ε ∂s j�, κ
−1
s,ε ∂s j′�) = (n · qi, j′�), � = 0, . . . , L − 1,

(q1,q′
1) =

L−1∑
�=0

Rα
� (k�,q′

1),

Sα
� (k�,k′

�) − (κ−1
p,ε∂sk�, κ

−1
p,ε∂sk

′
�) = (τ · qi,k′

�), � = 0, . . . , L − 1,

(100)

holds for the associated test-functions q′
i, q

′
0, q

′
1, j′�, k′

� , � = 0, . . . , L − 1.
Step 3: The final step consists in finding an approximation t i of the Neumann trace on i j such that

(t i, u′
i) = (qi, u′

i) + 2μ(Mni ui, u′
i), (101)

where qi is computed in Step 2 and Mni is the tangential Günter derivative (18).

Using the properties of the operators given in Section 2.2 and the definition of v i and qi , the term 
∫
i j

(Sni +Sn j )ui · g ′
ji di j

is finally described by(
(Sni + Sn j )ui, g ′

ji

)= (qi, g ′
ji) + ((I − �2̃,ε,ni

)−1 v i, g ′
ji

)
. (102)

We refer to Step 2 to produce 
(
(I − �˜ )−1 v i, g ′ ).
2,ε,ni ji
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Table 1
Physical parameters and number of degrees of freedom (d.o.f.). Mesh density nλs = 32, Padé order L = 4, 2 sub-
domains, “circle-concentric” partition, P1 finite elements.

f (Hz) 1 6
λs (m) 1 1/6
κs (rad m−1) 2π 12π
d.o.f Mono-domain 37 376 994 230

DDM System Vol1 Vol2 Sur12 Vol1 Vol2 Sur12

d.o.f. LO-TBC 12 984 25 032 640 461 616 536 430 3 816
d.o.f. HO-TBC 21 304 33 352 4 480 511 224 586 038 26 712

Table 2
Important parameters of the HO-TBC and corresponding values used in all finite ele-
ment computations.

Parameters εs εp L α

Values 0.39κ
1/3
s (H2)1/3 0.39κ

1/3
p (H2)1/3 4 π/4

Finite element discretization. Consider a covering �i,h of �i using Ni,T triangular finite elements with Ni,V vertices. Let us 
denote �i,h and i j,h the boundaries of the mesh �i,h corresponding to �i and i j respectively. Parameter h is the average 
length of the edges of the triangles. For the discretization, we use classical P1 finite elements. We denote by Ni,P1 the 
vertices associated to the P1 finite elements and by nλs = λs/h the density of discretization points per S-wavelength. We 
consider three approximation spaces⎧⎪⎨⎪⎩

Ui,h := {ui,h ∈ (C0(�i))
2 : ui,h|T ∈ (P1)

2,∀T ∈ �i,h} := (P1(�i,h))
2,

Ui,gh := {ui,h ∈ Ui,h : ui,h = uinc
i,h on �i,h},

Vi,h := {v i,h ∈ (C0(i j,h))
2 : v i,h|T ∈ (P1)

2,∀T ∈ i j,h} := (P1(i j,h))
2,

(103)

with dimUi,gh = dimUi,h = 2Ni,P1 and dimVi,h = 2Ni,b where Nij,b is the number of boundary nodes on i j,h . Replacing in 
(97)-. . .-(102) ui by ui,h ∈ Ui,gh , (v i, qi, t i) by (v i,h, qi,h, t i,h) ∈ V3

i,h , (v0, v1, q0, q1) by (v0,h, v1,h, q0,h, q1,h) ∈P1(i j,h)4 and 
∀� = 0, · · · , L − 1, (h�, i�, j�, k�) by (h�,h, i�,h, j�,h, k�,h) ∈ P1(i j,h)4, we obtain the discretization of the weak formulations 
(94)–(95) for the low-order and high-order transmission boundary conditions.

Let us now discuss on the size of the linear systems involved in the DDM resolution. We recall that on sub-domain �i , we 
solve the volume problem Voli corresponding to the weak formulation (94) and n surface problem(s) Suri j corresponding to 
(95), where n is the number of sub-domains neighboring the current sub-domain �i . For instance, in a “circle-concentric” 
partition, �i has one or two neighboring sub-domains, so n = 1 or 2. Considering the LO-TBC or the HO-TBC leads to 
different sizes of the volume and surface problems. Indeed, the DDM problem with the LO-TBC has no additional variables, 
in the sense that only ui and g ji have to be calculated, whereas with the HO-TBC, some auxiliary variables (that are 
v i, qi, t i, v0, v1, q0, q1, h�, i�, j�, k�) are also needed. With the LO-TBC, the resolution of Voli leads to a linear system of size 
2Ni,P1 and Suri j to a linear system of size 2Ni,b . For the implementation of the HO-TBC, Steps 1, 2 and (102) require each 
(2L + 4) additional variables on i j . The resolution of Voli leads to a linear system of size 2Ni,P1 + 2(2L + 4)Ni,b + 2Ni,b
and Suri j to a linear system of size 2Ni,b + (2L + 4)Ni,b . Note that Ni,b � Ni,P1 .

6. Numerical results

In this section, we validate numerically the new domain-decomposition algorithm using the HO-TBC and compare it with 
the LO-TBC. We study the scattering of incident elastic plane waves by the unit disk. The fictitious boundary �∞ is the circle 
of radius rext = 2 m. The truncated computational domain is the annular domain bounded by the unit circle and �∞ := Crext . 
We fix again the relation κs = √

3κp . In the following, the frequencies f = 1 Hz and f = 6 Hz are mainly used. We denote 
by nλs the density of discretization points per S-wavelength λs = 2π/κs . We recap some physical parameters and number of 
degrees of freedom in Table 1. We consider unstructured meshes which are generated using Gmsh [22]. The simulations are 
performed with the open source finite element solver GetDP [15,21]. All the tests are run on a Intel Core i5-6300U (with 
two CPU cores 2.40 GHz). The efficiency and accuracy of the HO-TBC (89) depend on different parameters: the damping 
parameters ε{p,s} , the order 2L + 1 and the angle α of the Padé approximation. We summarize the parameters used for all 
the following simulations (unless indicated otherwise) in Table 2. The choice of the regularizing parameters ε{p,s} and the 
ones used in the localization process has been discussed in Sections 3 and 4. From now, the L2 error considered is

eL2 := ‖uFEM − uDDM‖L2

‖uFEM‖L2
, (104)

with uFEM the FEM solution with P1 elements to (3) on the mono-domain and uDDM the reconstruction of the scattered 
field on the global domain after a DDM computation solution to (7)–(8) with LO-TBC (13) or HO-TBC (89).
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Fig. 9. Two-dimensional test cases: comparison between the DDM solution with a “circle-concentric”decomposition (left) and a “circle-pie” decomposition 
(right). First component Re(ux) of the solution. Incident P-wave, frequency f = 6 Hz, κs = √

3κp , mesh density nλs = 32, Ndom = 3, rext = 2 m, HO-TBC, 
HO-ABC, GMRES Tolerance= 10−4, Padé order approximation L = 4, α = π/4, P1 finite elements.

6.1. Impact of the partition of the domain

We consider in Fig. 9 incident plane P-waves uinc
p (x) = (−iκpe−iκp x, 0)t striking the unit disk and HO-TBC (89) onto the 

fictitious boundaries splitting the domain. Both solutions are taken with the same mesh refinement nλs = 32. The high-order 
ABC [28] is set on �∞ .

For the two decompositions, the DDM algorithm converges and gives the results in Fig. 9. For the “circle-concentric” 
configuration, we obtain eL2 = 8.95e-05 with 17 GMRES iterations and for the “circle-pie” geometry eL2 = 1.48e-02 with 
103 iterations. This difference is mainly due to the way the domain is split. For the “circle-pie” case, there are intersections 
between the transmission boundaries and the boundaries � and �∞ , which introduces cross-points [20,29]. From now, let 
us consider the “circle-concentric” partition.

6.2. Influence of the frequency, the mesh density and the number of sub-domains

We consider Ndom = 2 sub-domains. It is well-known that taking incident plane P- or S-waves (in practice uinc
p (x) =

(−iκpe−iκp x, 0)t respectively uinc
s (x) = (0, iκse−iκsx)t ) and/or changing the frequency could impact the GMRES convergence. 

Fig. 10 depicts the number of iterations to reach convergence with respect to the frequency f and the incident plane 
wave for a fixed density of discretization points per wavelength nλs = 32. The HO-TBC is very efficient. The number of 
iterations are reduced compared with the LO-TBC, particularly for high frequencies and S-waves. The HO-TBC requires a 
number of iterations quasi-independent of the frequency. Fig. 11 gives the number of iterations with respect to the density 
of discretization nλs , for a fixed frequency f = 1 Hz. The interest of using the HO-TBC is confirmed.

In Fig. 12, we observe the effect of the number of sub-domains on the GMRES iterations. We directly see that the 
different methods scale for the two TBCs. The HO-TBC leads to a faster GMRES convergence than the LO-TBC.

6.3. Influence of the ratio between the two wavenumbers

In this section, we observe the impact of the ratio between the two wavenumbers κs/κp onto the numbers of GMRES 
iterations. Let us first explicit κs/κp

κs

κp
:=
√

λ + 2μ

μ
. (105)

One can remark that the ratio (105) depends only on the Lamé coefficients. In order to get an interesting interval physically 
speaking, we consider three materials with different stiffness: steel (very rigid, λ � 104 GPa and μ � 82 GPa), aluminum
(rigid, λ � 57 GPa and μ � 25 GPa) and cork (little stiff, λ � 10−3 GPa and μ � 9e−03 GPa). The corresponding ratio are 
(κp/κs)steel � 1.81, (κp/κs)aluminium � 2.07 and (κp/κs)cork � 1.45. Thus, we choose to study κp/κs in [√2, 3] (corresponding 
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Fig. 10. Number of GMRES iterations vs. frequency. Comparison between the LO-TBC (S0) and the HO-TBC (S 1̃,ε ). Incident P-wave and S-wave. Frequency 
0.25 ≤ f ≤ 10 (Hz), κs = √

3κp . Mesh density nλs = 32, Ndom = 2, “circle-concentric” partition, rext = 2 m, HO-ABC, GMRES Tolerance= 10−4, Padé order 
approximation L = 4, α = π/4, P1 finite elements.

Fig. 11. Number of GMRES iterations vs. mesh density. Comparison between the LO-TBC (S0) and the HO-TBC (S 1̃,ε ). Incident P-wave and S-wave. Mesh 
density 30 ≤ nλs ≤ 50. Frequency f = 1 Hz, Ndom = 2, κs = √

3κp , “circle-concentric” partition, rext = 2 m, HO-ABC, GMRES Tolerance= 10−4, Padé order 
approximation L = 4, α = π/4, P1 finite elements.

Fig. 12. Number of GMRES iterations vs. number of sub-domains. Comparison between the LO-TBC (S0) and the HO-TBC (S 1̃,ε ). Frequencies f = 1 Hz and 
f = 6 Hz. Incident P-wave and S-wave. Mesh density nλs = 32, κs = √

3κp , “circle-concentric” partition, rext = 2 m, HO-ABC, GMRES Tolerance= 10−4, Padé 
order approximation L = 4, α = π/4, P1 finite elements.
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Fig. 13. Number of GMRES iterations vs. ratio of the wavenumbers. Comparison between the LO-TBC (S0) and the HO-TBC (S 1̃,ε ). Incident P-wave and 
S-wave. Mesh density nλs = 32, κs = 12π (m−1), Ndom = 2, “circle-concentric” partition, rext = 2 m, HO-ABC, GMRES Tolerance= 10−4, Padé order approxi-
mation L = 4, α = π/4, P1 finite elements.

Fig. 14. Two-dimensional test cases with “letter C” scatterer. Incident P-wave (left) and S-wave (right). First component Re(ux) of the solution. Frequency 
f = 6 Hz, κs = √

3κp , mesh density nλs = 32, Ndom = 2, rext = 2 m, HO-TBC, HO-ABC, GMRES Tolerance= 10−4, Padé order approximation L = 4, α = π/4, 
P1 finite elements.

respectively to λ � μ and λ = 7μ). Results are reported in Fig. 13. The new high-order transmission conditions again 
outperform the low-order one.

6.4. Influence of the scatterer geometry

In this section, we consider another geometry for the scatterer: the letter “C”. We include the letter “C” into the unit 
disk (which was the previous scatterer). This geometry generates multiple diffractions as shown in Fig. 14 where the DDM 
with HO-TBC for two subdomains had been performed. The test case with incident P-wave (left) is obtained after 9 GMRES 
iterations with an L2 error of 5.69e-05 and for the incident S-wave (right) 15 GMRES iterations and eL2 = 5.87e-05. In order 
to test the impact of the geometry onto the convergence of the algorithm, we take the same cases as in section 6.2 i.e. 
changing the frequency f and with incident P- or S-wave. We obtain the results reported in Fig. 15. We remark that we get 
a similar behavior as the disk scatterer (see Fig. 10). It also confirms the interest of using the HO-TBC.
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Fig. 15. Number of GMRES iterations vs. frequency. Comparison between the LO-TBC (S0) and the HO-TBC (S 1̃,ε ). Letter C scatterer. Incident P-wave and 
S-wave. Mesh density nλs = 32, Ndom = 2, κs = √

3κp , “circle-concentric” partition, rext = 2 m, HO-ABC, GMRES Tolerance= 10−4, Padé order approximation 
L = 4, α = π/4, P1 finite elements.

7. Conclusion

We have proposed a first non overlapping domain decomposition method for the Navier equation in the two-dimensional, 
isotropic case. The method is based on the use of an approximate DtN map at the transmission interfaces between the 
sub-domains. A detailed asymptotic convergence analysis for a model problem with two sub-domains has been performed, 
showing the quasi-optimality of the method, i.e. an optimal convergence rate for large modes and an improved convergence 
rate for the other modes compared to the standard low-order method. Finally, numerical test cases were used to confirm the 
effectiveness of the proposed method for 2D finite element simulations. The extension of the method to three dimensions 
is currently under investigation.
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Appendix A. The iteration matrix

In this section, we explicit the terms of the 4 × 4 iteration matrix Am (59). Let us recall that

Am :=
(

02 A0,m

A1,m 02

)
, (A.1)

with (see (58)–(57))

A0,m :=
(

A4,m A5,m

A6,m A7,m

)(
A0,m A1,m

A2,m A3,m

)−1

, A1,m :=
(

B0,m B1,m

B2,m B3,m

)(
B4,m B5,m

B6,m B7,m

)−1

, (A.2)

and A j,m , B j,m , for j = 1, · · · , 7, given in section 3.3. We deduce

A0,m = 1

A0,m A3,m − A1,m A2,m

(
A3,m A4,m − A2,m A5,m A0,m A5,m − A1,m A4,m

A3,m A6,m − A2,m A7,m A0,m A7,m − A1,m A6,m

)
, (A.3)

and

A1,m = 1

B4,m B7,m − B5,m B6,m

(
B0,m B7,m − B1,m B6,m B1,m B4,m − B0,m B5,m

B2,m B7,m − B3,m B6,m B3,m B4,m − B2,m B5,m

)
. (A.4)
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We are thus interested in finding the eight following coefficients

am := A3,m A4,m − A2,m A5,m

A0,m A3,m − A1,m A2,m
, bm := A0,m A5,m − A1,m A4,m

A0,m A3,m − A1,m A2,m
,

cm := A3,m A6,m − A2,m A7,m

A0,m A3,m − A1,m A2,m
, dm := A0,m A7,m − A1,m A6,m

A0,m A3,m − A1,m A2,m
,

em := B0,m B7,m − B1,m B6,m

B4,m B7,m − B5,m B6,m
, fm := B1,m B4,m − B0,m B5,m

B4,m B7,m − B5,m B6,m

gm := B2,m B7,m − B3,m B6,m

B4,m B7,m − B5,m B6,m
, hm := B3,m B4,m − B2,m B5,m

B4,m B7,m − B5,m B6,m
,

(A.5)

defining the iteration matrix

Am :=

⎛⎜⎜⎜⎝
0 0 am bm

0 0 cm dm

em fm 0 0

gm hm 0 0

⎞⎟⎟⎟⎠ . (A.6)

Let us start with determining the denominators A0,m A3,m − A1,m A2,m and B4,m B7,m − B5,m B6,m . For the sake of simplicity, 
we denote in the following H{p,s} = Hm(κ{p,s}r), H ′{p,s} = H ′

m(κ{p,s}r), J {p,s} = Jm(κ{p,s}r) and J ′{p,s} = J ′
m(κ{p,s}r). Simple 

calculations lead to

A0,m A3,m − A1,m A2,m = b0 Hs H p + b1 Hs H ′
p + b2 H ′

s H p + b3 H ′
s H ′

p,

B4,m B7,m − B5,m B6,m = b4 J p J s + b5 J ′
p J s + b6 J p J ′

s + b7 J ′
p J ′

s,
(A.7)

while considering⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b0 = −ρ2ω4

δ
− 2iμ

ρω2

δ

m2

r3
(ξε

p + ξε
s ) + 4μ2 m2

r4
,

b1 = ρω2κp

(
iρω2ξε

p

δ
− 2μ

r

)
,

b2 = ρω2κs

(
iρω2ξε

s

δ
− 2μ

r

)
,

b3 = κpκs

(
ρ2ω4

δ
ξε

p ξε
s + 2iμ

r

ρω2

δ
(ξε

p + ξε
s ) − 4μ2

R
2

)
,

b4 = −ρ2ω4

δ
+ 2iμ

ρω2

δ

m2

r3
(ξε

p + ξε
s ) + 4μ2 m2

r4
,

b5 = −ρω2κp

(
iρω2ξε

p

δ
+ 2μ

r

)
,

b6 = −ρω2κs

(
iρω2ξε

s

δ
+ 2μ

r

)
,

b7 = κpκs

(
ρ2ω4

δ
ξε

p ξε
s − 2iμ

r

ρω2

δ
(ξε

p + ξε
s ) − 4μ2

R
2

)
.

(A.8)

The numerators of am, bm, cm, dm, em, fm, gm, hm are given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A3,m A4,m − A2,m A5,m = c0 H p Hs + c1 H ′
p Hs + c2 H p H ′

s + c3 H ′
p H ′

s,

A0,m A5,m − A1,m A4,m = 2m

r

ρ2ω4

δ2
ξε

p

(
H p Hs + ξε

p ξε
s κpκs H ′

p H ′
s

)
,

A3,m A6,m − A2,m A7,m = −2m

r

ρ2ω4

δ2
ξε

s

(
H p Hs + ξε

p ξε
s κpκs H ′

p H ′
s

)
,

A0,m A7,m − A1,m A6,m = c4 H p Hs + c5 H ′
p Hs + c6 H p H ′

s + c7 H ′
p H ′

s,

(A.9)

and
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B0,m B7,m − B1,m B6,m = c4 J p J s + c5 J ′
p J s + c6 J p J ′

s + c7 J ′
p J ′

s,

B1,m B4,m − B0,m B5,m = −2m

r

ρ2ω4

δ2
ξε

p

(
J p J s + ξε

p ξε
s κpκs J ′

p J ′
s

)
,

B2,m B7,m − B3,m B6,m = 2m

r

ρ2ω4

δ2
ξε

s

(
J p J s + ξε

p ξε
s κpκs J ′

p J ′
s

)
,

B3,m B4,m − B2,m B5,m = c0 J p J s + c1 J ′
p J s + c2 J p J ′

s + c3 J ′
p J ′

s,

(A.10)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 = ρ2ω4

δ2

(
1 − m2

R
2

ξε
p ξε

s

)
+ 2iμ

ρω2

δ

m2

r3
(ξε

s − ξε
p ) − 4μ2 m2

r4
,

c1 = ρω2κp

(
iρω2ξε

p

δ
+ 2μ

r

)
,

c2 = ρω2κs

(
− iρω2ξε

s

δ
+ 2μ

r

)
,

c3 = κpκs

(
ρ2ω4

δ2
ξε

p ξε
s

(
1 − m2

R
2

ξε
p ξε

s

)
− 2iμ

r

ρω2

δ
(ξε

s − ξε
p ) + 4μ2

R
2

)
,

c4 = ρ2ω4

δ2

(
1 − m2

R
2

ξε
p ξε

s

)
− 2iμ

ρω2

δ

m2

r3
(ξε

s − ξε
p ) − 4μ2 m2

r4
,

c5 = ρω2κp

(
− iρω2ξε

p

δ
+ 2μ

r

)
,

c6 = ρω2κs

(
iρω2ξε

s

δ
+ 2μ

r

)
,

c7 = κpκs

(
ρ2ω4

δ2
ξε

p ξε
s

(
1 − m2

R
2

ξε
p ξε

s

)
+ 2iμ

r

ρω2

δ
(ξε

s − ξε
p ) + 4μ2

R
2

)
.

(A.11)
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