Grégory Foré

Introduction

Uncontrolled power system

Primary frequency control

Power management of loads

TSO's perspective

Introduction to software aspects

Conclusion

University of Liège Faculty of applied sciences - Institute Montefiore Academic year 2011-2012

Master Thesis Defense

Mobile device power management for load flexibility: frequency dynamics and introduction to software aspects

Author Grégory Foré Date 25th June 2012 Supervisor Prof. Dr. lg. Damien Ernst

э

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Master Thesis Defense

Grégory Foré

Introduction

Uncontrolled power system

Primary frequency control

Power management of loads

TSO's perspective

Introduction to software aspects

Conclusion

Context

- smart grid approach
- renewable energy increasing
- energy and climate policy
- Purpose
 - frequency dynamics
 - primary reserve for frequency regulation
 - MODEPOMA concept: load flexibility

Grégory Foré

Introduction

Uncontrolled power system

Primary frequency control

Power management o loads

TSO's perspective

Introduction to software aspects

Conclusion

Uncontrolled power system

・ロト ・ 四ト ・ ヨト ・ コト

3

• Power imbalance \Rightarrow frequency deviation

Grégory Foré

Introduction

Uncontrolled power system

Primary frequency control

Power management of loads

TSO's perspective

Introduction to software aspect

Conclusion

Uncontrolled power system

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

• Need a frequency regulation

Grégory Foré

Introduction

Uncontrolled power system

Primary frequency control

Power management

TSO's perspective

Introduction to software aspects

Conclusion

Primary frequency control

- Aims to stabilize the frequency with a reduced frequency deviation
- P-controller usually used

Grégory Foré

Introduction

Uncontrolled power system

Primary frequency control

Power management o loads

TSO's perspective

Introduction to software aspect

Conclusion

Primary frequency control

・ロット (雪) (キョン (ヨン) ヨー

- Reaches the objective
- Always asymptotically stable

Grégory Foré

Introduction

Uncontrolled power system

Primary frequency control

Power management of loads

TSO's perspective

Introduction to software aspects

Conclusion

Primary frequency control

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Controller's parameters:
 - the time constant of the turbine au_t
 - $\rightarrow~$ the activation speed of the primary reserve
 - the speed droop characteristic S
 - $\rightarrow~$ the available primary reserve
- ⇒ Intrinsic features
- \Rightarrow Performance limited by its own implementation

Grégory Foré

Introduction

Uncontrolled power system

Primary frequency control

Power management of loads

TSO's perspective

Introduction to software aspects

Conclusion

Power management of loads

イロト 不得 トイヨト イヨト

3

- Aims to stop the frequency drop
- Consider a P-controller

Grégory Foré

Introduction

Uncontrolled power system

Primary frequency control

Power management of loads

TSO's perspective

Introduction to software aspects

Conclusion

Power management of loads

- Reaches the objective
- Not always asymptotically stable: possibility to prevent oscillations

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Grégory Foré

Introduction

Uncontrolled power system

Primary frequency control

Power management of loads

TSO's perspective

Introduction to software aspects

Conclusion

Power management of loads

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Controller's parameters:

- the frequency deviation for full activation Δf_{min}
- the number of available quantized loads N_0
- the quantized load q
 - $\rightarrow~$ the available primary reserve
- the time-delay τ
 - $\rightarrow~$ the lag introduced in the power system
- \Rightarrow Correlation with the primary frequency control
- \Rightarrow Relatively adjustable parameters

Transmission System Operator's perspective

- Limitation of current standards
- Integrations:
 - the mixed integration: respect current standards
 - the piecewise integration: take advantage of the power management of loads

Grégory Foré

Master Thesis

Uncontrolled

Primary frequency control

Power management o loads

TSO's perspective

Introduction to software aspects

Conclusion

Grégory Foré

Introduction

Uncontrolled power system

Primary frequency control

Power management o loads

TSO's perspective

Introduction to software aspects

Conclusion

Transmission System Operator's perspective

- Compared to the primary frequency control:
 - the mixed integration: less efficient
 - the piecewise integration: more efficient even with a smaller size global primary reserve

Grégory Foré

Introduction

Uncontrolled power system

Primary frequency control

Power management of loads

TSO's perspective

Introduction to software aspects

Conclusion

Introduction to software aspects

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Requirements to a software support: an IT platform
 - Assumptions and purpose
 - Constraints
 - Actors
 - Use cases

Conclusion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Master Thesis Defense

Grégory Foré

Introduction

Uncontrolled power system

Primary frequency control

Power management of loads

TSO's perspective

Introduction to software aspects

Conclusion

- Overview on what already exists
- Introduction of the MODEPOMA concept
 - model the power management of loads
- Integration of our idea in the current context
 - the piecewise integration efficiently works
- Next step: the implementation

Grégory Foré

Introduction

Uncontrolled power system

Primary frequency control

Power management o loads

TSO's perspective

Introduction to software aspect

Conclusion

Thank you for your attention

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ