Master Thesis Defense

Mobile device power management for load flexibility: frequency dynamics and introduction to software aspects

Author
Grégory Foré

Date
25th June 2012

Supervisor
Prof. Dr. Ig. Damien Ernst
Introduction

- **Context**
 - smart grid approach
 - renewable energy increasing
 - energy and climate policy

- **Purpose**
 - frequency dynamics
 - primary reserve for frequency regulation
 - MODEPOMA concept: load flexibility
Uncontrolled power system

- Power imbalance \Rightarrow frequency deviation
Uncontrolled power system

- Need a frequency regulation
Primary frequency control

- Aims to stabilize the frequency with a reduced frequency deviation
- P-controller usually used
Primary frequency control

- Reaches the objective
- Always asymptotically stable
Primary frequency control

- Controller’s parameters:
 - the time constant of the turbine T_t
 \rightarrow the activation speed of the primary reserve
 - the speed droop characteristic S
 \rightarrow the available primary reserve

\Rightarrow Intrinsic features

\Rightarrow Performance limited by its own implementation
Power management of loads

- Aims to stop the frequency drop
- Consider a P-controller
Power management of loads

- Reaches the objective
- Not always asymptotically stable: possibility to prevent oscillations
Power management of loads

- Controller’s parameters:
 - the frequency deviation for full activation Δf_{min}
 - the number of available quantized loads N_0
 - the quantized load q
 \rightarrow the available primary reserve
 - the time-delay τ
 \rightarrow the lag introduced in the power system

\Rightarrow Correlation with the primary frequency control

\Rightarrow Relatively adjustable parameters
Transmission System Operator’s perspective

- Limitation of current standards
- Integrations:
 - the mixed integration: respect current standards
 - the piecewise integration: take advantage of the power management of loads
• Compared to the primary frequency control:
 - the mixed integration: less efficient
 - the piecewise integration: more efficient even with a smaller size
 global primary reserve
Introduction to software aspects

- Requirements to a software support: an IT platform
 - Assumptions and purpose
 - Constraints
 - Actors
 - Use cases
Conclusion

- Overview on what already exists
- Introduction of the MODEPOMA concept
 - model the power management of loads
- Integration of our idea in the current context
 - the piecewise integration efficiently works
- Next step: the implementation
Thank you for your attention