Automatic sequences in rational base numeration systems (and even more)

 Joint work Michel Rigo (ULiège)

 Joint work Michel Rigo (ULiège)}

Manon Stipulanti (ULiège)
FNRS Postdoc Researcher

ULiège Discrete Math. Seminar
Liège (Belgium)
March 31, 2021

How it started

Eric Rowland presented our paper
E. Rowland and M. Stipulanti, Avoiding 5/4-powers on the alphabet of nonnegative integers, Electron. J. Combin. 27 (2020), Paper 3.42, 39 pp.
at the One World Combinatorics on Words Seminar.
He (notably) talked about the word

$$
w_{3 / 2}=0011021001120011031001130011021001140011031 \cdots,
$$

which is the lexicographically least word avoiding $\frac{3}{2}$-powers on the alphabet of non-negative integers. Then Michel asked:

$$
\text { Is this word } \frac{3}{2} \text {-regular? }
$$

So we started to look at automaticity and regularity in rational bases.

The plan

Define:

- Abstract numeration systems
- Labeled trees and periodic labeled signatures
- Rational base numeration systems
- Automatic sequences

Two main results:

- A version of Cobham's theorem
- "Factor complexity" in trees

Abstract numeration systems

Introduced by Pierre Lecomte and Michel Rigo in 2001, an abstract numeration system (ANS for short) is a triple $S=(L, A,<)$ where

- $(A,<)$ is a totally ordered (finite) alphabet
- L is an infinite language over A.

We say that L is the numeration language.
The map $\operatorname{rep}_{S}: \mathbb{N} \rightarrow L$ is the one-to-one correspondence mapping $n \in \mathbb{N}$ onto the $(n+1)$ st word in the radix ordered language L.
This word is called the S-representation of n.
(The S-representation of 0 is the first word in L.)
The inverse map is denoted by $\operatorname{val}_{S}: L \rightarrow \mathbb{N}$. For any word w in L, $\operatorname{val}_{S}(w)$ is its S-(numerical) value.

Remark: Nothing is assumed on the language L, i.e., it might well be neither regular nor prefix-closed.

Examples of ANS

- Integer base numeration systems:

Let $k \geq 2$ be an integer. We let $A_{k}=\{0,1, \ldots, k-1\}$ and

$$
L_{k}=\{\varepsilon\} \cup\{1, \ldots, k-1\}\{0, \ldots, k-1\}^{*} .
$$

Then $S=\left(L_{k}, A_{k},<\right)$ with $0<1<\cdots<k-1$ is an ANS.

- Fibonacci (or Zeckendorff) numeration system:

Let $S=(L,\{0,1\},<)$ with $0<1$ and L containing words avoiding 11 . In radix order: $L=\{\varepsilon, 1,10,100,101,1000,1001,1010, \ldots\}$

S-representation	S-value
ε	0
1	1
10	2
100	3
101	4
1000	5

A "non-standard" ANS

$S=\left(a^{*} b^{*},\{a, b\},<\right)$ with $a<b$
$a^{*} b^{*}=\{\varepsilon, a, b, a a, a b, b b, a a a, a a b, a b b, \ldots\}$ in radix order

S-representation	S-value
ε	0
a	1
b	2
$a a$	3
$a b$	4
$b b$	5
$a a a$	6
$a a b$	7

Position of a word in $a^{*} b^{*}: \operatorname{val}_{S}\left(a^{p} b^{q}\right)=\frac{(p+q)(p+q+1)}{2}+q$. For instance, $\operatorname{val}_{S}(a b)=\frac{2 \cdot 3}{2}+1=4$.

From ANS to trees

Prefix-closed languages define labeled trees.
Let $S=(L, A,<)$ be an ANS where L is prefix-closed.
We define the tree $T(L)$ as follows.

- The set of nodes of $T(L)$ is L.
- If w and $w d$ are words in L with $d \in A$, then there is an edge from w to $w d$ with label d in $T(L)$.
The children of a node are ordered by the labels of the letters in the ordered alphabet A.
Nodes are enumerated by breadth-first traversal.
Example: $S=\left(a^{*} b^{*},\{a, b\},<\right)$ with $a<b$
$a^{*} b^{*}=\{\varepsilon, a, b, a a, a b, b b, a a a, \ldots\}$

Let T be a labeled tree.
The signature of T is the sequence of the degrees of the nodes visited by the breadth-first traversal of T.

The labeling of T is the sequence of the labels of the edges visited by the breadth-first traversal of T.

Example:

Signature:
$2,2,1,2,1,1,2,1,1,1,2, \ldots$
Labeling:
$a, b, a, b, b, a, b, b, b, a, b, \ldots$

Remark: Sometimes it is convenient to consider i-trees: the root is assumed to be a child of itself.

Particular ANS: rational bases

Let p and q be two relatively prime integers with $p>q>1$.
For a word $w=w_{\ell} w_{\ell-1} \cdots w_{0} \in A_{p}^{*}$, the value of w in base $\frac{p}{q}$ is the rational number

$$
\operatorname{val}_{\frac{p}{q}}(w)=\sum_{i=0}^{\ell} \frac{w_{i}}{q}\left(\frac{p}{q}\right)^{i}
$$

Example: $p=3, q=2 \quad A_{3}=\{0,1,2\}$

$w \in\{0,1,2\}^{*}$	$\operatorname{val}_{\frac{3}{2}}(w)$
$\varepsilon, 0$	0
1	$\frac{1}{2} \cdot\left(\frac{3}{2}\right)^{0}=\frac{1}{2}$
2	$\frac{2}{2} \cdot\left(\frac{3}{2}\right)^{0}=1$
10	$\frac{1}{2} \cdot\left(\frac{3}{2}\right)^{1}+\frac{0}{2} \cdot\left(\frac{3}{2}\right)^{0}=\frac{3}{4}$
21	$\frac{2}{2} \cdot\left(\frac{3}{2}\right)^{1}+\frac{1}{2} \cdot\left(\frac{3}{2}\right)^{0}=2$

Remark: $\operatorname{val}_{\frac{p}{q}}(w)$ is a not always an integer.

Definition: A word $w \in A_{p}^{*}$ is a representation of an integer $n \geq 0$ in base $\frac{p}{q}$ if $\operatorname{val}_{\frac{p}{q}}(w)=n$.

Theorem (Akiyama, Frougny, Sakarovitch, 2008)

Representations in rational bases are unique up to leading zeroes.

In base $\frac{p}{q}$:
rep $\frac{p}{9}(n)$ denotes the representation of n that does not start with 0 . By convention, the representation of 0 is the empty word ε. The numeration language is the set

$$
L_{\frac{p}{q}}=\left\{\left.\operatorname{rep}_{\frac{p}{q}}(n) \right\rvert\, n \geq 0\right\}
$$

Example: In base $\frac{3}{2}$:

$$
L_{\frac{3}{2}}=\{\varepsilon, 2,21,210,212,2101,2120,2122, \ldots\}
$$

Properties:

- For all $u, v \in A_{p}^{*}, \operatorname{val}_{\frac{p}{q}}(u v)=\operatorname{val}_{\frac{p}{q}}(u)\left(\frac{p}{q}\right)^{|v|}+\operatorname{val}_{\frac{p}{q}}(v)$.
- $m<n$ if and only if $\operatorname{rep}_{\frac{p}{a}}(m)<\operatorname{rep}_{\frac{p}{a}}(n)$ for the radix order.
- $L_{\frac{p}{q}} \subseteq A_{p}^{*}$ is not regular.
- $L_{\frac{p}{q}} \subseteq A_{p}^{*}$ is prefix-closed.

Example: base $\frac{3}{2}$

Signature: 2, 1, 2, 1, 2, 1, \ldots
(i-tree: if we add an edge of label 0 onto the root)
Labeling: $0,2,1,0,2,1,0,2,1, \ldots$
nth node: $\operatorname{rep}_{\frac{3}{2}}(n)$
(breadth-first traversal)
Edges: $n \xrightarrow{a \in A_{3}} m \Longleftrightarrow m=\frac{3}{2} \cdot n+\frac{a}{2}$.

ANS given by periodic labeled signatures

A labeled signature is an infinite sequence $\left(w_{n}\right)_{n \geq 0}$ of finite words providing

- a signature $\left(\left|w_{n}\right|\right)_{n \geq 0}$ and
- a consistent labeling (made of the sequence of letters of $\left.\left(w_{n}\right)_{n \geq 0}\right)$ of a tree.
The canonical breadth-first traversal of this tree produces an ANS.
Example:
Labeled signature: $(02,1)^{\omega}$
Signature: $\underbrace{|02|}_{=2}, \underbrace{|1|}_{=1}, \underbrace{|02|}_{=2}, \underbrace{|1|}_{=1}, \ldots$

Labeling: $0,2,1,0,2,1,0,2,1, \ldots$
Base $\frac{3}{2}$

Example: Rational bases

p / q	corresp. labeled sign.
$3 / 2$	$(02,1)^{\omega}$
$5 / 2$	$(024,13)^{\omega}$
$7 / 3$	$(036,25,14)^{\omega}$
$11 / 4$	$(048,159,26(10), 37)^{\omega}$

Example: i-tree associated with the labeled signature $(023,14,5)^{\omega}$

Automatic sequences

Definition: Let $S=(L, A,<)$ be an ANS and let B be a finite alphabet. An infinite word $\mathbf{x}=x_{0} x_{1} x_{2} \cdots \in B^{\mathbb{N}}$ is S-automatic if there exists a deterministic finite automaton with output (DFAO for short) $\mathcal{A}=$ $\left(Q, q_{0}, A, \delta, \mu: Q \rightarrow B\right)$ such that

$$
x_{n}=\mu\left(\delta\left(q_{0}, \operatorname{rep}_{S}(n)\right)\right) \quad \forall n \geq 0
$$

We read most significant digits first (not a restriction).
Remark: We talk about...

- k-automatic seq. in the base- k numeration system $\left(L_{k}, A_{k},<\right)$
- $\frac{p}{q}$-automatic seq. in the base- $\frac{p}{q}$ numeration system $\left(L_{\frac{p}{q}}, A_{p},<\right)$.

n	0	1	2	3	4	5	6	7
$\operatorname{rep}_{\frac{3}{2}}(n)$	ε	2	21	210	212	2101	2120	2122
$s(n)$	0	2	3	3	5	4	5	7
$t(n)=s(n) \bmod 2$	0	0	1	1	1	0	1	1

The sequence \mathbf{t} is $\frac{3}{2}$-automatic as it is generated by the following DFAO when reading base- $\frac{3}{2}$ representations:

Another example

Periodic labeled signature $(023,14,5)^{\omega}$ producing the i-tree

The sum-of-digits in S modulo 2

n	0	1	2	3	4	5	6	7
$\operatorname{rep}_{S}(n)$	ε	2	3	21	24	35	210	212
s.o.d	0	2	3	3	6	8	3	5
s.o.d								
$\bmod 2$	0	0	1	1	0	0	1	1

is S-automatic since it is generated by the DFAO

The first few words in the corresponding ANS S :
$\varepsilon, 2,3,21,24,35,210,212$,
$213,241,244,355, \ldots$

Cobham's theorem

Theorem (Cobham, 1972)

A sequence is k-automatic if and only if it is the image under a coding of a fixed point of a k-uniform morphism.

Many generalizations exist.
Goal: Generalization to our context of S-automatic sequences for ANS built on tree languages with a purely periodic labeled signatures.

Needed: alternate fixed points and block substitutions.

Alternating morphisms

The Kolakoski-Oldenburger word is the unique word \mathbf{k} over $\{1,2\}$ starting with 2 and satisfying $\Delta(\mathbf{k})=\mathbf{k}$ where Δ is the run-length encoding map

$$
\mathbf{k}=2211212212211 \cdots . \quad[O E I S, \text { A000002] }
$$

How to build it?
"Write what you read": each term of \mathbf{k} generates a run of one or two future terms.

2	starting point
$\underline{22}$	the first letter 2 generates a run of " $22 "$
$22 \underline{11}$	the second letter 2 generates a run of "11"
$2211 \underline{2}$	the first letter 1 generates a run of " 2 " "
$22112 \underline{1}$	the second letter 1 generates a run of "1"
$221121 \underline{22}$	and so on and so forth...

It is a well-known and challenging object of study in CoW. Conjecture: The density of 1 in \mathbf{k} is $\frac{1}{2}$. (Still open.)

Alternate fixed point

Alternative definition (Culik, Karhumäki, Lepistö, 1992): $\mathbf{k}=k_{0} k_{1} k_{2} \ldots$ can be obtained by periodically iterating two morphisms

$$
\mathbf{k}=h_{0}\left(k_{0}\right) h_{1}\left(k_{1}\right) \cdots h_{0}\left(k_{2 n}\right) h_{1}\left(k_{2 n+1}\right) \cdots
$$

where

$$
h_{0}:\left\{\begin{array}{l}
1 \mapsto 2 \\
2 \mapsto 22
\end{array} \quad \text { and } \quad h_{1}:\left\{\begin{array}{l}
1 \mapsto 1 \\
2 \mapsto 11 .
\end{array}\right.\right.
$$

\mathbf{k}	2	2	1	1	2	1	2	2	1
$\left(h_{0}, h_{1}\right)$	h_{0}	h_{1}	h_{0}	h_{1}	h_{0}	h_{1}	h_{0}	h_{1}	h_{0}
$\left(h_{0}, h_{1}\right)(\mathbf{k})=\mathbf{k}$	22	11	2	1	22	1	22	11	2

We say that \mathbf{k} is an alternate fixed point of $\left(h_{0}, h_{1}\right)$.

Definition

Let $r \geq 1$ be an integer and let f_{0}, \ldots, f_{r-1} be morphisms over an alphabet A.
An word $\mathbf{w}=w_{0} w_{1} \cdots \in A^{\omega}$ is an alternate fixed point of $\left(f_{0}, \ldots, f_{r-1}\right)$ if $\mathbf{w}=f_{0}\left(w_{0}\right) f_{1}\left(w_{1}\right) \cdots f_{r-1}\left(w_{r-1}\right) f_{0}\left(w_{r}\right) \cdots f_{i \bmod r}\left(w_{i}\right) \cdots$.

Alternative definition (Dekking, 1980): Since

$$
\begin{aligned}
\mathbf{k} & =\underbrace{h_{0}(2) h_{1}(2)}_{=g(22)} \underbrace{h_{0}(1) h_{1}(1)}_{=g(11)} \underbrace{h_{0}(2) h_{1}(1)}_{=g(21)} \underbrace{h_{0}(2) h_{1}(2)}_{=g(22)} \underbrace{h_{0}(1) h_{1}(2)}_{=g(12)} \cdots \\
& =2211212212211211 \cdots
\end{aligned}
$$

\mathbf{k} is also a fixed point of the 2-block substitution

$$
g:\left\{\begin{array}{l}
11 \mapsto h_{0}(1) h_{1}(1)=21 \\
12 \mapsto h_{0}(1) h_{1}(2)=211 \\
21 \mapsto h_{0}(2) h_{1}(1)=221 \\
22 \mapsto h_{0}(2) h_{1}(2)=2211 .
\end{array}\right.
$$

Remark: Lengths of images under g are not all equal.

Definition

An r-block substitution $g: A^{r} \rightarrow A^{*}$ maps a word $w_{0} \cdots w_{r n-1} \in A^{*}$ to

$$
g\left(w_{0} \cdots w_{r-1}\right) g\left(w_{r} \cdots w_{2 r-1}\right) \cdots g\left(w_{r(n-1)} \cdots w_{r n-1}\right)
$$

If the length of the word is not a multiple of r, then the suffix of the word is ignored under the action of g.
An infinite word $\mathbf{w}=w_{0} w_{1} \cdots \in A^{\omega}$ is a fixed point of the r-block substitution $g: A^{r} \rightarrow A^{*}$ if

$$
\mathbf{w}=g\left(w_{0} \cdots w_{r-1}\right) g\left(w_{r} \cdots w_{2 r-1}\right) \cdots
$$

Proposition

If an infinite word over A is an alternate fixed point of $\left(f_{0}, \ldots, f_{r-1}\right)$, then it is a fixed point of an r-block substitution.

Proof: For every of length- r word $a_{0} \cdots a_{r-1}$, define the r-block substitution $g: A^{r} \rightarrow A^{*}$ by $g\left(a_{0} \cdots a_{r-1}\right)=f_{0}\left(a_{0}\right) \cdots f_{r-1}\left(a_{r-1}\right)$.

Automatic sequences to alternate fixed points

Goal: From a DFAO, build alternating morphisms.
ANS built on the purely periodic labeled signature
$\left(w_{0}, w_{1}, \ldots, w_{r-1}\right)^{\omega}$
x automatic produced by
a DFA $\mathcal{A}=\left(Q, q_{0}, A, \delta\right)$
$f_{i}: Q \rightarrow Q^{\left|w_{i}\right|}:$
$q \mapsto \delta\left(q, w_{i, 0}\right) \cdots \delta\left(q, w_{i,\left|w_{i}\right|-1}\right)$
$\forall i \in\{0, \ldots, r-1\}$
Base $\frac{3}{2}(02,1)^{\omega}$

Sum-of-digits mod 2
$\mathbf{t}=0011101111101 \cdots \frac{3}{2}$-automatic
$f_{0}:\left\{\begin{array}{l}0 \mapsto \delta(0,0) \delta(0,2)=00 \\ 1 \mapsto \delta(1,0) \delta(1,2)=11\end{array}\right.$
$f_{1}:\left\{\begin{array}{l}0 \mapsto \delta(0,1)=1 \\ 1 \mapsto \delta(1,1)=0\end{array}\right.$
$f_{0}(0)=00$
$f_{0}(0) f_{1}(0)=001$
$f_{0}(0) f_{1}(0) f_{0}(1)=00111$
$f_{0}(0) f_{1}(0) f_{0}(1) f_{1}(1) f_{0}(1)=001110111$
\mathbf{t} alternate fixed point of $\left(f_{0}, f_{1}\right)$

Proposition (Rigo, S., 2021)

Let $r \geq 1$ be an integer and let A be a finite alphabet of digits. Let w_{0}, \ldots, w_{r-1} be r non-empty words $\operatorname{in} \operatorname{inc}\left(A^{*}\right)$.
Consider the language $L(\mathrm{~s})$ of the i-tree generated by the purely periodic signature $\mathrm{s}=\left(w_{0}, w_{1}, \ldots, w_{r-1}\right)^{\omega}$ and the corresponding ANS $S=$ $(L(\mathrm{~s}), A,<)$.
Let $\mathcal{A}=\left(Q, q_{0}, A, \delta\right)$ be a DFA.
For $i \in\{0, \ldots, r-1\}$, we define the r morphisms from Q^{*} to itself by

$$
f_{i}: Q \rightarrow Q^{\left|w_{i}\right|}, q \mapsto \delta\left(q, w_{i, 0}\right) \cdots \delta\left(q, w_{i,\left|w_{i}\right|-1}\right)
$$

where $w_{i, j}$ denotes the j th letter of w_{i}.
The alternate fixed point $\mathbf{x}=x_{0} x_{1} \cdots$ of $\left(f_{0}, \ldots, f_{r-1}\right)$ starting with q_{0} is the sequence of states reached in \mathcal{A} when reading the words of $L(\mathrm{~s})$ in increasing radix order, i.e., for all $n \geq 0, x_{n}=\delta\left(q_{0}, \operatorname{rep}_{S}(n)\right)$.

Alternate fixed points to automatic sequences

Goal: From alternating morphisms, build a DFAO.
$\left(f_{0}, \ldots, f_{r-1}\right) f_{i}: A^{*} \rightarrow A^{*} \ell_{i}$-unif. $\quad f_{0}:\left\{\begin{array}{l}0 \mapsto 00 \\ 1 \mapsto 11\end{array} \quad f_{1}:\left\{\begin{array}{l}0 \mapsto 1 \\ 1 \mapsto 0\end{array}\right.\right.$ f_{0} is prolongable on a

ANS S built on the purely periodic

The alternate fixed point of $\left(f_{0}, \ldots, f_{r-1}\right)$ starting with a is S-automatic (produced by \mathcal{A})

The alternate fixed point of $\left(f_{0}, f_{1}\right)$ is automatic. Up to a coding of the ANS, it is equal to $\mathbf{t}\left(\frac{3}{2}\right.$-automatic $)$.

Proposition (Rigo, S., 2021)

Let $r \geq 1$ be an integer and let A be a finite alphabet.
For all $i \in\{0, \ldots, r-1\}$, let $f_{i}: A^{*} \rightarrow A^{*}$ be a ℓ_{i}-uniform morphism such that f_{0} is prolongable on some $a \in A$.
Consider the language $L(\mathrm{~s})$ of the i-tree generated by the purely periodic labeled signature

$$
\mathrm{s}=\left(0 \cdots\left(\ell_{0}-1\right), \ell_{0}\left(\ell_{0}+1\right) \cdots\left(\ell_{0}+\ell_{1}-1\right), \ldots,\left(\sum_{j<r-1} \ell_{j}\right) \cdots\left(\sum_{j<r} \ell_{j}-1\right)\right)^{\omega}
$$

and the corresponding ANS $S=(L(\mathrm{~s}), B,<)$.
Let $\mathcal{A}=(A, a, B, \delta)$ be the DFA where $B=\left\{0, \ldots, \sum_{j<r} \ell_{j}-1\right\}$ and its transition function $\delta: A \times B \rightarrow A$ is defined as follows: for all $i \in B$, $\exists!j_{i} \geq 0$ and $\exists!t_{i} \geq 0$ such that $i=\sum_{k \leq j_{i}-1} \ell_{k}+t_{i}$ with $t_{i}<\ell_{j_{i}}$, so we set $\delta(b, i)=\left[f_{j_{i}}(b)\right]_{t_{i}} \forall b \in A$.
Then the alternate fixed point $\mathbf{x}=x_{0} x_{1} \cdots$ of $\left(f_{0}, \ldots, f_{r-1}\right)$ starting with a is the sequence of the states reached in \mathcal{A} when reading the words of $L(\mathrm{~s})$ by increasing radix order, i.e., for all $n \geq 0, x_{n}=\delta\left(a, \operatorname{rep}_{S}(n)\right)$.

A version of Cobham's theorem

Theorem (Rigo, S., 2021)

Let A, B be two finite alphabets. An infinite word over B is the image under a coding $g: A \rightarrow B$ of an alternate fixed point of uniform morphisms (not necessarily of the same length) over A if and only if it is S-automatic for an ANS built on a tree language with a purely periodic labeled signature.

Proof: It follows from the previous two propositions.

Particular case in rational bases

Corollary (Rigo, S., 2021)

If a sequence is $\frac{p}{q}$-automatic, then it is the image under a coding of a fixed point of a q-block substitution whose images all have length p.

Example: The sum-of-digits $\bmod 2 \mathbf{t}=0011101111101 \cdots$ is $\frac{3}{2}$-automatic.

$$
f_{0}:\left\{\begin{array}{l}
0 \mapsto 00 \\
1 \mapsto 11
\end{array} \quad f_{1}:\left\{\begin{array}{l}
0 \mapsto 1 \\
1 \mapsto 0
\end{array}\right.\right.
$$

Then \mathbf{t} is also a fixed point of the 2-block substitution

$$
g:\left\{\begin{array}{l}
00 \mapsto f_{0}(0) f_{1}(0)=001 \\
01 \mapsto f_{0}(0) f_{1}(1)=000 \\
10 \mapsto f_{0}(1) f_{1}(0)=111 \\
11 \mapsto f_{0}(1) f_{1}(1)=110 .
\end{array}\right.
$$

Observe that images under g all have length 3 .

Non-morphic sequences

Theorem (Cobham, 1972) rewritten

An automatic sequence in an integer base is a morphic word, i.e., the image, under a coding, of a fixed point of a prolongable morphism.

Consider the morphisms $g_{0}: 0 \mapsto 01,1 \mapsto 00$ and $g_{1}: 0 \mapsto 1,1 \mapsto 0$ yielding the 2-block substitution

$$
h_{2}: 00 \mapsto 011,01 \mapsto 010,10 \mapsto 001,11 \mapsto 000
$$

producing the word $\mathbf{F}_{2}=010011000011 \cdots$. It is $\frac{3}{2}$-automatic as it is generated by the following DFAO (built thanks to our proposition):

$$
\begin{array}{ll}
\delta(0,0)=\left[g_{0}(0)\right]_{0}=0 & \delta(1,0)=\left[g_{0}(1)\right]_{0}=0 \\
\delta(0,1)=\left[g_{0}(0)\right]_{1}=1 & \delta(1,1)=\left[g_{0}(1)\right]_{1}=0 \\
\delta(0,2)=\left[g_{1}(0)\right]_{0}=1 & \delta(1,2)=\left[g_{1}(1)\right]_{0}=0
\end{array}
$$

Property (Lepistö, 1993)

The word \mathbf{F}_{2} is neither purely morphic nor morphic.

Decorated trees (not only for Christmas)

ANS $S=(L, A,<)$ where $L=\left\{w_{0}<w_{1}<\cdots\right\}$ is prefix-closed producing a tree $T(L)$.
We now add an extra information on every node.
Definition: Let $\mathbf{x}=x_{0} x_{1} \cdots \in B^{\mathbb{N}}$ where B is a finite alphabet. A decoration of $T(L)$ by \mathbf{x} is the $\operatorname{map} L \rightarrow B: w_{n} \mapsto x_{n}$.

Example: (0 means black, 1 means red)

Decoration:
Thue-Morse
$0110100110010110 \ldots$

Base $\frac{3}{2}$
Decoration:
Sum-of-digits modulo 2 00111011111011011...

Factors of trees (subtrees)

Definition: Let T be a labeled tree.
The domain $\operatorname{dom}(T)$ of T is the set of labels of paths from the root to its nodes.

Example:
The domain of the tree on the right is $\{\varepsilon, 21,210,212,2101,2120,2122\}$.

Definition: Let $w \in L$ and let $h \geq 0$.
We let $T[w, h]$ denote the factor of height h rooted at w of $T(L)$. The prefix of height h of $T(L)$ is the factor $T[\varepsilon, h]$.

Example: The previous tree is a factor of height 4 of $T\left(L_{\frac{3}{2}}\right)$. It is its prefix of height 4.

Definition: Two factors $T[w, h]$ and $T\left[w^{\prime}, h\right]$ of the same height are equal if they have the same domain and the same decorations.
We let $F_{h}=\{T[w, h] \mid w \in L\}$ denote the set of factors of height h occurring in $T(L)$.

Base 2

$$
F_{2}:
$$

Decoration:
Thue-Morse
$0110100110010110 \ldots$

Base $\frac{3}{2}$
Decoration:
Sum-of-digits modulo 2
$00111011111011011 \ldots$

Automatic decorations of trees

Theorem (Rigo, S., 2021)

A sequence \mathbf{x} is k-automatic if and only if, in the labeled tree $T\left(L_{k}\right)$ decorated by \mathbf{x}, there exists a height $h \geq 0$ such that $\# F_{h}=\# F_{h+1}$.

Example: Base 2, decoration being Thue-Morse $0110100110010110 \ldots$ Each factor $T[w, h]$ (not the prefix) is determined by $\delta\left(q_{0}, w\right)$: it is a full binary tree, and the decorations are determined by $\tau\left(\delta\left(q_{0}, w u\right)\right)$ with $u \in A_{2}^{\leq h}$. Therefore $\# F_{h} \leq \# Q+1$.

Theorem (Rigo, S., 2021)

Let $S=(L, A,<)$ be an ANS built on a prefix-closed regular language L. A sequence \mathbf{x} is S-automatic if and only if, in the labeled tree $T(L)$ decorated by \mathbf{x}, there exists a height $h \geq 0$ such that $\# F_{h}=\# F_{h+1}$.

The rational bases case

Several extensions: in base $\frac{p}{q}$, except for the height- h prefix, each factor of height h is extended in exactly q ways to a factor of height $h+1$. To the first (leftmost) leaf of a factor of height h are attached children corresponding to one of the q words of the periodic signature.

Example: Base $\frac{3}{2} \quad$ periodic labeled signature $(02,1)^{\omega}$

8n+3

Factors appearing infinitely often

Definition: Let T be a labeled decorated tree and let $h \geq 0$.
We let $F_{h}^{\infty} \subseteq F_{h}$ denote the set of factors of height h occurring infinitely often in T.

For any suitable letter a in the signature of T, we let $F_{h, a}^{\infty} \subseteq F_{h}^{\infty}$ denote the set of factors of height h occurring infinitely often in T such that the label of the edge between the first node on level $h-1$ and its first child is a. (Otherwise stated, the first word of length h in the domain of the factor ends with a.)

Example: Base $\frac{3}{2}$

$$
F_{2,1}^{\infty}
$$

Bounded $\# F_{h, a}^{\infty}$ to automatic sequences

Example: Base $\frac{3}{2}$
Assumptions: Factors of length 1 in $T\left(L_{\frac{3}{2}}\right)$ can be extended as follows:

Assumptions:

- The first tree gives the prefix and occurs only once.
- The last eight trees of height 2 occur infinitely often.

Build an NFA:

- States: $\{T[\varepsilon, 1]\} \cup F_{1}^{\infty}$
- Initial state: root of $T[\varepsilon, 1]$
- Final states: nodes of $T[\varepsilon, 1]$ and leaves in F_{1}^{∞}
- Transitions...

- Transitions...

Example for transitions on state 7 . The corresponding tree has two extensions:

Extension 1

The tree hanging to the child (resp. 2) of the root corresponds to state 5 (resp. 7).
Transitions: $7 \xrightarrow{0} 5$ and $7 \xrightarrow{2} 7$

Extension 2

The tree hanging to the child 0 (resp. 2) of the root corresponds to state 7 (resp. 5).
Transitions: $7 \xrightarrow{0} 7$ and $7 \xrightarrow{2} 5$

Runs in the NFA for $w=210 \in L_{\frac{3}{2}}$:
$q_{0} \xrightarrow{2} q_{1} \mathrm{X}$
$q_{0} \xrightarrow{2} 0 \xrightarrow{1} 1 X$
$q_{0} \xrightarrow{2} 0 \xrightarrow{1} 5 X$
$q_{0} \xrightarrow{2} 0 \xrightarrow{1} 7 \xrightarrow{0} 5 X$
$q_{0} \xrightarrow{2} 0 \xrightarrow{1} 7 \xrightarrow{0} 7 X$
$q_{0} \xrightarrow{2} 0 \xrightarrow{1} 7 \xrightarrow{0} 8 \checkmark$

Determinize the NFA (using the usual subset construction).

No output is set for state 2 .

This DFA produces the sum-of-digits modulo 2 in base $\frac{3}{2}$ ($\frac{3}{2}$-automatic).

Theorem (Rigo, S., 2021)

Let the tree $T\left(L_{\frac{p}{q}}\right)$ be decorated by a sequence \mathbf{x}. Suppose there exists some $h \geq 0$ such that $\# F_{h+1, a}^{\infty} \leq \# F_{h}^{\infty}$ for all $0 \leq j \leq q-1$ and all suitable letters $a \in A_{p}$.
Then \mathbf{x} is $\frac{p}{q}$-automatic.

Automatic sequences to bounding $\# F_{h, a}^{\infty}$

Example: Base $\frac{3}{2}$
Decoration: the sum-of-digits $\bmod 2 \mathbf{t}=001110111110 \cdots, \frac{3}{2}$-automatic

Theorem (Rigo, S., 2021)

Let \mathbf{x} be a $\frac{p}{q}$-automatic sequence generated by a DFAO $\mathcal{A}=$ $\left(Q, q_{0}, A_{p}, \delta, \tau: A_{p} \rightarrow B\right)$ with the following property:
$\exists h \geq 0$ s.t. $\forall q \neq q^{\prime} \in Q$ and $\forall w \in L_{\frac{p}{q}}, \exists u \in w^{-1} L_{\frac{p}{q}}$ with $|u| \leq h$ s. t. $\tau(\delta(q, u)) \neq \tau\left(\delta\left(q^{\prime}, u\right)\right)$.
Then in the tree $T\left(L_{\frac{p}{q}}\right)$ decorated by \mathbf{x}, we have $\# F_{h+1, a}^{\infty} \leq \# F_{h}^{\infty}$ for all $0 \leq j \leq q-1$ and all suitable letters $a \in A_{p}$.

References

- S. Akiyama, Ch. Frougny, and J. Sakarovitch, Powers of rationals modulo 1 and rational base number systems, Israel J. Math. 168 (2008), 53-91.
- J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, Cambridge, (2003).
- J. Berstel, L. Boasson, O. Carton, and I. Fagnot, Sturmian Trees, Theoret. Comput. Sci. 46 (2010), 443-478.
- V. Bruyère and G. Hansel, Bertrand numeration systems and recognizability, Theoret. Comput. Sci. 181 (1997), 17-43.
- É. Charlier, M. Le Gonidec, and M. Rigo, Representing real numbers in a generalized numeration system, J. Comput. System Sci. 77 (2011), no. 4, 743-759.
- A. Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972), 164-192.
- K. Culik, J. Karhumäki, and A. Lepistö, Alternating iteration of morphisms and the Kolakovski sequence, in Lindenmayer systems, 93-106, Springer, Berlin, (1992).
- F. M.Dekking, Regularity and irregularity of sequences generated by automata, Sém. Th. Nombres Bordeaux 79-80 (1980), 901-910.
- J.-M. Dumont and A. Thomas, Systèmes de numération et fonctions fractales relatifs aux substitutions, Theoret. Comput. Sci. 65 (1989), 153-169.
- T. Edgar, H. Olafson, and J. Van Alstine, Some combinatorics of rational base representations, preprint.
- J. Endrullis and D. Hendriks, On periodically iterated morphisms, Proc. CSLLICS'14 in Vienna (2014), 1-10.
- P. Lecomte and M. Rigo, Abstract numeration systems, Ch. 3, in Combinatorics, Automata and Number Theory, Encyclopedia Math. Appl. 135, Cambridge University Press, (2010).

References

- A. Lepistö, On the power of periodic iteration of morphisms, ICALP 1993, 496-506, Lect. Notes Comp. Sci 700, (1993).
- J. Peltomäki, A. Massuir, and M. Rigo, Automatic sequences based on Parry or Bertrand numeration systems, Adv. Appl. Math. 108 (2019), 11-30.
- V. Marsault, On $\frac{p}{q}$-recognisable sets, arXiv:1801.08707.
- V. Marsault, Énumération et numération, Ph.D. thesis, Télecom-Paristech, 2015.
- V. Marsault and J. Sakarovitch, On sets of numbers rationally represented in a rational base number system. Algebraic informatics, Lect. Notes Comp. Sci. 8080, 89-100, Springer, Heidelberg, 2013.
- V. Marsault and J. Sakarovitch, Breadth-first serialisation of treesand rational languages, Developments in Language Theory - 18th International Conference, 2014, Ekaterinburg, Russia, August 26-29, 2014, Lect. Notes Comp. Sci. 8633, 252-259.
- V. Marsault and J. Sakarovitch, Trees and languages with periodic signature, Indagationes Mathematicae 28 (2017), 221-246.
- V. Marsault and J. Sakarovitch, The signature of rational languages, Theor. Comput. Sci. 658 (2017), 216-234.
- J.-J. Pansiot, Complexité des facteurs des mots infinis engendrés par morphismes itérés. Automata, languages and programming (Antwerp, 1984), 380-389, Lect. Notes Comp. Sci. 172, Springer, Berlin, (1984).
- M. Rigo and A. Maes, More on generalized automatic sequences, J. Autom. Lang. Comb. 7 (2002), 351-376.
- M. Rigo, Formal Languages, Automata and Numeration Systems, ISTE-Wiley, (2014).
* M. Rigo and M. Stipulanti, Automatic sequences: from rational bases to trees, arxiv.2102.10828 preprint (2021).

