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How it started

Eric Rowland presented our paper

E. Rowland and M. Stipulanti, Avoiding 5/4-powers on the alphabet of
nonnegative integers, Electron. J. Combin. 27 (2020), Paper 3.42, 39 pp.

at the One World Combinatorics on Words Seminar.
He (notably) talked about the word

w3/2 = 0011021001120011031001130011021001140011031 · · · ,

which is the lexicographically least word avoiding 3
2 -powers on the al-

phabet of non-negative integers. Then Michel asked:

Is this word 3
2 -regular?

So we started to look at automaticity and regularity in rational bases.
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The plan

Define:
• Abstract numeration systems
• Labeled trees and periodic labeled signatures
• Rational base numeration systems
• Automatic sequences

Two main results:
◦ A version of Cobham’s theorem
◦ “Factor complexity” in trees
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Abstract numeration systems

Introduced by Pierre Lecomte and Michel Rigo in 2001, an abstract
numeration system (ANS for short) is a triple S = (L,A,<) where
• (A,<) is a totally ordered (finite) alphabet
• L is an infinite language over A.

We say that L is the numeration language.

The map repS : N → L is the one-to-one correspondence mapping
n ∈ N onto the (n+ 1)st word in the radix ordered language L.
This word is called the S-representation of n.
(The S-representation of 0 is the first word in L.)

The inverse map is denoted by valS : L → N. For any word w in L,
valS(w) is its S-(numerical) value.

Remark: Nothing is assumed on the language L, i.e., it might well be
neither regular nor prefix-closed.
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Examples of ANS

• Integer base numeration systems:
Let k ≥ 2 be an integer. We let Ak = {0, 1, . . . , k − 1} and

Lk = {ε} ∪ {1, . . . , k − 1}{0, . . . , k − 1}∗.

Then S = (Lk, Ak, <) with 0 < 1 < · · · < k − 1 is an ANS.
• Fibonacci (or Zeckendorff) numeration system:

Let S = (L, {0, 1}, <) with 0 < 1 and L containing words avoiding 11.
In radix order: L = {ε, 1, 10, 100, 101, 1000, 1001, 1010, . . .}

S-representation S-value
ε 0
1 1
10 2
100 3
101 4
1000 5
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A “non-standard” ANS

S = (a∗b∗, {a, b}, <) with a < b
a∗b∗ = {ε, a, b, aa, ab, bb, aaa, aab, abb, . . .} in radix order

S-representation S-value
ε 0
a 1
b 2
aa 3
ab 4
bb 5
aaa 6
aab 7

Position of a word in a∗b∗: valS(apbq) = (p+q)(p+q+1)
2 + q.

For instance, valS(ab) = 2·3
2 + 1 = 4.

Automaticity in rational bases Manon Stipulanti (ULiège) 6



From ANS to trees

Prefix-closed languages define labeled trees.

Let S = (L,A,<) be an ANS where L is prefix-closed.
We define the tree T (L) as follows.
• The set of nodes of T (L) is L.
• If w and wd are words in L with d ∈ A, then there is an edge from
w to wd with label d in T (L).

The children of a node are ordered by the labels of the letters in the
ordered alphabet A.
Nodes are enumerated by breadth-first traversal.

Example: S = (a∗b∗, {a, b}, <) with a < b
a∗b∗ = {ε, a, b, aa, ab, bb, aaa, . . .}
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Let T be a labeled tree.

The signature of T is the sequence of the degrees of the nodes visited
by the breadth-first traversal of T .

The labeling of T is the sequence of the labels of the edges visited by
the breadth-first traversal of T .

Example:

Signature:
2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, . . .

Labeling:
a, b, a, b, b, a, b, b, b, a, b, . . .

Remark: Sometimes it is convenient to consider i-trees: the root is
assumed to be a child of itself.
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Particular ANS: rational bases

Let p and q be two relatively prime integers with p > q > 1.

For a word w = w`w`−1 · · ·w0 ∈ A∗p, the value of w in base p
q is the

rational number

val p
q
(w) =

∑̀
i=0

wi

q

(
p

q

)i

.

Example: p = 3, q = 2 A3 = {0, 1, 2}

w ∈ {0, 1, 2}∗ val 3
2
(w)

ε, 0 0

1 1
2 ·
(
3
2

)0
= 1

2

2 2
2 ·
(
3
2

)0
= 1

10 1
2 ·
(
3
2

)1
+ 0

2 ·
(
3
2

)0
= 3

4

21 2
2 ·
(
3
2

)1
+ 1

2 ·
(
3
2

)0
= 2

Remark: val p
q
(w) is a not always an integer.
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Definition: A word w ∈ A∗p is a representation of an integer n ≥ 0 in
base p

q if val p
q
(w) = n.

Theorem (Akiyama, Frougny, Sakarovitch, 2008)
Representations in rational bases are unique up to leading zeroes.

In base p
q :

rep p
q
(n) denotes the representation of n that does not start with 0.

By convention, the representation of 0 is the empty word ε.
The numeration language is the set

L p
q

=
{

rep p
q
(n) | n ≥ 0

}
.

Example: In base 3
2 :

L 3
2

= {ε, 2, 21, 210, 212, 2101, 2120, 2122, . . .}
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Properties:

• For all u, v ∈ A∗p, val p
q
(uv) = val p

q
(u)
(
p
q

)|v|
+ val p

q
(v).

• m < n if and only if rep p
a
(m) < rep p

a
(n) for the radix order.

• L p
q
⊆ A∗p is not regular.

• L p
q
⊆ A∗p is prefix-closed.

Example: base 3
2

Signature: 2, 1, 2, 1, 2, 1, . . .
(i-tree: if we add an edge of label 0 onto the root)

Labeling: 0, 2, 1, 0, 2, 1, 0, 2, 1, . . .

nth node: rep 3
2
(n)

(breadth-first traversal)

Edges: n a∈A3−−−→ m⇐⇒ m = 3
2 · n+ a

2 .
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ANS given by periodic labeled signatures

A labeled signature is an infinite sequence (wn)n≥0 of finite words pro-
viding
• a signature (|wn|)n≥0 and
• a consistent labeling (made of the sequence of letters of (wn)n≥0)

of a tree.
The canonical breadth-first traversal of this tree produces an ANS.

Example:

Labeled signature: (02, 1)ω

Signature: |02|︸︷︷︸
=2

, |1|︸︷︷︸
=1

, |02|︸︷︷︸
=2

, |1|︸︷︷︸
=1

, . . .

Labeling: 0, 2, 1, 0, 2, 1, 0, 2, 1, . . .

Base 3
2
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Example: Rational bases

p/q corresp. labeled sign.
3/2 (02, 1)ω

5/2 (024, 13)ω

7/3 (036, 25, 14)ω

11/4 (048, 159, 26(10), 37)ω

Example: i-tree associated with the labeled signature (023, 14, 5)ω
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Automatic sequences

Definition: Let S = (L,A,<) be an ANS and let B be a finite alphabet.
An infinite word x = x0x1x2 · · · ∈ BN is S-automatic if there exists
a deterministic finite automaton with output (DFAO for short) A =
(Q, q0, A, δ, µ : Q→ B) such that

xn = µ(δ(q0, repS(n))) ∀n ≥ 0.

We read most significant digits first (not a restriction).

Remark: We talk about...
• k-automatic seq. in the base-k numeration system (Lk, Ak, <)

• p
q -automatic seq. in the base-pq numeration system (L p

q
, Ap, <).
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Toy example: the sum-of-digits in base 3
2

n 0 1 2 3 4 5 6 7

rep 3
2
(n) ε 2 21 210 212 2101 2120 2122

s(n) 0 2 3 3 5 4 5 7
t(n) = s(n) mod 2 0 0 1 1 1 0 1 1

The sequence t is 3
2 -automatic as it is generated by the following DFAO

when reading base-32 representations:

0 1

0, 2
1

0, 2

1
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Another example

Periodic labeled signature
(023, 14, 5)ω producing
the i-tree

The first few words in the
corresponding ANS S:

ε, 2, 3, 21, 24, 35, 210, 212,

213, 241, 244, 355, . . .

The sum-of-digits in S modulo 2

n 0 1 2 3 4 5 6 7

repS(n) ε 2 3 21 24 35 210 212
s.o.d 0 2 3 3 6 8 3 5
s.o.d
mod2 0 0 1 1 0 0 1 1

is S-automatic since it is generated by the
DFAO
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Cobham’s theorem

Theorem (Cobham, 1972)
A sequence is k-automatic if and only if it is the image under a coding
of a fixed point of a k-uniform morphism.

Many generalizations exist.

Goal: Generalization to our context of S-automatic sequences for ANS
built on tree languages with a purely periodic labeled signatures.

Needed: alternate fixed points and block substitutions.
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Alternating morphisms

The Kolakoski–Oldenburger word is the unique word k over {1, 2} start-
ing with 2 and satisfying ∆(k) = k where ∆ is the run-length encoding
map

k = 2211212212211 · · · . [OEIS, A000002]

How to build it?
“Write what you read”: each term of k generates a run of one or two
future terms.

2 starting point
22 the first letter 2 generates a run of “22”
2211 the second letter 2 generates a run of “11”
22112 the first letter 1 generates a run of “2”
221121 the second letter 1 generates a run of “1”
22112122 and so on and so forth...

It is a well-known and challenging object of study in CoW.
Conjecture: The density of 1 in k is 1

2 . (Still open.)
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Alternate fixed point

Alternative definition (Culik, Karhumäki, Lepistö, 1992): k = k0k1k2 · · ·
can be obtained by periodically iterating two morphisms

k = h0(k0)h1(k1) · · ·h0(k2n)h1(k2n+1) · · ·
where

h0 :

{
1 7→ 2
2 7→ 22

and h1 :

{
1 7→ 1
2 7→ 11.

k 2 2 1 1 2 1 2 2 1

(h0, h1) h0 h1 h0 h1 h0 h1 h0 h1 h0
(h0, h1)(k) = k 22 11 2 1 22 1 22 11 2

We say that k is an alternate fixed point of (h0, h1).

Definition
Let r ≥ 1 be an integer and let f0, . . . , fr−1 be morphisms over an
alphabet A.
An word w = w0w1 · · · ∈ Aω is an alternate fixed point of (f0, . . . , fr−1)
if w = f0(w0)f1(w1) · · · fr−1(wr−1)f0(wr) · · · fi mod r(wi) · · · .

Automaticity in rational bases Manon Stipulanti (ULiège) 19



Block substitution

Alternative definition (Dekking, 1980): Since

k = h0(2)h1(2)︸ ︷︷ ︸
=g(22)

h0(1)h1(1)︸ ︷︷ ︸
=g(11)

h0(2)h1(1)︸ ︷︷ ︸
=g(21)

h0(2)h1(2)︸ ︷︷ ︸
=g(22)

h0(1)h1(2)︸ ︷︷ ︸
=g(12)

· · ·

= 2211 21 221 2211 211 · · ·

k is also a fixed point of the 2-block substitution

g :


11 7→ h0(1)h1(1) = 21
12 7→ h0(1)h1(2) = 211
21 7→ h0(2)h1(1) = 221
22 7→ h0(2)h1(2) = 2211.

Remark: Lengths of images under g are not all equal.
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Definition
An r-block substitution g : Ar → A∗ maps a word w0 · · ·wrn−1 ∈ A∗ to

g(w0 · · ·wr−1)g(wr · · ·w2r−1) · · · g(wr(n−1) · · ·wrn−1).

If the length of the word is not a multiple of r, then the suffix of the
word is ignored under the action of g.
An infinite word w = w0w1 · · · ∈ Aω is a fixed point of the r-block
substitution g : Ar → A∗ if

w = g(w0 · · ·wr−1)g(wr · · ·w2r−1) · · · .

Proposition
If an infinite word over A is an alternate fixed point of (f0, . . . , fr−1),
then it is a fixed point of an r-block substitution.

Proof: For every of length-r word a0 · · · ar−1, define the r-block substi-
tution g : Ar → A∗ by g(a0 · · · ar−1) = f0(a0) · · · fr−1(ar−1).
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Automatic sequences to alternate fixed points

Goal: From a DFAO, build alternating morphisms.

ANS built on the purely
periodic labeled signature
(w0, w1, . . . , wr−1)

ω

x automatic produced by
a DFA A = (Q, q0, A, δ)

fi : Q→ Q|wi| :
q 7→ δ(q, wi,0) · · · δ(q, wi,|wi|−1)
∀i ∈ {0, . . . , r − 1}

x is the alternate fixed
point of (f0, . . . , fr−1)
starting with q0

Base 3
2 (02, 1)ω

Sum-of-digits mod 2
t = 0011101111101 · · · 3

2 -automatic

f0 :

{
0 7→ δ(0, 0)δ(0, 2) = 00

1 7→ δ(1, 0)δ(1, 2) = 11

f1 :

{
0 7→ δ(0, 1) = 1

1 7→ δ(1, 1) = 0

f0(0) = 00

f0(0)f1(0) = 00 1

f0(0)f1(0)f0(1) = 00 1 11

f0(0)f1(0)f0(1)f1(1)f0(1) = 00 1 11 0 11 1

t alternate fixed point of (f0, f1)
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Proposition (Rigo, S., 2021)
Let r ≥ 1 be an integer and let A be a finite alphabet of digits.
Let w0, . . . , wr−1 be r non-empty words in inc(A∗).
Consider the language L(s) of the i-tree generated by the purely periodic
signature s = (w0, w1, . . . , wr−1)

ω and the corresponding ANS S =
(L(s), A,<).
Let A = (Q, q0, A, δ) be a DFA.
For i ∈ {0, . . . , r − 1}, we define the r morphisms from Q∗ to itself by

fi : Q→ Q|wi|, q 7→ δ(q, wi,0) · · · δ(q, wi,|wi|−1),

where wi,j denotes the jth letter of wi.
The alternate fixed point x = x0x1 · · · of (f0, . . . , fr−1) starting with q0
is the sequence of states reached in A when reading the words of L(s)
in increasing radix order, i.e., for all n ≥ 0, xn = δ(q0, repS(n)).
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Alternate fixed points to automatic sequences

Goal: From alternating morphisms, build a DFAO.

(f0, . . . , fr−1) fi : A∗ → A∗ `i-unif.
f0 is prolongable on a

ANS S built on the purely periodic
labeled signature (w0, . . . , wr−1)

ω

w0 = 0 · · · (`0 − 1)
w1 = `0(`0 + 1) · · · (`0 + `1 − 1)

.

.

.
wr−1 =

(∑
j<r−1 `j

)
· · ·
(∑

j<r `j − 1
)

A = (A, a,B, δ) with
B = {0, . . . ,

∑
j<r `j − 1}

δ(b, i) = [fji (b)]ti for b ∈ A, i ∈ B such that
i =

∑
k≤j−1 `k + t with j ≥ 0, 0 ≤ t < `j

The alternate fixed point of
(f0, . . . , fr−1) starting with a is
S-automatic (produced by A)

f0 :

{
0 7→ 00

1 7→ 11
f1 :

{
0 7→ 1

1 7→ 0

ANS built on ( 01︸︷︷︸
`0=2

, 2︸︷︷︸
`1=1

)ω

A = ({0, 1}, 0, {0, 1, 2}, δ)
Write i in [0, 2), [2, 3)

0 = 0 + 0 j = 0

δ(0, 0) = [f0(0)]0 = 0 δ(1, 0) = [f0(1)]0 = 1

1 = 0 + 1 j = 0

δ(0, 1) = [f0(0)]1 = 0 δ(1, 1) = [f0(1)]1 = 1

2 = 2 + 0 j = 1

δ(0, 2) = [f1(0)]0 = 1 δ(1, 2) = [f1(1)]0 = 0

The alternate fixed point of (f0, f1)
is automatic. Up to a coding of the
ANS, it is equal to t (32 -automatic).
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Proposition (Rigo, S., 2021)
Let r ≥ 1 be an integer and let A be a finite alphabet.
For all i ∈ {0, . . . , r − 1}, let fi : A∗ → A∗ be a `i-uniform morphism
such that f0 is prolongable on some a ∈ A.
Consider the language L(s) of the i-tree generated by the purely periodic
labeled signature

s =

0 · · · (`0 − 1), `0(`0 + 1) · · · (`0 + `1 − 1), . . . ,

 ∑
j<r−1

`j

 · · ·
∑

j<r

`j − 1

ω

and the corresponding ANS S = (L(s), B,<).
Let A = (A, a,B, δ) be the DFA where B = {0, . . . ,

∑
j<r `j − 1} and

its transition function δ : A×B → A is defined as follows: for all i ∈ B,
∃!ji ≥ 0 and ∃!ti ≥ 0 such that i =

∑
k≤ji−1 `k + ti with ti < `ji , so we

set δ(b, i) = [fji(b)]ti ∀b ∈ A.
Then the alternate fixed point x = x0x1 · · · of (f0, . . . , fr−1) starting
with a is the sequence of the states reached in A when reading the words
of L(s) by increasing radix order, i.e., for all n ≥ 0, xn = δ(a, repS(n)).
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A version of Cobham’s theorem

Theorem (Rigo, S., 2021)
Let A,B be two finite alphabets. An infinite word over B is the image
under a coding g : A → B of an alternate fixed point of uniform mor-
phisms (not necessarily of the same length) over A if and only if it is
S-automatic for an ANS built on a tree language with a purely periodic
labeled signature.

Proof: It follows from the previous two propositions.
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Particular case in rational bases

Corollary (Rigo, S., 2021)

If a sequence is p
q -automatic, then it is the image under a coding of a

fixed point of a q-block substitution whose images all have length p.

Example: The sum-of-digits mod 2 t = 0011101111101 · · · is 3
2 -automatic.

f0 :

{
0 7→ 00

1 7→ 11
f1 :

{
0 7→ 1

1 7→ 0

Then t is also a fixed point of the 2-block substitution

g :


00 7→ f0(0)f1(0) = 001
01 7→ f0(0)f1(1) = 000
10 7→ f0(1)f1(0) = 111
11 7→ f0(1)f1(1) = 110.

Observe that images under g all have length 3.
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Non-morphic sequences

Theorem (Cobham, 1972) rewritten
An automatic sequence in an integer base is a morphic word, i.e., the
image, under a coding, of a fixed point of a prolongable morphism.

Consider the morphisms g0 : 0 7→ 01, 1 7→ 00 and g1 : 0 7→ 1, 1 7→ 0
yielding the 2-block substitution

h2 : 00 7→ 011, 01 7→ 010, 10 7→ 001, 11 7→ 000

producing the word F2 = 010 011 000 011 · · · . It is 3
2 -automatic as it is

generated by the following DFAO (built thanks to our proposition):
δ(0, 0) = [g0(0)]0 = 0 δ(1, 0) = [g0(1)]0 = 0

δ(0, 1) = [g0(0)]1 = 1 δ(1, 1) = [g0(1)]1 = 0

δ(0, 2) = [g1(0)]0 = 1 δ(1, 2) = [g1(1)]0 = 0

Property (Lepistö, 1993)
The word F2 is neither purely morphic nor morphic.
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Decorated trees (not only for Christmas)

ANS S = (L,A,<) where L = {w0 < w1 < · · · } is prefix-closed pro-
ducing a tree T (L).
We now add an extra information on every node.

Definition: Let x = x0x1 · · · ∈ BN where B is a finite alphabet.
A decoration of T (L) by x is the map L→ B : wn 7→ xn.

Example: (0 means black, 1 means red)
Base 2
Decoration:
Thue-Morse
0110100110010110 · · ·

Base 3
2

Decoration:
Sum-of-digits modulo 2
00111011111011011 · · ·
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Factors of trees (subtrees)

Definition: Let T be a labeled tree.
The domain dom(T ) of T is the set of labels of paths from the root to
its nodes.

Example:

The domain of the tree on the right is
{ε, 21, 210, 212, 2101, 2120, 2122}.

Definition: Let w ∈ L and let h ≥ 0.
We let T [w, h] denote the factor of height h rooted at w of T (L).
The prefix of height h of T (L) is the factor T [ε, h].

Example: The previous tree is a factor of height 4 of T (L 3
2
). It is its

prefix of height 4.
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Definition: Two factors T [w, h] and T [w′, h] of the same height are equal
if they have the same domain and the same decorations.
We let Fh = {T [w, h] | w ∈ L} denote the set of factors of height h
occurring in T (L).

Base 2
Decoration:
Thue-Morse
0110100110010110 · · ·

F2:

Base 3
2

Decoration:
Sum-of-digits modulo 2
00111011111011011 · · ·
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Automatic decorations of trees

Theorem (Rigo, S., 2021)

A sequence x is k-automatic if and only if, in the labeled tree T (Lk)
decorated by x, there exists a height h ≥ 0 such that #Fh = #Fh+1.

Example: Base 2, decoration being Thue-Morse 0110100110010110 · · ·
Each factor T [w, h] (not the prefix) is determined by δ(q0, w): it is a full
binary tree, and the decorations are determined by τ(δ(q0, wu)) with
u ∈ A≤h2 . Therefore #Fh ≤ #Q+ 1.

Theorem (Rigo, S., 2021)

Let S = (L,A,<) be an ANS built on a prefix-closed regular language
L. A sequence x is S-automatic if and only if, in the labeled tree T (L)
decorated by x, there exists a height h ≥ 0 such that #Fh = #Fh+1.
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The rational bases case

Several extensions: in base p
q , except for the height-h prefix, each factor

of height h is extended in exactly q ways to a factor of height h+ 1.
To the first (leftmost) leaf of a factor of height h are attached children
corresponding to one of the q words of the periodic signature.

Example: Base 3
2 periodic labeled signature (02, 1)ω
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Factors appearing infinitely often

Definition: Let T be a labeled decorated tree and let h ≥ 0.
We let F∞h ⊆ Fh denote the set of factors of height h occurring infinitely
often in T .

For any suitable letter a in the signature of T , we let F∞h,a ⊆ F∞h denote
the set of factors of height h occurring infinitely often in T such that
the label of the edge between the first node on level h− 1 and its first
child is a. (Otherwise stated, the first word of length h in the domain
of the factor ends with a.)

Example: Base 3
2

F∞2,0: F∞2,1:
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Bounded #F∞h,a to automatic sequences

Example: Base 3
2

Assumptions: Factors of length 1 in T (L 3
2
) can be extended as follows:

Assumptions:
• The first tree gives the prefix and occurs only once.
• The last eight trees of height 2 occur infinitely often.

Build an NFA:

• States: {T [ε, 1]} ∪ F∞1
• Initial state: root of T [ε, 1]

• Final states: nodes of T [ε, 1] and
leaves in F∞1
• Transitions...
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Example for transitions on state 7.
The corresponding tree has two extensions:

Extension 1

The tree hanging to the child 0
(resp. 2) of the root corresponds
to state 5 (resp. 7).
Transitions: 7

0−→ 5 and 7
2−→ 7

Extension 2

The tree hanging to the child 0
(resp. 2) of the root corresponds
to state 7 (resp. 5).
Transitions: 7

0−→ 7 and 7
2−→ 5
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Runs in the NFA for w = 210 ∈ L 3
2
:

q0
2−→ q1 7

q0
2−→ 0

1−→ 1 7

q0
2−→ 0

1−→ 5 7

q0
2−→ 0

1−→ 7
0−→ 5 7

q0
2−→ 0

1−→ 7
0−→ 7 7

q0
2−→ 0

1−→ 7
0−→ 8 X

Determinize the NFA (using the usual
subset construction).

No output is set for state 2.

This DFA produces the sum-of-digits
modulo 2 in base 3

2 (32 -automatic).
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Theorem (Rigo, S., 2021)

Let the tree T (L p
q
) be decorated by a sequence x.

Suppose there exists some h ≥ 0 such that #F∞h+1,a ≤ #F∞h for all
0 ≤ j ≤ q − 1 and all suitable letters a ∈ Ap.
Then x is p

q -automatic.
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Automatic sequences to bounding #F∞h,a

Example: Base 3
2

Decoration: the sum-of-digits mod 2 t = 001110111110 · · · , 3
2 -automatic

F∞2,0 F∞2,1

#F∞2,0 ≤ #F∞1 #F∞2,1 ≤ #F∞1

Theorem (Rigo, S., 2021)

Let x be a p
q -automatic sequence generated by a DFAO A =

(Q, q0, Ap, δ, τ : Ap → B) with the following property:
∃h ≥ 0 s.t. ∀q 6= q′ ∈ Q and ∀w ∈ L p

q
, ∃u ∈ w−1L p

q
with |u| ≤ h s. t. τ(δ(q, u)) 6= τ(δ(q′, u)).

Then in the tree T (L p
q
) decorated by x, we have #F∞h+1,a ≤ #F∞h for

all 0 ≤ j ≤ q − 1 and all suitable letters a ∈ Ap.
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