
1.  Introduction
Jupiter's ultraviolet auroras are dominated by the main auroral oval, an almost continuous narrow band 
or series of bands of emission encircling the magnetic poles of the planet (e.g., Clarke et al., 2004; Grodent 
et al., 2003). This emission maps to the middle magnetosphere, and is generally believed to be driven by the 
breakdown in corotation of iogenic plasma at radial distances of several tens of planetary radii (Cowley & 
Bunce, 2001; Hill, 2001; Southwood & Kivelson, 2001). While the overall morphology of the main emission 
is fixed in System-III longitude and is relatively stable over observation timescales (Clarke et al.,  2004), 
there also exist more dynamic features known to develop over timescales of minutes to tens of minutes. An 
example of these dynamic phenomena is dawn storms, a brightening of the main emission fixed at dawn. 
These events produce the most powerful auroral emissions observed at Jupiter and are likely associated 
with significant reconfigurations of the magnetosphere, but the precise mechanisms of their generation and 
evolution are currently unknown.

Dawn storms were first observed in Jupiter's northern far ultraviolet (FUV) aurora using the Faint Ob-
ject Camera (FOC) and Wide Field Planetary Camera 2 (WFPC2) on HST (Ballester et al., 1996; Clarke 
et al., 1998; Gérard et al., 1994), and were characterized as bright enhancements of the dawnward arc of 
the main emission. These enhancements expand poleward and eastward longitudinally over several tens 
of minutes, then appear fixed near dawn for several hours before returning to typical auroral intensities. 
Auroral intensities often peak at several MR to tens of MR, and additionally high color ratios have previ-
ously been measured for dawn storm emissions (Gustin et al., 2006), indicating significant hydrocarbon 
absorption of the auroral emission. This suggests electrons precipitating in the region penetrate to greater 
depths in the upper atmosphere, requiring higher electron energies than are typically calculated for the 
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main auroral emission (∼100 keV compared to 460 keV for bright dawn emissions (Cowley & Bunce, 2001; 
Gustin et al., 2006)). Additionally, the association with local time implies a relationship with the solar wind, 
but observations performed during the New Horizons flyby in 2007 (Clarke et al., 2009; Nichols et al., 2009) 
and later with Juno (Bonfond et al., 2021) found no correlation between solar wind conditions and the oc-
currence of dawn storms.

Although the magnetospheric origins and dynamics governing dawn storms remain an open question, 
it has been suggested that these events may result from reconnection events in the magnetotail (Cowley 
et  al.,  2003; Woch et  al.,  2002). Specifically, Woch et  al.  (2002) suggested that Galileo measurements of 
plasma bursts in the post-midnight and dawn sectors of the magnetotail may result in the disruption of 
the cross-tail current and thus produce significant auroral emission, while Cowley et al. (2003) described 
a large-scale steady state reconnection process which might directly drive dawn storm emissions. Some 
similarities exist in the interpretation of Saturnian auroral storms, which are observed to originate along 
the dawn flank and expand poleward of the main oval, and are thought to result from large-scale flux clo-
sure in the magnetotail (Clarke et al., 2005; Cowley et al., 2005; Nichols et al., 2014). However, these large 
scale reconnection events in Saturn's magnetotail are generally induced by solar wind compressions of the 
magnetosphere, whereas Jupiter's dawn storms have been observed to be independent of solar wind con-
ditions (Ballester et al., 1996; Clarke et al., 2009; Nichols et al., 2009) and are thus likely internally driven. 
We also note that internally-driven magnetotail reconnection, and the inward particle bursts described by 
Woch et al. (2002), have previously been linked to nightside and dawn auroral spots observed poleward of 
the main emission (Grodent et al., 2004; Radioti et al., 2008, 2010, 2011), with these phenomena feasibly 
resulting from smaller scale reconnection events.

Following Juno orbital insertion (JOI) in July 2016, the NASA Juno spacecraft traversed the outer mag-
netosphere along the dawn meridian. During this outbound flight, HST observed Jupiter's FUV auroras 
over seven orbits (referred to here as “visits”) on days of year (DOY) 193–200 of 2016, as shown in Figure 1 
and discussed further below. Over much of the interval, the main emissions were significantly enhanced 
relative to the several hundred kR typically observed for the main emission. From magnetopause and bow 
shock crossings identified by Hospodarsky et al. (2017), it is known that Juno encountered the dawn mag-
netopause and bow shock a number of times during this period, suggesting the magnetosphere underwent 
significant compression with periods of relaxation. In addition to the enhanced emissions throughout this 
interval, HST observed two dawn storms during this interval, on DOYs 195 and 200. The storm observed on 
DOY 200 was then followed by an unusual double arc along the dawn main emission, as shown in panel g 
of Figure 1. We note that an additional dawn observed prior to JOI on DOY 142 (Kimura et al., 2017; Nichols 
et al., 2017) occurred following compression of the magnetosphere, and was suggested to be initiated by 
reconnection in the magnetotail.

In this paper, we focus on the onset of the dawn storm on DOY 195. Previous auroral observations of dawn 
storms have not been supported by in situ spacecraft observations in the outer magnetosphere. Thus, we 
present the first concurrent remote sensing and magnetospheric in situ observations of a dawn storm onset. 
We examine both the auroral and in situ observations in detail, identifying several significant features of 
each, and infer the dynamics operating in the magnetosphere during this interval. Specifically, we show that 
the storm coincides with a reversal in the azimuthal magnetic field and a dropout in the radial and overall 
field magnitudes. Juno's particle instruments also show increases in the high energy particle flux simultane-
ous to these observations, as well as a long-lived hot plasma feature throughout the day following the storm.

2.  Data and Analysis
2.1.  HST-STIS Observations

The auroral observations discussed here were obtained using the HST Space Telescope Imaging Spectro-
graph (STIS) on DOYs 193, 195, 196, 199, and 200 as part of HST program GO-14105 (Nichols et al., 2017), 
with DOYs 195 and 200 each having two visits. FUV time-tagged data was captured utilizing the Multi-An-
ode Microchannel Array detector, and raw images with a 30 s integration time were extracted from this time 
tag data with 10 s increments. Throughout the program, the observations used the F25SRF2 filter to remove 
UV wavelengths corresponding to H Lyman-α emissions, while admitting H2 Lyman and Werner band 
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emissions. Raw images were processed with the Boston University pipeline (Clarke et al., 2009; Nichols 
et al., 2009), and a “standard” color ratio of 2.5 was assumed in converting auroral intensity from counts to 
kR, using the conversion factors derived by Gustin et al. (2012), though we note that this may underestimate 
the intensities in the dawn storm region if the color ratio is higher. This choice of color ratio does not affect 
the morphologies or trends discussed in this paper. All observations are of the northern auroral region, and 
representative images from each visit are shown in Figure 1.

The evolution of the onset of the DOY 195 dawn storm, highlighted in Figure 1c, is shown in more detail 
in Figure 2. Observation times are first corrected to account for one-way light travel time between Jupiter 
and HST to determine the time at which the UV photons were emitted from the ionosphere. Times are then 
further corrected for the Alfvén travel time from the outer magnetosphere to the ionosphere, estimated by 
Cowley and Bunce (2003) to be ∼18 min at 80 RJ, so the timestamps in Figure 2 represent the time a distur-
bance propagates in the source region of the magnetosphere. It should be noted that this estimated Alfvén 
travel time assumes that disturbances apply to the entirety of the current sheet, and thus disturbances prop-
agate from the top of the current sheet to the ionosphere. However, if the propagation time is considered to 
include traversal of the plasma sheet from its center, the time for Alfvén wave propagation at the radial dis-
tances considered here may exceed ∼1 h (Bagenal et al., 2017). The 18 min estimate quoted here should thus 
be thought of as a minimum propagation time between the magnetosphere and ionosphere. This ∼40 min 
uncertainty in Alfvén travel time does not influence any of the conclusions ultimately drawn in this paper 
since the lifetime of dawn storm auroral events has been previously observed to be several hours (Bonfond 
et al., 2021; Kimura et al., 2017), i.e. a reasonable fraction of a planetary rotation, and the in situ features 
discussed here would coincide with the dawn storm in either case.
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Figure 1.  Representative images from the seven HST observation periods during Juno's outbound pass following JOI. All images are of the northern auroral 
region and have been polar projected using a Lambert azimuthal equal area projection, with 180° System-III longitude fixed at the bottom of each image. 
A 10° × 10° graticule is overlaid in gray, and the statistical main auroral oval, derived by Nichols et al. (2017), is denoted by the red line. JOI, Juno orbital 
insertion.
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At the start of the image sequence shown in Figure 2, the dawn main emission consisted of a narrow, bright 
arc, which begins to expand poleward and brighten around 20:23 UT (panels c–d of Figure 2). This region 
of enhanced emission then propagates eastward toward local noon (referred to hereafter as “noonward”), 
until it dominates the dawn main emission at the end of the visit. The more detailed evolution of this feature 
will be discussed further below.

2.2.  Analysis of Auroral Morphology

A quantitative depiction of the dawn storm, and results from the associated magnetospheric mapping, is 
displayed in Figure 3. We note that the main emission observed during this visit is shifted slightly poleward 
of the statistical main oval for this campaign as determined by Nichols et al. (2017). Although not apparent 
in the peak intensities shown in Figure 3a, the first indication of dawn storm onset occurs at ∼20:23 UT 
with a ∼1° expansion of the poleward edge of the main emission and a negligible (0.1°) shift in the equa-
torward edge of the emission toward the pole, as shown in Figure 3c. The emission peaks at ∼8.5 MR about 
20 min after the observed storm onset. To compare the local time evolution of the auroral emission with the 
local time of the associated magnetospheric disturbance calculated below, we utilize the auroral local time 
(ALT) system defined by Grodent et al. (2004). By then applying an intensity threshold of 1.5 MR to the im-
ages to detect the edge of the storm, we observe the noonward expansion occurs more gradually, migrating 
from 5  to 8 h ALT during the HST observation as shown in panel b. This rate of expansion in local time 
(approximately 3 h over the ∼30 min where the storm is observed) is equivalent to ∼250% rigid corotation, 
or ∼1,800 km s−1 at 60 RJ, suggesting the magnetospheric source region for the storm is expanding at super-
rotational velocities.

We have then mapped the auroral features to the equatorial plane using the flux equivalence method of 
Vogt et al. (2011) and field line tracing, as shown in Figure 3d. The mapping of the noonward and poleward 
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Figure 2.  Images from HST Visit 45, showing (a–b) the aurora at the start of the image series, (c–d) early poleward expansion and dawn storm onset, (e–g) 
noonward expansion and peak intensity, and (h) the end of the image sequence. Images are formatted as in Figure 1, and observation times have been corrected 
for light travel time and Alfvén propagation to show the expected time a disturbance propagates in the magnetosphere.
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edges of the dawn storm to the magnetosphere (Figures 3b and 3d) uti-
lize the JRM09 internal field and CAN current sheet models (Connerney 
et al., 1981, 2018) for both methods. The local time extent of the dawn 
storm calculated from both methods agrees closely with the ALT (to 
within ∼30  min) measured from the auroral images. Over the 30  min 
for which we observe the evolution of the storm, the poleward edge of 
the storm expands from ∼58 RJ to 68 RJ for the field line tracing, and 
from ∼50 RJ to 130 RJ for the flux equivalence method. The significant 
disparity between the radial distances returned by the two models pri-
marily results from a greater uncertainty in mapping with the field line 
tracing method beyond ∼30 RJ, as discussed by Vogt et al.  (2011); Vogt 
et al. (2015). We note that the ∼130 RJ radial distance returned by the flux 
equivalence method would indicate a majority of the closed magneto-
sphere in this sector is affected by the dawn storm event. We further note 
that at the time of the dawn storm, the Juno spacecraft was located near 
the dawn meridian (6 h LT) at a radial distance of ∼77 RJ.

According to the model results, Juno should encounter the magneto-
spheric source region of the dawn storm between ∼ 20:29 and 20:42 UT, 
thus we may reasonably expect to observe in situ features near this time 
interval. However, mapping between the magnetosphere and ionosphere 
beyond 30 RJ is subject to significant uncertainty due to the stretching 
of the field lines at increasing radial distances. During this interval, the 
mapping uncertainty is also greater due to the reconfiguration of mag-
netic field lines occurring as part of the dawn storm, with a 1° shift in 
the ionosphere corresponding to a shift of a few RJ in the middle mag-
netosphere with the field line tracing model, or ∼20–30 RJ with the flux 
equivalence model. This result is therefore intended to give a general ap-
proximation of the magnetospheric source region of the dawn storm for 
comparison with the position of the Juno spacecraft.

2.3.  Juno In Situ Observations

Turning now to the Juno in situ data, magnetic field and particle ob-
servations were obtained using the magnetometer (MAG; Connerney 
et  al.,  2017), the Jovian Auroral Distributions Experiment (JADE; Mc-
Comas et al., 2017), the Jupiter Energetic particle Detector Instrument 
(JEDI; Mauk et  al.,  2017), and the plasma waves investigation (Waves, 
Kurth et al., 2017). The MAG instrument consists of two tri-axial flux-
gate magnetometers, fixed on a 4 m long magnetometer boom attached to 
the end of one of Juno's three solar panel arrays (Connerney et al., 2017). 
Here we utilize 1 s resolution MAG data in a magnetocentric cylindri-
cal coordinate system. JADE consists of three identical JADE-E sensors 
measuring electron distributions from ∼0.1–100  keV, and one JADE-I 
sensor measuring ions from ∼5 eV to ∼50 keV (McComas et al., 2017). 
The JADE data during the dawn storm interval were obtained in low-rate 
science (LRS) mode, providing 1 min resolution over most of the peri-

od of interest. The JADE-E and JADE-I data utilize the latest in-flight calibrations described by Allegrini 
et al. (2020) and Kim et al. (2020) respectively, and were used to compute 1D electron and 3D proton, in-
cluding temperature, density, and velocities. These moments were then resampled at 10 min resolution, and 
values with an error greater than 200% were excluded.

JEDI is capable of measuring the energy and angular distributions of electrons from ∼25 keV to 1.2 MeV, 
and the energy, angular and compositional distributions of ions from ∼10 keV to >1.5 MeV for protons and 
∼145 keV to >10 MeV for oxygen and sulfur ions (Mauk et al., 2017). Pitch angle distributions are derived 
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Figure 3.  (a) Auroral peak intensity of the dawn main emission, (b) local 
time of the noonward edge of the dawn storm, (c) mean separation of the 
storm's poleward (black) and equatorward (blue) edges from the statistical 
main oval, and (d) the calculated radial distance mapping to this poleward 
boundary, versus time of the HST observations on DOY 195, corrected for 
light and Alfvén travel times. The magnetosphere-ionosphere mapping 
uses the JRM09 internal field and CAN current sheet models (Connerney 
et al., 1981, 2018), and the green and yellow lines in panels b and d show 
the results of the Vogt et al. (2011) flux equivalence model and field 
line tracing respectively. Values of ALT are calculated using the method 
derived by Grodent et al. (2004). The red dotted lines indicate Juno's 
position in local time (panel b) and radial distance (panel d) at the time of 
the HST observations, and the gray shaded region indicates the estimated 
time of encounter by Juno with the dawn storm source region according to 
the model results. ALT, auroral local time; DOY, days of year.
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by combining the JEDI particle data with the MAG vector measurements of the local magnetic field. The 
compositional distributions are only resolved in the JEDI-90 and JEDI-270 sensors since they operate in a 
time-of-flight by energy (TOFxE) mode which is able to deduce the ion's velocity from the start and stop 
timing pulses produced as the ion passes through a set of foils. All sensors (JEDI-90, JEDI-180 and JEDI-
270) are capable of measuring electrons and total ions via solid-state detectors. Electron SSDs have ∼2 μm 
of aluminum flashing to shield < 250 keV protons, whereas the ion SSD has no flashing (referred to as “bare 
detector” here) and is susceptible to both electrons and ions, which we refer to as “total particles” in this pa-
per. Additionally, JEDI-90 and JEDI-270, are mounted on the spacecraft deck with their FOVs along the spin 
plane to maximize coverage of the field-aligned particles. The JEDI-180 sensor is mounted perpendicular to 
the spin plan and can provide nearly complete sky coverage over one spacecraft spin (or every 30 s). Waves 
comprises a single axis electric dipole antenna with its effective axis perpendicular to the spacecraft spin 
axis and a single axis search coil magnetometer mounted parallel to the spin axis, and is capable of meas-
uring and distinguishing between wave magnetic fields from 50 Hz to 20 kHz and wave electric fields from 
50 Hz to 41 MHz (Kurth et al., 2017). From Waves, we primarily focus on the decametric (∼10–40 MHz) 
and hectometric (∼200 kHz to a few MHz) emission frequencies, and also utilize electron densities derived 
from the low-frequency cutoff of continuum radiation by the method described by Barnhart et al. (2009).

Figures 4 and 5 display the Juno MAG, JADE, JEDI, and Waves data for DOYs 195–196, and a close up of 
the dawn storm interval on DOY 195, respectively, with the magnetic field expressed in a cylindrical polar 
coordinate system. During this interval, Juno remained near 6 h local time and traveled outward from 73.5 
to 82 RJ, and the distance from Juno to the center of the current sheet was calculated using the model de-
rived by Khurana (1992),

   
 

  
 

0

0
tan( ) tanh cos( ) ,cs

x xZ
x x

� (1)

where θ is the dipole tilt angle, x0 is the current sheet hinge distance, and δ is the longitude toward which 
the current sheet tilts. The value of δ is given by
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where δ0 is the longitude of the prime meridian, ρ0 is the radial distance at which wave delay becomes sig-
nificant, and v0 is the wave velocity. In this study, we use the values of x0, v0, and ρ0 derived by Khurana and 
Schwarzl (2005), and θ and δ0 were calculated using the JRM09 internal magnetic field model (Connerney 
et al., 2018). Focusing on the wider interval shown in Figure 4, for much of this interval Juno detected con-
sistent negative radial and positive azimuthal field components of ∼−6  and 4 nT respectively, with Bz os-
cillating due to the motion of Juno through the current sheet field structure over a planetary rotation. This 
configuration is typical of a “lagging” field in the southern hemisphere. We note that significant departures 
from this description are present throughout DOY 196 which will be discussed later.

JADE electron and proton temperatures, shown in panel f of Figures 4 and 5, typically vary with a 10-h 
periodicity over the two days, reaching minimum temperatures of ∼0.3–0.6 keV and 0.5–1.3 keV respec-
tively below the current sheet, and maximum temperatures of ∼2–3 keV and 5–8 keV during current sheet 
encounters. This periodicity is also suggested in the particle densities derived from both JADE and Waves 
data (Figures  4g and  5g), with proton and electron densities of 1–2  ×  10−3 particles/cm−3 increasing to 
0.9–1  ×  10−2 particles/cm−3 near the current sheet. Electrons and protons of temperatures greater than 
50 keV also exhibit this periodicity, with JEDI revealing particle fluxes increasing by factors of ∼2–5 during 
current sheet approaches. For much of this interval, the counting statistics for heavy ions detected by JADE 
remain low and return moments with significant error, so these moments are not presented here. We also 
note that the very low counts observed for energies below ∼1 keV in Figure 4e are the result of a temporary 
change in JADE's time resolution from 1 min to 10 min around the time of the dawn storm, and should 
not be considered significant. Finally, three HST visits occurred during this interval: two on DOY 195, the 
second of which included the dawn storm onset, and one on DOY 196.
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On DOY 195, MAG and JEDI exhibit several reversals in the azimuthal magnetic field (dotted lines 1–3 in 
Figure 4), concurrent with enhancements in the high energy plasma population between 19:00-23:00 UT. 
Here we focus on the second of these events due to its coincidence with the HST observation of the dawn 
storm, highlighted by the yellow bar in Figures 4 and 5. Furthermore, JADE and two of the three JEDI de-
tectors were switched off during the first event, while Waves experienced interference from spacecraft gyros 
between 18:00 and 19:00 UT due to a spacecraft maneuver. Additionally, despite significant FUV emission 
during this period, Waves detects negligible emission in the decametric and hectometric wavebands, sug-
gesting the spacecraft was out of the beam of auroral radio emission throughout the interval.

Turning then to Figure 5, which focuses on the interval of interest on DOY 195, the magnetometer trace 
reveals a dropout in the radial and azimuthal magnetic field components from a background magnitude of 
∼4–6 nT to ∼ 1 nT, as well as the overall magnetic field strength, starting at ∼20:30 UT. The azimuthal field 
then reverses for several minutes, peaking at ∼-3 nT, before a more gradual recovery, while the radial field 
briefly returns to values of 3–6 nT before decreasing again and then gradually recovering to magnitudes of 
∼5 nT over 15 min. The radial field strength later decreases again to ∼3 nT approaching another reversal 
in the azimuthal field. Although Juno is near its closest approach to the current sheet at this time, this 
configuration of the magnetic field is not typical of a current sheet encounter, as there is no accompanying 
reversal in the radial field when the azimuthal field reverses in sense. This signature is also distinct from 
other near-current sheet features such as magnetic nulls (Haynes et al., 1994; Kivelson & Southwood, 2005; 
Leamon et al., 1995; Southwood et al., 1993), in which the magnetic field strength also decreases to well 
below the ambient field magnitude, but there is no reversal in the azimuthal field. This reversal of Bφ indi-
cates a transient interval of “leading” field, implying acceleration of plasma above expected subcorotational 
speeds in this region of the magnetosphere. Furthermore, the sudden decrease in magnetic field strength is 
consistent with the diamagnetic effect associated with an increase in plasma pressure.

With this in mind, we now turn to the plasma measurements shown in Figures 5k–5n, in which the JEDI 
bare detector and proton channels exhibit an order of magnitude enhancement in the 50–200 keV energy 
bands simultaneous with the magnetic signatures described above. As shown in Figures 5e–5g, JADE also 
detects an increase in proton and electron temperatures to ∼10  and 3 keV respectively at this time, but we 
note that the densities and temperatures calculated at storm onset are similar to those observed during other 
current sheet approaches. Additionally, the azimuthal proton velocities, while not exceeding corotational 
speeds (indicated by the dashed line in Figure 5h), do suggest an acceleration to at least near-corotation-
al velocities at the time of storm onset. We also note that JEDI pitch angle distributions in Figure 5k–5n 
reveal field-aligned (i.e., southward) motion of protons and heavy ions at storm onset, with an additional 
significant field-aligned signature appearing at ∼20:50 UT and persisting for tens of minutes. Overall the 
enhanced proton and ion populations persist until ∼23:00 UT before dropping by a factor of ∼5–10 to near 
previous fluxes. We note that the JEDI bare detector resolves three distinct enhancements in Figure  4k 
which coincide with reversals of the azimuthal field, whereas JADE and the other JEDI detectors are un-
able to clearly resolve these features. Considering the bare detector's sensitivity to both ions and electrons, 
this indicates an increase in the high energy electron population, although the lack of resolution between 
electron and ion populations during this interval makes the magnitude of this enhancement unknown.

Another prominent feature in Figure 4 is the extended region of hot (>50 keV) plasma present throughout 
DOY 196. JADE particle temperatures and JEDI energy and pitch angle distributions are initially enhanced 
at ∼04:00 UT, and the JEDI distributions in particular remain enhanced until Juno crosses the magneto-
pause at 21:18 UT, after which the high energy particle fluxes rapidly decrease by 1–2 orders of magnitude. 
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Figure 4.  Juno in situ measurements from DOY 195–196, showing (a–c) the radial, north-south, and azimuthal components of the magnetic field in cylindrical 
coordinates, in nT, (d) magnetic field strength in nT, (e) JADE ion time-of-flight spectra, (f) electron and proton temperatures, (g) number densities (cm−3), 
including the Waves electron number densities, and (h) proton azimuthal velocities, with the corotational velocity at increasing radial distances denoted by 
the dashed line, (i) frequency-time spectrogram of Waves electric field from 4 to 30 MHz and (j) continuum radiation in the Waves electric field channel, (k) 
JEDI energy distribution for the bare A180 detector, (l and m) proton energy and pitch angle distributions, (n) pitch angle distribution for the oxygen and 
sulfur energy channels, and (o) the calculated distance between Juno and the center of the current sheet utilizing the model of Khurana (1992). The yellow bar 
indicates the HST interval during which the dawn storm was observed, and other HST observations during this interval are highlighted in light gray. All HST 
observation times have been corrected to account for light travel and Alfvén propagation times. The dark gray shading on DOY 196 indicates a magnetopause 
crossing identified by Hospodarsky et al. (2017). DOY, days of year; JADE, Jovian Auroral Distributions Experiment; JEDI, Jupiter Energetic particle Detector 
Instrument.
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Figure 5.  As in Figure 4, but for 20:00–22:00 UT on DOY 195. The gray shaded region indicates the estimated time of encounter by Juno, as shown in Figure 3. 
As in Figure 4, the yellow shaded region shows the HST observation period during which the dawn storm onset was observed, although the dawn storm is 
expected to persist for several hours beyond this observation period (Bonfond et al., 2021; Kimura et al., 2017). DOY, days of year.
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The minimum lifetime of this hot plasma feature is therefore ∼17 h, although the exact lifetime of this 
region of hot plasma may be significantly greater. Prior to the magnetopause crossing on DOY 196, there is 
no indication in JADE or JEDI data of the hot plasma beginning to dissipate, and the feature is not observed 
again when Juno re-enters the magnetosphere at 7:16 on DOY 197 (Hospodarsky et al., 2017), suggesting 
the true lifetime of this feature is between ∼17 and 27 h. MAG signatures also demonstrate significant dis-
turbances in the magnetic field throughout this interval, consistent with a region of hot plasma. We note 
that these persistent hot plasma populations are primarily present at higher southern magnetic latitudes, 
extending to ∼30 RJ below the current sheet. Reductions of the high energy populations during this inter-
val only occur during current sheet encounters. During these current sheet approaches, the intensity flux 
drops by roughly an order of magnitude in the 50–200 keV energy range, and proton and ion pitch angle 
distributions simultaneously become increasingly field-aligned, suggesting the particle motions are primar-
ily southward. Additionally, the auroral emissions observed with HST during this day (Figure 1d), while 
enhanced compared to typical intensities, show attributes consistent with other HST orbits in this sequence 
with no clear remnant of the dawn storm remaining in the images.

3.  Discussion
Considering now the mechanisms driving the above observations, we first note that the brief reversals of 
the azimuthal magnetic field, coupled with the JADE azimuthal proton velocities, reveal an acceleration 
of the thermal plasma toward corotation, significantly faster than the approximately half rigid corotation 
expected at these radial distances (Kane et al., 1995). Such bursts of fast flow of magnetospheric plasma 
may result from reconnection at earlier local times accelerating plasma flows along the dawn flank. This 
region of ongoing reconnection then expands at the local Alfvén speed along the dawn flank, potentially 
forming the noonward expansion of the auroral emissions at significantly superrotational velocities. The 
rate of expansion estimated from auroral observations (∼1,800 km s−1 at 60 RJ) is comparable with the 
Alfvén speeds of 1,000–3,000 km s−1 calculated by Bagenal et al. (2017) for a few RJ from the center of the 
current sheet, where much of the hot plasma is detected by Juno. We note that while the initial reductions 
in the radial magnetic field may result from proximity to the center of the current sheet, the later gradual 
decrease corresponds to decreased stretching of the magnetic field lines, indicative of a reconfiguration of 
the magnetosphere. From arguments made for the terrestrial system, this may be indicative of a disruption 
of the magnetodisk azimuthal current (Birn & Hesse, 1996; Lui, 1996), although at Earth whether this cur-
rent disruption precedes reconnection remains unclear (Angelopoulos et al., 2008; Lui, 2009).

The interval on DOY 196 has previously been analyzed by Gershman et al. (2017), who discussed an ex-
tended magnetopause boundary layer present in JADE energy and pitch angle spectra and Waves low fre-
quency continuum data which are roughly coincident with the high energy population present in the JEDI 
distributions discussed above. Gershman et al. (2017) associated this extended boundary region with the 
mixing of magnetosphere and magnetosheath material. While some of the proton and electron populations 
observed here could result from a mixing of these regions, the dense oxygen and sulfur populations near 
the magnetopause boundary will be entirely magnetospheric in origin, as Mauk et al. (2019) revealed that 
heavier ions such as oxygen and sulfur cannot be easily transported across the magnetopause owing to their 
increased gyroradii. Furthermore, we do not observe a similarly long-lived hot plasma region near magne-
topause crossings or at similar radial distances during other perijoves, such as the interval from PJ1 shown 
in Figure 6, during which Juno crossed the magnetopause at a similar radial distance and local time to the 
DOY 196 crossing. We therefore suggest that this enhancement of the high energy plasma population is 
associated with a reconfiguration of the magnetosphere occurring as part of this dawn storm.

Regarding the ∼17 h lifetime of the hot plasma region observed on DOY 196, this timescale is consistent 
with the lifetime of equatorward emission features resulting from plasma injections into the inner mag-
netosphere (Badman et al., 2016; Gray et al., 2016). Most notably, Gray et al. (2016) observed a polar spot, 
possibly driven by magnetotail reconnection, propagate equatorward and merge with the main emission. 
Equatorward emissions associated with hot plasma injections were observed simultaneously and were 
still detectable 18 h later, and it was suggested that these injection signatures could be the result of re-
connection-driven planetward flows of hot plasma. In the case of the dawn storm, brightening originates 
along the main emission and propagates poleward, indicating either a radially outward-moving source, or 
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reconnection of subsequent flux tubes with increasing vertical distance from the neutral sheet, analogous 
with the expansion phase of Earth's substorms.

Another parallel between this dawn storm and reconnection-driven polar spots is their superrotational mo-
tion in the ionosphere (∼250% compared to 270% calculated by Gray et al. (2016)). Additionally, the rapid 
noonward propagation of the auroral emission is also analogous to the observed propagation of Saturnian 
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Figure 6.  Similar to Figure 4, but for DOY 249–250 of 2016. No JADE data is available from this interval, so only Waves provides an indication of low energy 
particle density during this interval. The gray shaded region indicates the interval where Juno was located in the magnetosheath as determined by Hospodarsky 
et al. (2017). DOY, days of year; JADE, Jovian Auroral Distributions Experiment.
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storms at superrotational velocities (Nichols et al., 2014). However, Saturnian auroral storms are distinct 
from Jupiter's dawn storms in that Saturn's storms are likely triggered following magnetospheric compres-
sion by the solar wind (Clarke et  al.,  2005; Cowley et  al.,  2005; Nichols et  al.,  2014), whereas Jupiter's 
storms are observed independent of solar wind conditions (Ballester et al., 1996; Clarke et al., 2009; Nichols 
et al., 2009). While the enhanced auroral emissions and multiple magnetopause and bow shock encounters 
by Juno are evidence of significant compression of the magnetosphere throughout this HST campaign, the 
nature of the solar wind at the time of the dawn storm is not known precisely. Given that the timescale 
required for the magnetosphere to be compressed is estimated to be on the order of a few hours (Cowley 
& Bunce, 2003), it is equally feasible that the magnetosphere did not undergo compression until nearly a 
day after the onset of the storm, with Juno not encountering the magnetopause until 21:18 UT on DOY 196 
(Hospodarsky et al., 2017). However, we note that the second dawn storm observed during this HST cam-
paign, on DOY 200, occurred when Juno was in the solar wind and the magnetosphere was compressed. 
This second storm is reminiscent of a possible poleward boundary intensification (PBI) observed at Saturn 
(Nichols et al., 2014), which in the terrestrial system result from ongoing reconnection in the magnetotail.

Overall, then, we have shown that this dawn storm was associated with significant plasma dynamics and 
heating in the dawnside middle to outer magnetosphere, likely initiated by reconnection and/or disruption 
of the azimuthal current. The schematic in Figure 7 shows the expected generation and evolution of the 
dawn storm, with reconnection at an earlier local time triggering the reconfiguration of field lines as sug-
gested previously (Kimura et al., 2017; Yao et al., 2020). The reconfiguration front rapidly expands radially 
outward and through local dawn, corresponding to the poleward and noonward expansion of the auroral 
emission, until most of the dawn outer magnetosphere is reconfigured at the full extent of the dawn storm.
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Figure 7.  Schematic showing the evolution of the reconfiguration front in the magnetosphere (top) and associated auroral emission (bottom). The blue 
circle denotes Juno's position in the magnetosphere during the dawn storm, and the red markings highlight regions and features in the magnetosphere and 
ionosphere expected to correspond to the dawn storm.

x
x

Juno

x
xx

x
xxx xxxxxxxxxx

Reconnection/Disruption Site

Noonward
Expansion

Initial Expansion Final Extent

x
xxxxxxxxxxxxxxxxxxxxxxxxx

Noonward
Expansion

Radial Expansion

Poleward ExpansionMain Emission

Auroral
Brightening

Dawn Storm



Journal of Geophysical Research: Space Physics

4.  Summary
We have presented the first concurrent magnetospheric and auroral observations of the onset of a dawn 
storm. HST images obtained on July 13, 2016 showed the onset and early progression of the storm, with a 
1° poleward expansion of the main emission corresponding to either a ∼10 RJ or ∼80 RJ outward expansion 
of the magnetospheric source region depending upon the mapping model used. The latter result would 
indicate a major reconfiguration of the majority of closed flux in the dawn magnetosphere. Expansion of 
the noonward edge of the storm from ∼5 to ∼8 h LT indicates expansion of the reconnection front at speeds 
∼250% of rigid corotation, or ∼1,800 km s−1 at 60 RJ.

Concurrent Juno in situ observations reveal a reversal in the azimuthal magnetic field and dropouts in the 
radial and overall field magnitudes, as well as dense high energy plasma populations at around the time of 
storm onset and instances of field-aligned motion of protons and heavy ions during this interval. Through-
out the day following the storm, the JEDI instrument also detects a persistent region of hot plasma up to 
the magnetopause, a feature not detected during later perijoves. The increased particle flux detected during 
this interval is primarily present at higher latitudes, with decreases in the high energy plasma population 
being observed during the closest approaches to the current sheet. We therefore associate this dawn storm 
with the acceleration and heating of magnetospheric plasma following reconnection at earlier local times, 
possibly associated with a disruption of the magnetodisk current, with the long-lived high energy particle 
populations being a consequence of the reconfiguration of the magnetosphere following this event.

Data Availability Statement
HST data are available from the MAST Archive (doi: 10.17909/t9-1271-7f52), and Juno data are available 
from the Planetary Data Server (PDS) at https://pds-ppi.igpp.ucla.edu/. JADE data are from the JNO-J/
SW-JAD-3-CALIBRATED-V1.0 data set, version 03 and 02 files for electrons and ions, respectively, and are 
available from the NASA PDS Archive. MAG data are available from the JNO-J-3-FGM-CAL-V1.0 data set, 
version 01 files in the PC subdirectory, on the NASA PDS Archive (doi: https://doi.org/10.17189/1519711). 
JEDI data are from the JNO-J-JED-3-CDR-V1.0 data set, version 04 files, on the NASA PDS Archive. Waves 
data are from the JNO-E/J/SS-WAV-3-CDR-SRVFULL-V1.0 data set, version 02 files, on the NASA PDS 
Archive (doi: https://doi.org/10.17189/1520499).
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