Positional Numeration Systems:
 Ultimate Periodicity, Complexity and Automatic Sequences

Adeline Massuir

Liège - April 30, 2021

$$
\begin{aligned}
456 & =4 \times 10^{2}+5 \times 10+6 \times 1 \\
& =1 \times 3^{5}+2 \times 3^{4}+1 \times 3^{3}+2 \times 3^{2}+2 \times 3+0 \times 1
\end{aligned}
$$

$$
\begin{aligned}
456 & =4 \times 10^{2}+5 \times 10+6 \times 1 \\
& =1 \times 3^{5}+2 \times 3^{4}+1 \times 3^{3}+2 \times 3^{2}+2 \times 3+0 \times 1
\end{aligned}
$$

$$
\begin{array}{llllll}
\cdots & 8 & 5 & 3 & 2 & 1 \\
& 1 & 0 & 0 & 1 & 0
\end{array}
$$

$$
8+2=10
$$

recognizability
automatic sequences

Part 1

Ultimate periodicity problem
for linear numeration systems

Problem

Given a linear numeration system U and a deterministic finite automaton \mathscr{A} whose accepted language is contained in the numeration language $\operatorname{rep}_{U}(\mathbb{N})$,
decide whether the subset X of \mathbb{N} that is recognized by \mathscr{A} is ultimately periodic, i.e. whether or not X is a finite union of arithmetic progressions (along a finite set).

Problem

Given a linear numeration system U and a deterministic finite automaton \mathscr{A} whose accepted language is contained in the numeration language $\operatorname{rep}_{U}(\mathbb{N})$,
decide whether the subset X of \mathbb{N} that is recognized by \mathscr{A} is ultimately periodic, i.e. whether or not X is a finite union of arithmetic progressions (along a finite set).

1986 : Honkala
1994 : Bruyère, Hansel, Michaux, Villemaire
2009 : Bell, Charlier, Fraenkel, Rigo

Problem

Given a linear numeration system U and a deterministic finite automaton \mathscr{A} whose accepted language is contained in the numeration language $\operatorname{rep}_{U}(\mathbb{N})$,
decide whether the subset X of \mathbb{N} that is recognized by \mathscr{A} is ultimately periodic, i.e. whether or not X is a finite union of arithmetic progressions (along a finite set).

1986 : Honkala
1994 : Bruyère, Hansel, Michaux, Villemaire
2009 : Bell, Charlier, Fraenkel, Rigo
Syntactic complexity : Lacroix, Rampersad, Rigo, Vandomme (2012)
Logic: Muchnik (2003) - Leroux (2005)
Automata : Marsault, Sakarovitch (2013) - Boigelot, Mainz, Marsault, Rigo (2017) - Marsault (2019)
Morphic: Durand (2013) - Mitrofanov (2013)

Our settings

(H1) \mathbb{N} is U-recognizable,
(H2) $\lim \sup _{i \rightarrow+\infty}\left(U_{i+1}-U_{i}\right)=+\infty$,
(H3) $\exists N \geq 0, \forall i \geq 0, U_{i+1}-U_{i} \leq U_{i+2}-U_{i+1}$.

- We are able to check with an automaton whether a representation is greedy,
- the numeration system is linear,
- ultimately periodic sets are recognizable.
- We are able to check with an automaton whether a representation is greedy,
- the numeration system is linear,
- ultimately periodic sets are recognizable.

Lemma

Let U be a numeration system satisfying $(\mathrm{H} 1),(\mathrm{H} 2)$ and $(\mathrm{H} 3)$. There exists a constant Z such that if w is a greedy U-representation, then for all $z \geq Z, 10^{z} w$ is also a greedy U-representation.

Toy examples

Example 1

Consider the numeration system $U_{i+4}=2 U_{i+3}+2 U_{i+2}+2 U_{i}$ with initial conditions $U_{0}=1, U_{1}=3, U_{2}=9, U_{3}=25$.
The largest root is $\beta \approx 2.804$ and it has also a root $\gamma \approx-1.134$.

Example 2

Consider the numeration system $U_{i+3}=12 U_{i+2}+6 U_{i+1}+12 U_{i}$ with initial conditions $U_{0}=1, U_{1}=13, U_{2}=163$.

Strategy

- Input: DFA \mathscr{A}
- Upper bound on the admissible preperiods and periods
- For each pair (N, p) of possible preperiods and periods, there are at most $2^{N} 2^{p}$ corresponding ultimately periodic sets X
- Equality test : \mathscr{A}_{X} and \mathscr{A}

Period

$$
\begin{aligned}
& \text { Let } U=\left(U_{i}\right)_{i \in \mathbb{N}} \text { satisfying }(\mathrm{H} 1) \text {, (H2) and (H3). } \\
& \qquad U_{i+k}=a_{k-1} U_{i+k-1}+\cdots+a_{0} U_{i}, a_{0} \neq 0
\end{aligned}
$$

Suppose that the minimal automaton \mathscr{A}_{X} of $\operatorname{rep}_{U}(X)$ is given. Let π_{X} be a potential period for X and consider its prime decomposition.
(1) Factors that do not divide a_{0},
(2) factors that divide a_{0} but not all the a_{j},
(3) factors that divide all the a_{j}.

The gcd of the coefficients of the recurrence is 1

Proposition

Let $X \subseteq \mathbb{N}$ an ultimately periodic U-recognizable set and let q be a divisor of π_{X} such that $\left(q, a_{0}\right)=1$. Then the minimal automaton of $\operatorname{rep}_{U}(X)$ has at least q states.

Proposition

Let p be a prime not dividing all the coefficients of the recurrence relation and let $\lambda \geq 1$ be the least integer such that $\left(U_{i} \bmod p^{\lambda}\right)_{i \in \mathbb{N}}$ has a period containing a non-zero element.
If $X \subseteq \mathbb{N}$ is an ultimately periodic U-recognizable set with period $\pi_{X}=p^{\mu} \cdot r$ where $\mu \geq \lambda$ and r is not divisible by p, then the minimal automaton of $\operatorname{rep}_{U}(X)$ has at least $p^{\mu-\lambda+1}$ states.

Theorem

Let U be a numeration system satisfying $(\mathrm{H} 1),(\mathrm{H} 2)$ and $(\mathrm{H} 3)$ and such that the gcd of the coefficients of the recurrence relation of U is 1 .
Given a DFA \mathscr{A} accepting a language contained in the numeration language $\operatorname{rep}_{U}(\mathbb{N})$, it is decidable whether this DFA recognizes an ultimately periodic set.

Theorem

Let U be a numeration system satisfying $(\mathrm{H} 1),(\mathrm{H} 2)$ and $(\mathrm{H} 3)$ and such that the gcd of the coefficients of the recurrence relation of U is 1 .
Given a DFA \mathscr{A} accepting a language contained in the numeration language $\operatorname{rep}_{U}(\mathbb{N})$, it is decidable whether this DFA recognizes an ultimately periodic set.

$$
U_{i+5}=6 U_{i+4}+3 U_{i+3}-U_{i+2}+6 U_{i+1}+3 U_{i}, \forall i \geq 0
$$

with $U_{0}=1, U_{1}=7, U_{2}=45, U_{3}=291, U_{5}=1881$

Prime factors that divide all the coefficients

$$
\pi_{x}=m_{X} \cdot p_{1}^{\mu_{1}} \cdots p_{t}^{\mu_{t}}
$$

Prime factors that divide all the coefficients

$$
\pi_{x}=m_{X} \cdot p_{1}^{\mu_{1}} \cdots p_{t}^{\mu_{t}}
$$

Let F_{X} be the length of the preperiod of $\left(U_{i}\left(\bmod \frac{\pi_{X}}{m_{X}}\right)\right)_{i \in \mathbb{N}}$.

Theorem

Let $X \subseteq \mathbb{N}$ be an ultimately periodic U-recognizable set with period $\pi_{x}=m_{X} \cdot p_{1}^{\mu_{1}} \cdots p_{t}^{\mu_{t}}$. Assume that $F_{X}-1-\left|\operatorname{rep}_{U}\left(\frac{\pi_{X}}{m_{X}}-1\right)\right| \geq Z$. Then there is a positive constant C such that the minimal automaton of $0^{*} \operatorname{rep}_{U}(X)$ has at least $\frac{C}{\gamma_{m_{X}}} \log _{2}\left(\left|\operatorname{rep}_{U}\left(\frac{\pi_{X}}{m_{X}}-1\right)\right|+1\right)$ states.

Lemma

Let U be a numeration system satisfying $(\mathrm{H} 1),(\mathrm{H} 2)$ and $(\mathrm{H} 3)$. There exists a constant Z such that if w is a greedy U-representation, then for all $z \geq Z, 10^{z} w$ is also a greedy U-representation.

$$
F_{X}-1-\left|\operatorname{rep}_{U}\left(\frac{\pi_{X}}{m_{X}}-1\right)\right|
$$

$$
F_{X}-1-\left|\operatorname{rep}_{U}\left(\frac{\pi_{X}}{m_{X}}-1\right)\right|
$$

Lemma

Assume that for all $j \in \llbracket 1, t \rrbracket$, there are $\alpha_{j}, \epsilon_{j} \in \mathbb{R}_{>0}$ and a nondecreasing function g_{j} such that

$$
\nu_{p_{j}}\left(U_{i}\right)<\left\lfloor\alpha_{j} i\right\rfloor+g_{j}(i)
$$

for all $i \in \mathbb{N}$ and there exists M_{j} such that $g_{j}(i)<\epsilon_{j} i$ for all $i>M_{j}$. Then for large enough μ_{1}, \ldots, μ_{t},

$$
F_{X}>\frac{\max _{1 \leq j \leq t} \mu_{j}}{\max _{1 \leq j \leq t}\left(\alpha_{j}+\epsilon_{j}\right)}
$$

$$
F_{X}-1-\left|\operatorname{rep}_{U}\left(\frac{\pi_{X}}{m_{X}}-1\right)\right|
$$

Lemma

If $\beta>1$, there is a non-negative constant K such that

$$
\left|\operatorname{rep}_{u}(n)\right|<u \log _{\beta}(n)+K
$$

for all $n \in \mathbb{N}$. In particular,

$$
\left|\operatorname{rep}_{U}\left(\frac{\pi_{X}}{m_{X}}-1\right)\right| \leq u\left(\max _{1 \leq j \leq t} \mu_{j}\right) \sum_{j=1}^{t} \log _{\beta}\left(p_{j}\right)+K
$$

$$
F_{X}-1-\left|\operatorname{rep}_{U}\left(\frac{\pi_{X}}{m_{X}}-1\right)\right|
$$

Lemma

Assume that for all $j \in \llbracket 1, t \rrbracket$, there are $\alpha_{j}, \epsilon_{j} \in \mathbb{R}_{>0}$ and a nondecreasing function g_{j} such that

$$
\nu_{p_{j}}\left(U_{i}\right)<\left\lfloor\alpha_{j} i\right\rfloor+g_{j}(i)
$$

for all $i \in \mathbb{N}$ and there exists M_{j} such that $g_{j}(i)<\epsilon_{j} i$ for all $i>M_{j}$. Assume also that $\beta>1$. Then

$$
\begin{aligned}
F_{X}-1 & -\left|\operatorname{rep}_{U}\left(\frac{\pi_{X}}{m_{X}}-1\right)\right| \\
& \geq \max _{1 \leq j \leq t} \mu_{j}\left(\frac{1}{\max _{1 \leq j \leq t}\left(\alpha_{j}+\epsilon_{j}\right)}-u \sum_{j=1}^{t} \log _{\beta}\left(p_{j}\right)\right)-K-1
\end{aligned}
$$

Search for the α_{j}

Example 2

$$
U_{i+3}=12 U_{i+2}+6 U_{i+1}+12 U_{i}, U_{0}=1, U_{1}=13, U_{2}=163 .
$$

Proposition

For all $i \in \mathbb{N}$, one has

$$
\nu_{3}\left(U_{i}\right)<\left\lfloor\frac{i}{3}\right\rfloor+2 .
$$

Search for the α_{j}

Example 2

$$
U_{i+3}=12 U_{i+2}+6 U_{i+1}+12 U_{i}, U_{0}=1, U_{1}=13, U_{2}=163 .
$$

Proposition

For all $i \in \mathbb{N}$, one has

$$
\nu_{3}\left(U_{i}\right)<\left\lfloor\frac{i}{3}\right\rfloor+2
$$

Proposition

Under Conjecture (\star), one has

$$
\nu_{2}\left(U_{i}\right) \leq \frac{i}{2}+\frac{536}{95} \log _{2}(i)
$$

for all $i \geq 10$.

Part 2

Minimal automaton for multiplying and translating the Thue-Morse set

Theorem (Alexeev, 2004)

The state complexity of the language $0^{*} \operatorname{rep}_{b}(m \mathbb{N})$ is

$$
\min _{N \geq 0}\left\{\frac{m}{\operatorname{gcd}\left(m, b^{N}\right)}+\sum_{n=0}^{N-1} \frac{b^{n}}{\operatorname{gcd}\left(b^{n}, m\right)}\right\}
$$

2011 : Charlier, Rampersad, Rigo, Waxweiler

Thue-Morse set

Definition

The Thue-Morse set is the set

$$
\mathscr{T}=\left\{n \in \mathbb{N}:\left|\operatorname{rep}_{2}(n)\right|_{1} \in 2 \mathbb{N}\right\} .
$$

Thue-Morse set

Definition

The Thue-Morse set is the set

$$
\mathscr{T}=\left\{n \in \mathbb{N}:\left|\operatorname{rep}_{2}(n)\right|_{1} \in 2 \mathbb{N}\right\} .
$$

$1001011001101001 \ldots$

Thue-Morse set

Definition

The Thue-Morse set is the set

$$
\mathscr{T}=\left\{n \in \mathbb{N}:\left|\operatorname{rep}_{2}(n)\right|_{1} \in 2 \mathbb{N}\right\} .
$$

$1001011001101001 \ldots$

Thue-Morse set

Definition

The Thue-Morse set is the set

$$
\mathscr{T}=\left\{n \in \mathbb{N}:\left|\operatorname{rep}_{2}(n)\right|_{1} \in 2 \mathbb{N}\right\} .
$$

$1001011001101001 \ldots$

The result

$$
\mathscr{T}=\left\{n \in \mathbb{N}:\left|\operatorname{rep}_{2}(n)\right|_{1} \in 2 \mathbb{N}\right\}
$$

Theorem

Let $p, m \in \mathbb{N}_{\geq 1}$ and $r \in \llbracket 0, m-1 \rrbracket$. The state complexity of the language $0^{*} \operatorname{rep}_{2^{p}}(m \mathscr{T}+r)$ is

$$
2 k+\left\lceil\frac{z}{p}\right\rceil
$$

if $m=k 2^{z}$ with k odd.

The method

The method

Automaton	Accepted language
$\mathscr{A}_{\mathscr{T}, 2^{p}}$	$(0,0)^{*} \operatorname{rep}_{2^{p}}(\mathscr{T} \times \mathbb{N})$
$\mathscr{A}_{m, r, 2^{p}}$	$(0,0)^{*} \operatorname{rep}_{2^{p}}(\{(n, m n+r): n \in \mathbb{N}\})$

The method

Automaton	Accepted language
$\mathscr{A}_{\mathscr{T}, 2^{p}}$	$(0,0)^{*} \operatorname{rep}_{2^{p}}(\mathscr{T} \times \mathbb{N})$
$\mathscr{A}_{m, r, 2^{p}}$	$(0,0)^{*} \operatorname{rep}_{2^{p}}(\{(n, m n+r): n \in \mathbb{N}\})$
$\mathscr{A}_{\mathscr{T}, 2^{p}} \times \mathscr{A}_{m, r, 2^{p}}$	$(0,0)^{*} \operatorname{rep}_{2^{p}}(\{(t, m t+r): t \in \mathscr{T}\})$

The method

Automaton	Accepted language
$\mathscr{A}_{\mathscr{T}, 2^{p}}$	$(0,0)^{*} \operatorname{rep}_{2^{\rho}}(\mathscr{T} \times \mathbb{N})$
$\mathscr{A}_{m, r, 2^{p}}$	$(0,0)^{*} \operatorname{rep}_{2^{p}}(\{(n, m n+r): n \in \mathbb{N}\})$
$\mathscr{A}_{\mathscr{T}, 2^{p}} \times \mathscr{A}_{m, r, 2^{p}}$	$(0,0)^{*} \operatorname{rep}_{2^{\rho}}(\{(t, m t+r): t \in \mathscr{T}\})$
$\Pi\left(\mathscr{A}_{\mathscr{T}, 2^{p}} \times \mathscr{A}_{m, r 2^{p}}\right)$	$0^{*} \operatorname{rep}_{2^{p}}(m \mathscr{T}+r)$

The automaton $\mathscr{A}_{\mathscr{T}, 2^{p}}$

$(0,0)^{*}\left\{\operatorname{rep}_{2^{p}}(t, n): t \in \mathscr{T}, n \in \mathbb{N}\right\}$

The automaton $\mathscr{A}_{\mathscr{T}, 2^{p}}$

$(0,0)^{*}\left\{\operatorname{rep}_{2^{p}}(t, n): t \in \mathscr{T}, n \in \mathbb{N}\right\}$

The automaton $\mathscr{A}_{m, r, b}$

$(0,0)^{*}\left\{\operatorname{rep}_{b}(n, m n+r): n \in \mathbb{N}\right\}$

The automaton $\mathscr{A}_{m, r, b}$

$(0,0)^{*}\left\{\operatorname{rep}_{b}(n, m n+r): n \in \mathbb{N}\right\}$

$\delta_{m, b}(i,(d, e))=j \Leftrightarrow b i+e=m d+j$

The product automaton $\mathscr{A}_{m, r, 2^{p}} \times \mathscr{A}_{\mathscr{T}, 2^{p}}$

$(0,0)^{*}\left\{\operatorname{rep}_{2^{p}}(t, m t+r): t \in \mathscr{T}\right\}$

The projected automaton $\Pi\left(\mathscr{A}_{m, r, 2^{p}} \times \mathscr{A}_{\mathscr{T}, 2^{p}}\right)$

$$
0^{*} \operatorname{rep}_{2^{p}}(m \mathscr{T}+r)=0^{*}\left\{\operatorname{rep}_{2^{p}}(m t+r): t \in \mathscr{T}\right\}
$$

Proposition

The automaton $\Pi\left(\mathscr{A}_{m, r, 2^{p}} \times \mathscr{A}_{\mathscr{T}, 2^{p}}\right)$ is

- complete,
- deterministic,
- accessible,
- coaccessible.

Proposition

The automaton $\Pi\left(\mathscr{A}_{m, r, 2^{p}} \times \mathscr{A}_{\mathscr{T}, 2^{p}}\right)$ is

- complete,
- deterministic,
- accessible,
- coaccessible.

Proposition

In the automaton $\Pi\left(\mathscr{A}_{m, r, 2^{p}} \times \mathscr{A}_{\mathscr{T}, 2^{p}}\right)$, the states (i, T) and (i, B) are disjoined for all $i \in \llbracket 0, m-1 \rrbracket$.

The automaton $\Pi\left(\mathscr{A}_{6,2,4} \times \mathscr{A}_{\mathscr{T}, 4}\right)$

The automaton $\Pi\left(\mathscr{A l}_{6,2,4} \times \mathscr{A}_{\mathscr{O}, 4}\right)$

The classes of the automaton $\Pi\left(\mathscr{A}_{24,23,4} \times \mathscr{A}_{\mathscr{T}, 4}\right)$

```
rep
```


000000000000000000000000

000000000000000000000000

The classes of the automaton $\Pi\left(\mathscr{A}_{24,23,4} \times \mathscr{A}_{\mathscr{T}, 4}\right)$

```
rep}4(23)=11
```


000000000000000000000000

000000000000000000000000

The classes of the automaton $\Pi\left(\mathscr{A}_{24,23,4} \times \mathscr{A}_{\mathscr{T}, 4}\right)$

 $\operatorname{rep}_{4}(23)=113$

The classes of the automaton $\Pi\left(\mathscr{A}_{24,23,4} \times \mathscr{A}_{\mathscr{T}, 4}\right)$

```
rep
```


The classes of the automaton $\Pi\left(\mathscr{A}_{24,23,4} \times \mathscr{A}_{\mathscr{T}, 4}\right)$

```
rep}4(23)=11
```


0000000000000000000000

The classes of the automaton $\Pi\left(\mathscr{A}_{24,23,4} \times \mathscr{A}_{\mathscr{T}, 4}\right)$

```
rep}4(23)=11
```

000000000000000000000000

000000000000000000000000

The classes of the automaton $\Pi\left(\mathscr{A}_{24,23,4} \times \mathscr{A}_{\mathscr{T}, 4}\right)$

```
rep}4(23)=11
```

000000000000000000000000

000000000000000000000000

The classes of the automaton $\Pi\left(\mathscr{A}_{24,23,4} \times \mathscr{A}_{\mathscr{T}, 4}\right)$

```
rep}4(23)=11
```

000000000000000000000000

000000000000000000000000

The classes of the automaton $\Pi\left(\mathscr{A}_{24,23,4} \times \mathscr{A}_{\mathscr{T}, 4}\right)$

```
rep}4(23)=11
```

000000000000000000000000

000000000000000000000000

Definition

$$
\begin{aligned}
& \text { Let } \begin{aligned}
N & =\max \left\{\left\lfloor\frac{z}{p}\right\rceil,\left|\operatorname{rep}_{2^{p}}(r)\right|\right\} \text {. For } \alpha \in \llbracket 0, N \rrbracket, \\
\qquad C_{\alpha}^{\prime} & =\left\{\begin{array}{l}
\left\{\left(\left\lfloor\frac{r}{2^{\alpha p}}\right\rfloor+\ell \frac{m}{2^{\alpha p}}, T_{\ell}\right): 0 \leq \ell \leq 2^{\alpha p}-1\right\} \text { if } \alpha \leq \frac{z}{p} \\
\left.\left\{\left(\frac{r}{2^{\alpha p}}\right\rfloor+\ell k, T_{\ell}\right): 0 \leq \ell \leq 2^{z}-1\right\} \text { else. }
\end{array}\right. \\
\text { and } C_{\alpha} & =C_{\alpha}^{\prime} \backslash \bigcup_{\beta=0}^{\alpha-1} C_{\beta}^{\prime} .
\end{aligned}
\end{aligned}
$$

Definition

Let $N=\max \left\{\left\lceil\frac{z}{p}\right\rceil,\left|\operatorname{rep}_{2^{p}}(r)\right|\right\}$. For $\alpha \in \llbracket 0, N \rrbracket$,

$$
C_{\alpha}^{\prime}=\left\{\begin{array}{l}
\left\{\left(\left\lfloor\frac{r}{2^{\alpha \rho}}\right\rfloor+\ell \frac{m}{2^{\alpha \rho}}, T_{\ell}\right): 0 \leq \ell \leq 2^{\alpha p}-1\right\} \text { if } \alpha \leq \frac{z}{p} \\
\left\{\left(\left\lfloor\frac{r}{2^{\alpha \rho}}\right\rfloor+\ell k, T_{\ell}\right): 0 \leq \ell \leq 2^{z}-1\right\} \text { else. }
\end{array}\right.
$$

and $C_{\alpha}=C_{\alpha}^{\prime} \backslash \bigcup_{\beta=0}^{\alpha-1} C_{\beta}^{\prime}$.
For $(j, X) \in(\llbracket 0, k-1 \rrbracket \times\{T, B\}) \backslash\{(0, T)\}$, we define

$$
D_{(j, X)}^{\prime}=\left\{\left(j+k \ell, X_{\ell}\right): 0 \leq \ell \leq 2^{z}-1\right\}
$$

and

$$
D_{(j, X)}=D_{(j, X)}^{\prime} \backslash \bigcup_{\alpha=0}^{N} C_{\alpha} .
$$

Theorem

Let $p, m \in \mathbb{N}_{\geq} 1$ and $r \in \llbracket 0, m-1 \rrbracket$. The state complexity of the language $0^{*} \operatorname{rep}_{2^{p}}(m \mathscr{T}+r)$ is equal to

$$
2 k+\left\lceil\frac{z}{p}\right\rceil
$$

if $m=k 2^{z}$ with k odd.

Back to $6 \mathscr{T}+2$

Back to $6 \mathscr{T}+2$

$2 \times 3+\left\lceil\frac{1}{2}\right\rceil=7$

Part 3

Automatic sequences based on Parry or Bertrand numeration systems

Integer base systems \subsetneq

$$
U_{i+1}=2 U_{i}, U_{0}=1
$$

Pisot numeration systems

$$
F_{i+2}=F_{i+1}+F_{i}, F_{0}=1, F_{1}=2
$$

$\subsetneq \quad$ Parry numeration systems

$$
\begin{gathered}
U_{i+4}=3 U_{i+3}+2 U_{i+2}+3 U_{i} \\
U_{0}=1, U_{1}=4, U_{2}=15, U_{3}=54
\end{gathered}
$$

\subsetneq Bertrand numeration systems

$$
B_{i+1}=3 B_{i}+1, B_{0}=1
$$

Factor complexity

Definition

The factor complexity function $p_{\mathrm{x}}(n)$ of an infinite word x counts the number of factors of length n in \mathbf{x}.

Proposition (Cobham, 1972)

The factor complexity function of a b-automatic sequence is sublinear.

Factor complexity

Definition

The factor complexity function $p_{\mathrm{x}}(n)$ of an infinite word x counts the number of factors of length n in \mathbf{x}.

Proposition (Cobham, 1972)

The factor complexity function of a b-automatic sequence is sublinear.

Theorem

The factor complexity function of a Parry-automatic sequence is sublinear.

Factor complexity

Definition

The factor complexity function $p_{\mathrm{x}}(n)$ of an infinite word x counts the number of factors of length n in \mathbf{x}.

Proposition (Cobham, 1972)

The factor complexity function of a b-automatic sequence is sublinear.

Theorem

The factor complexity function of a Parry-automatic sequence is sublinear.

Theorem

There exists a Bertrand-automatic sequence with superlinear factor complexity.

Closure properties

Integer base systems \subsetneq Pisot n. s. \subsetneq Parry n. s. \subsetneq Bertrand n. s. Proposition (Bruyère, Hansel, 1997)
The image of a Pisot-automatic sequence under a substitution of constant length is a Pisot-automatic sequence.

Closure properties

Integer base systems \subsetneq Pisot n. s. \subsetneq Parry n. s. \subsetneq Bertrand n. s.

Proposition (Bruyère, Hansel, 1997)

The image of a Pisot-automatic sequence under a substitution of constant length is a Pisot-automatic sequence.

Theorem

There is a Parry numeration system U such that the class of U automatic sequences is not closed under taking image by a uniform morphism.

Closure properties

Integer base systems \subsetneq Pisot n. s. \subsetneq Parry n. s. \subsetneq Bertrand n. s.

Proposition (Bruyère, Hansel, 1997)

The image of a Pisot-automatic sequence under a substitution of constant length is a Pisot-automatic sequence.

Theorem

There is a Parry numeration system U such that the class of U automatic sequences is not closed under taking image by a uniform morphism.

$$
U_{i+4}=3 U_{i+3}+2 U_{i+2}+3 U_{i}, U_{0}=1, U_{1}=4, U_{2}=15, U_{3}=54
$$ Consider the characteristic sequence x of the set $\left\{U_{i}: i \in \mathbb{N}\right\}$:

$$
x=0100100000000001000000000000 \cdots
$$

$$
\mu: 0 \mapsto 0^{t}, 1 \mapsto 10^{t-1}, t \geq 4
$$

Proposition (Bruyère, Hansel, 1997)

Pisot-automatic sequences are closed under periodic deletion.

Theorem

There exists a Parry numeration system U such that the class of U-automatic sequences is not closed under periodic deletion.

Proposition (Bruyère, Hansel, 1997)

Pisot-automatic sequences are closed under periodic deletion.

Theorem

There exists a Parry numeration system U such that the class of U-automatic sequences is not closed under periodic deletion.
$\left\{U_{i} / 2: i \in \mathbb{N}, U_{i} \in 2 \mathbb{N}\right\}$

$$
y=0010000000000000000000000001 \cdots
$$

Perspectives

Ultimate periodicity

- Can we weaken our hypotheses?
- Who are the numeration systems not satisfying

$$
\begin{gathered}
F_{X}-1-\left|\operatorname{rep}_{U}\left(\frac{\pi_{X}}{m_{X}}-1\right)\right| \geq Z ? \\
U_{i+2}=4 U_{i}: 1,3,4,6,8,12, \cdots
\end{gathered}
$$

- Is there a strategy working for both integer bases and other positional numeration systems?
- What about the time complexity?

Thue-Morse

- Replacing \mathscr{T} by a b-recognizable set $X: m X+r$?
- What about positional numeration system which are not an integer base?
- LSDF

Automatic sequences

Theorem (Pansiot, 1984)

Let x be a purely morphic word. Then one of the following holds :

- $p_{\mathrm{x}}(n)=\Theta(1)$,
- $p_{\mathrm{x}}(n)=\Theta(n)$,
- $p_{\mathrm{x}}(n)=\Theta(n \log \log n)$,
- $p_{\mathrm{x}}(n)=\Theta(n \log n)$,
- $p_{\mathrm{x}}(n)=\Theta\left(n^{2}\right)$.

