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Part 1

Ultimate periodicity problem
for linear numeration systems



Problem

Given a linear numeration system U and a deterministic finite auto-
maton &/ whose accepted language is contained in the numeration
language rep(N),

decide whether the subset X of N that is recognized by & is ulti-
mately periodic, i.e. whether or not X is a finite union of arithmetic
progressions (along a finite set).
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mately periodic, i.e. whether or not X is a finite union of arithmetic

progressions (along a finite set).

y

1986 : Honkala
1994 : Bruyeére, Hansel, Michaux, Villemaire
2009 : Bell, Charlier, Fraenkel, Rigo

Syntactic complexity : Lacroix, Rampersad, Rigo, Vandomme (2012)
Logic : Muchnik (2003) — Leroux (2005)

Automata : Marsault, Sakarovitch (2013) — Boigelot, Mainz, Mar-
sault, Rigo (2017) — Marsault (2019)

Morphic : Durand (2013) — Mitrofanov (2013)
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Our settings

(H1) N is U-recognizable,
(H2) limsup;_, | o (Uiy1 — Uj) = 400,

(H3) N >0,Vi >0,Uip1 — Ui < Uiyo — Uits.
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@ We are able to check with an automaton whether a
representation is greedy,

@ the numeration system is linear,

o ultimately periodic sets are recognizable.
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@ We are able to check with an automaton whether a
representation is greedy,

@ the numeration system is linear,

o ultimately periodic sets are recognizable.

Let U be a numeration system satisfying (H1), (H2) and (H3). There
exists a constant Z such that if w is a greedy U-representation, then
for all z> Z, 10w is also a greedy U-representation.
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Toy examples

Example 1

Consider the numeration system Uji4 = 2U;y3 + 2U;i 12 + 2U; with
initial conditions Ug =1, Uy = 3, U, = 9, U3 = 25.
The largest root is 3 ~ 2.804 and it has also a root v ~ —1.134.

| A\

Example 2

Consider the numeration system U;;3 = 12U;;2+6U;4+1+12U; with
initial conditions Uy = 1, U; = 13, U> = 163.

o’
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Input : DFA &

Upper bound on the admissible preperiods and periods

For each pair (N, p) of possible preperiods and periods, there
are at most 2V2P corresponding ultimately periodic sets X

Equality test : @Zx and &/

9/39



Let U = (U;)jen satisfying (H1), (H2) and (H3).
Uik = ak-1Uizk—1+ -+ aoU;, ao #0

Suppose that the minimal automaton </x of rep(X) is given. Let
mx be a potential period for X and consider its prime decomposition.

@ Factors that do not divide ag,
@ factors that divide ag but not all the aj,
@ factors that divide all the a;.
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The gcd of the coefficients of the recurrence is 1

Proposition

Let X C N an ultimately periodic U-recognizable set and let g be a
divisor of mx such that (g, ap) = 1. Then the minimal automaton of
repy(X) has at least g states.

Proposition

Let p be a prime not dividing all the coefficients of the recurrence
relation and let A > 1 be the least integer such that (U; mod p*)en
has a period containing a non-zero element.

If X C N is an ultimately periodic U-recognizable set with period
wx = p*-r where yu > X and r is not divisible by p, then the minimal
automaton of rep;,(X) has at least p#~**1 states.

v
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Theorem

Let U be a numeration system satisfying (H1), (H2) and (H3) and
such that the ged of the coefficients of the recurrence relation of U
is 1.

Given a DFA o/ accepting a language contained in the numeration
language repy(N), it is decidable whether this DFA recognizes an
ultimately periodic set.

4
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Theorem

Let U be a numeration system satisfying (H1), (H2) and (H3) and
such that the ged of the coefficients of the recurrence relation of U
is 1.

Given a DFA o/ accepting a language contained in the numeration
language repy(N), it is decidable whether this DFA recognizes an
ultimately periodic set.

4

Uiys = 6Uij14 +3Uiy3 — Uiy2 +6Ui41 +3U;, Vi > 0
with Uy = 1, Uy = 7, Uy = 45, Us = 291, Us = 1881
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Prime factors that divide all the coefficients

_ H1 Ht
Tx = Mmx - py Pk
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Prime factors that divide all the coefficients

_ H1 Ht
Tx = Mx Py Pt

Let Fx be the length of the preperiod of (U; (mod 7X))ien.

Theorem

Let X C N be an ultimately periodic U-recognizable set with period
Tx = mx - pjt - pi'*. Assume that Fx —1— ‘repU (;—’; — )’ >Z.
Then there is a positive constant C such that the minimal automaton
of 0% repyy(X) has at least % log, ( repy (— — 1>‘ ) states.

Lemma

Let U be a numeration system satisfying (H1), (H2) and (H3). There
exists a constant Z such that if w is a greedy U-representation, then
for all z> Z, 10w is also a greedy U-representation.

v
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FX—l—‘repU (m—f(—l)‘
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Fx—l—’repu (%—1)‘

Lemma

Assume that for all j € [1,t], there are aj,e; € R-g and a non-
decreasing function g; such that

vp(Ui) < |oji] + gj(i)
for all i € N and there exists M; such that g;(i) < ;i for all i > M;.

Then for large enough p1, ..., ue,

max ji
1<j<t
Fx >

fgf'%‘t(af + €j)
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FX—l—’repU (%—1)‘

Lemma

If B3 > 1, there is a non-negative constant K such that

|repy(n)| < uloggz(n) + K

for all n € N. In particular,

t
X
2N _ < . .
repy (mx 1)‘ <u ({g@gxtuj) E 1 logs(p;) + K
J:
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Fx—l—’repu (%—1)‘

Lemma

Assume that for all j € [1,t], there are j,¢; € R-g and a non-
decreasing function g; such that

vy (U) < loyi] + (i)

for all i € N and there exists M; such that g;(i) < ;i for all i > M;.
Assume also that 8 > 1. Then

Fx —1— |repy (W—X—1>‘
mx
1 t
> o — | )| -k -1
> max 5 (o5 7 5) u; og(py)
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Search for the a;

Uiss = 12Uj15 + 6Uiy1 + 12U;, Up = 1, Uy = 13, Up = 163.

Proposition

For all i € N, one has
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Search for the a;

Uiyz = 12Uy +6Ui11 + 12U;, Up =1, Uy = 13, U> = 163.

For all i € N, one has

Under Conjecture (x), one has

for all i > 10.
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Part 2

Minimal automaton for multiplying
and translating the Thue-Morse set



Theorem (Alexeev, 2004)

The state complexity of the language 0* rep, (mN) is

m N—1 b
N0 {gcd (m, bN) + ; ged (b7, m)}

2011 : Charlier, Rampersad, Rigo, Waxweiler
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Thue-Morse set

Definition
The Thue-Morse set is the set

T ={neN:|repy(n)|1 € 2N}.
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Thue-Morse set

Definition
The Thue-Morse set is the set
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The result

T ={neN:|repy(n)|1 € 2N}

Theorem

Let p,m € N>; and r € [0,m—1]. The state complexity of the
language 0* repyp (M7 + r) is

S

if m= k2% with k odd.
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The method

Automaton ‘ Accepted language

A7 op (0,0)* repyp (7 x N)
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The method

Automaton Accepted language
A7 op (0,0)* repyp (7 x N)
L. r2p (0,0)* repgp ({(n,mn+r) : n € N})

32{9,21’ X fdm,r,2p
Mn (dﬁ,ZP X fQ{m,rQP)

(0,0)* repyy ({(t,mt+r): t € T})
0* repyp (MT + 1)
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The automaton &7 5

(0,0)* {repor(t,n) : t € F,n e N}
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The automaton .7, , p

(0,0)* {repp(n, mn+r) : n € N}
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The automaton 7, , p

(0,0)* {repp(n, mn+r) : n € N}

Omp(i,(d,e))=j< bi+e=md+j
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(0,0)* {repyp(t,mt+r):t € T}
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The automaton T (safm,,,zp X Myyzp) is
o complete,
@ deterministic,

@ accessible,

@ coaccessible.
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Proposition
The automaton T (safm,r,zp X Myyzp) is
o complete,

deterministic,

o
@ accessible,
o

coaccessible.

Proposition

In the automaton I (20 X 7 2»), the states (i, T) and (i, B)
are disjoined for all i € [0, m—1].
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The automaton M (“F 04 X A7 4)




The classes of the automaton M(.%4234 X 7 4)

reps(23) = 113

000000000000000000000000

0C00000000000000000000000
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The classes of the automaton M(.%4234 X 7 4)

reps(23) = 113
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The classes of the automaton M(.%4234 X 7 4)

reps(23) = 113
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The classes of the automaton M(.%4234 X 7 4)
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The classes of the automaton M(.%4234 X 7 4)
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The classes of the automaton M(.%4234 X 7 4)

reps(23) = 113
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Let N = max{ ﬂ ,|rep2,,(r)|}. For a € [O, N],

|
{ {(LZLPJ+E2Z';J7TE) O<€<20¢P_1} 5
i

C = ;EJ
’ {([2%] + 0k Te) :0< <27~ 1} else.
a—1
and G = G\ U G
=0
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c = {(|355] + 052, Te) :0< <29 — 1} if
B loe5 ] +Ck, Te) 10 < €< 27 — 1} else.

For (j, X) € ([0, k=1] x{T, B})\ {(0, T)}, we define
Dijxy={0+kt,X):0< <22~ 1}

and

N
Dyx) = Djjxy\ U Ca-
a=0

'DIN
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Theorem

Let p,m € N> 1 and r € [0, m—1]. The state complexity of the
language 0* repy, (M7 + r) is equal to

i

if m= k2% with k odd.
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Part 3

Automatic sequences based on Parry
or Bertrand numeration systems



Integer base systems
Uit1=2U;,Up=1

-

N

N

Pisot numeration systems
Fito=Fjt1+Fi,Fo=1,F1=2

Parry numeration systems
Uiya=3Ui 3+2Ui2+3U;,
Up=1,U1=4,U,=15,U3=54

Bertrand numeration systems
Bi1=3Bj+1,Bp=1
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Factor complexity

The factor complexity function px(n) of an infinite word x counts
the number of factors of length n in x.

W

Proposition (Cobham, 1972)

The factor complexity function of a b-automatic sequence is subli-
near.

v

33/39



Factor complexity

The factor complexity function px(n) of an infinite word x counts
the number of factors of length n in x.

W

Proposition (Cobham, 1972)

The factor complexity function of a b-automatic sequence is subli-
near.

v

The factor complexity function of a Parry-automatic sequence is sub-
linear.
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Factor complexity

Definition
The factor complexity function px(n) of an infinite word x counts
the number of factors of length n in x.

W

Proposition (Cobham, 1972)

The factor complexity function of a b-automatic sequence is subli-
near.

Theorem
The factor complexity function of a Parry-automatic sequence is sub-
linear.

| A

| A\

Theorem
There exists a Bertrand-automatic sequence with superlinear factor
complexity.

N
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Closure properties

Integer base systems C Pisot n. s. C Parry n. s. C Bertrand n. s.

Proposition (Bruyére, Hansel, 1997)

The image of a Pisot-automatic sequence under a substitution of
constant length is a Pisot-automatic sequence.
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| A

There is a Parry numeration system U such that the class of U-
automatic sequences is not closed under taking image by a uniform
morphism.
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Closure properties

Integer base systems C Pisot n. s. C Parry n. s. C Bertrand n. s.

Proposition (Bruyére, Hansel, 1997)

The image of a Pisot-automatic sequence under a substitution of
constant length is a Pisot-automatic sequence.

Theorem

| A\

There is a Parry numeration system U such that the class of U-
automatic sequences is not closed under taking image by a uniform
morphism.

y

Uiya = 3Ui33 +2Uj12 +3U;, Ug = 1, U1 = 4, U> = 15, U3 = 54
Consider the characteristic sequence x of the set {U; : i € N} :

x = 0100100000000001000000000000 - - -

p:0— 0t 11001 t >4
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Proposition (Bruyére, Hansel, 1997)

Pisot-automatic sequences are closed under periodic deletion.

There exists a Parry numeration system U such that the class of
U-automatic sequences is not closed under periodic deletion.
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Proposition (Bruyére, Hansel, 1997)

Pisot-automatic sequences are closed under periodic deletion.

There exists a Parry numeration system U such that the class of
U-automatic sequences is not closed under periodic deletion.

{Ui/2:ieN,U; € 2N}

y = 0010000000000000000000000001 - - -
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Perspectives



Ultimate periodicity

@ Can we weaken our hypotheses ?

@ Who are the numeration systems not satisfying

repy <:;—))<<—1>‘ > 77

Fx —1—

Uyo=4U;:1,3,4,6,8,12 - -

@ |s there a strategy working for both integer bases and other
positional numeration systems?

@ What about the time complexity 7
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@ Replacing .7 by a b-recognizable set X : mX + r?

@ What about positional numeration system which are not an
integer base ?

e LSDF
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Automatic sequences

Theorem (Pansiot, 1984)

Let x be a purely morphic word. Then one of the following holds :
e px(n) =0(1),
e px(n) =0O(n)
o px(n) = ©(nloglogn),
o px(n) = ©(nlog n)
o px(n) = ©(n?). )
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