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Part 1
–

Ultimate periodicity problem
for linear numeration systems



Problem
Given a linear numeration system U and a deterministic finite auto-
maton A whose accepted language is contained in the numeration
language repU(N),
decide whether the subset X of N that is recognized by A is ulti-
mately periodic, i.e. whether or not X is a finite union of arithmetic
progressions (along a finite set).

1986 : Honkala
1994 : Bruyère, Hansel, Michaux, Villemaire
2009 : Bell, Charlier, Fraenkel, Rigo

Syntactic complexity : Lacroix, Rampersad, Rigo, Vandomme (2012)
Logic : Muchnik (2003) – Leroux (2005)
Automata : Marsault, Sakarovitch (2013) – Boigelot, Mainz, Mar-
sault, Rigo (2017) – Marsault (2019)
Morphic : Durand (2013) – Mitrofanov (2013)
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Our settings

(H1) N is U-recognizable,

(H2) lim supi→+∞(Ui+1 − Ui ) = +∞,

(H3) ∃N ≥ 0, ∀i ≥ 0,Ui+1 − Ui ≤ Ui+2 − Ui+1.

6/39



We are able to check with an automaton whether a
representation is greedy,
the numeration system is linear,
ultimately periodic sets are recognizable.

Lemma
Let U be a numeration system satisfying (H1), (H2) and (H3). There
exists a constant Z such that if w is a greedy U-representation, then
for all z ≥ Z , 10zw is also a greedy U-representation.
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Toy examples

Example 1
Consider the numeration system Ui+4 = 2Ui+3 + 2Ui+2 + 2Ui with
initial conditions U0 = 1,U1 = 3,U2 = 9,U3 = 25.
The largest root is β ≈ 2.804 and it has also a root γ ≈ −1.134.

Example 2
Consider the numeration system Ui+3 = 12Ui+2 +6Ui+1 +12Ui with
initial conditions U0 = 1,U1 = 13,U2 = 163.

8/39



Strategy

Input : DFA A

Upper bound on the admissible preperiods and periods
For each pair (N, p) of possible preperiods and periods, there
are at most 2N2p corresponding ultimately periodic sets X
Equality test : AX and A

9/39



Period

Let U = (Ui )i∈N satisfying (H1), (H2) and (H3).

Ui+k = ak−1Ui+k−1 + · · ·+ a0Ui , a0 6= 0

Suppose that the minimal automaton AX of repU(X ) is given. Let
πX be a potential period for X and consider its prime decomposition.

1 Factors that do not divide a0,
2 factors that divide a0 but not all the aj ,
3 factors that divide all the aj .

10/39



The gcd of the coefficients of the recurrence is 1

Proposition
Let X ⊆ N an ultimately periodic U-recognizable set and let q be a
divisor of πX such that (q, a0) = 1. Then the minimal automaton of
repU(X ) has at least q states.

Proposition
Let p be a prime not dividing all the coefficients of the recurrence
relation and let λ ≥ 1 be the least integer such that (Ui mod pλ)i∈N
has a period containing a non-zero element.
If X ⊆ N is an ultimately periodic U-recognizable set with period
πX = pµ ·r where µ ≥ λ and r is not divisible by p, then the minimal
automaton of repU(X ) has at least pµ−λ+1 states.
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Theorem
Let U be a numeration system satisfying (H1), (H2) and (H3) and
such that the gcd of the coefficients of the recurrence relation of U
is 1.
Given a DFA A accepting a language contained in the numeration
language repU(N), it is decidable whether this DFA recognizes an
ultimately periodic set.

Ui+5 = 6Ui+4 + 3Ui+3 − Ui+2 + 6Ui+1 + 3Ui ,∀i ≥ 0

with U0 = 1,U1 = 7,U2 = 45,U3 = 291,U5 = 1881
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Prime factors that divide all the coefficients

πx = mX · pµ1
1 · · · p

µt
t

Let FX be the length of the preperiod of (Ui (mod πX
mX

))i∈N.

Theorem
Let X ⊆ N be an ultimately periodic U-recognizable set with period
πx = mX · pµ1

1 · · · p
µt
t . Assume that FX − 1−

∣∣∣repU ( πXmX
− 1
)∣∣∣ ≥ Z .

Then there is a positive constant C such that the minimal automaton
of 0∗ repU(X ) has at least C

γmX
log2

(∣∣∣repU ( πXmX
− 1
)∣∣∣+ 1

)
states.

Lemma
Let U be a numeration system satisfying (H1), (H2) and (H3). There
exists a constant Z such that if w is a greedy U-representation, then
for all z ≥ Z , 10zw is also a greedy U-representation.
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FX − 1−
∣∣∣repU ( πXmX

− 1
)∣∣∣

Lemma
Assume that for all j ∈ J 1, t K, there are αj , εj ∈ R>0 and a non-
decreasing function gj such that

νpj (Ui ) < bαj ic+ gj(i)

for all i ∈ N and there exists Mj such that gj(i) < εj i for all i > Mj .
Then for large enough µ1, . . . , µt ,

FX >

max
1≤j≤t

µj

max
1≤j≤t

(αj + εj)
.
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FX − 1−
∣∣∣repU ( πXmX

− 1
)∣∣∣

Lemma
If β > 1, there is a non-negative constant K such that

| repU(n)| < u logβ(n) + K

for all n ∈ N. In particular,∣∣∣∣repU ( πXmX
− 1
)∣∣∣∣ ≤ u

(
max
1≤j≤t

µj

) t∑
j=1

logβ(pj) + K
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Lemma
Assume that for all j ∈ J 1, t K, there are αj , εj ∈ R>0 and a non-
decreasing function gj such that

νpj (Ui ) < bαj ic+ gj(i)

for all i ∈ N and there exists Mj such that gj(i) < εj i for all i > Mj .
Assume also that β > 1. Then

FX − 1−
∣∣∣∣repU ( πXmX

− 1
)∣∣∣∣

≥ max
1≤j≤t

µj

 1
max
1≤j≤t

(αj + εj)
− u

t∑
j=1

logβ(pj)

− K − 1
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Search for the αj

Example 2
Ui+3 = 12Ui+2 + 6Ui+1 + 12Ui , U0 = 1,U1 = 13,U2 = 163.

Proposition
For all i ∈ N, one has

ν3(Ui ) <

⌊
i

3

⌋
+ 2.

Proposition

Under Conjecture (?), one has

ν2(Ui ) ≤
i

2
+

536
95

log2(i)

for all i ≥ 10.
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Part 2
–

Minimal automaton for multiplying
and translating the Thue-Morse set



Theorem (Alexeev, 2004)

The state complexity of the language 0∗ repb (mN) is

min
N≥0

{
m

gcd (m, bN)
+

N−1∑
n=0

bn

gcd (bn,m)

}

2011 : Charlier, Rampersad, Rigo, Waxweiler
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Thue-Morse set

Definition
The Thue-Morse set is the set

T = {n ∈ N : | rep2(n)|1 ∈ 2N} .

1001011001101001 · · ·
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The result

T = {n ∈ N : | rep2(n)|1 ∈ 2N}

Theorem
Let p,m ∈ N≥1 and r ∈ J 0,m−1 K. The state complexity of the
language 0∗ rep2p(mT + r) is

2k +

⌈
z

p

⌉
if m = k2z with k odd.
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The method

Automaton Accepted language
a a

AT ,2p (0, 0)∗ rep2p (T × N)

Am,r ,2p (0, 0)∗ rep2p ({(n,mn + r) : n ∈ N})
AT ,2p ×Am,r ,2p (0, 0)∗ rep2p ({(t,mt + r) : t ∈ T })

Π
(
AT ,2p ×Am,r ,2p

)
0∗ rep2p (mT + r)
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The automaton AT ,2p

(0, 0)∗ {rep2p(t, n) : t ∈ T , n ∈ N}

T

B

(0, 0), (0, 1), (0, 2), (0, 3)
(3, 0), (3, 1), (3, 2), (3, 3)

(0, 0), (0, 1), (0, 2), (0, 3)
(3, 0), (3, 1), (3, 2), (3, 3)

(1, 0), (1, 1), (1, 2), (1, 3)
(2, 0), (2, 1), (2, 2), (2, 3)

(1, 0), (1, 1), (1, 2), (1, 3)
(2, 0), (2, 1), (2, 2), (2, 3)
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The automaton Am,r ,b

(0, 0)∗ {repb(n,mn + r) : n ∈ N}

0 1 2 3 4 5

(0, 0)

(1, 0)

(2, 0) (3, 3)

(0, 1)

(0, 2)

(0, 3)
(0, 0)

(0, 1)

(1, 2)

(1, 1)

(1, 2)

(1, 3)

(2, 0)

(2, 1)

(2, 2)

(2, 1)

(3, 2)

(3, 3)
(3, 0)

(3, 1)

(3, 2)

(1, 3) (2, 3)

δm,b (i , (d , e)) = j ⇔ bi + e = md + j
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The product automaton Am,r ,2p ×AT ,2p

(0, 0)∗ {rep2p(t,mt + r) : t ∈ T }

0T 1T 2T 3T 4T 5T

0B 1B 2B 3B 4B 5B
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The projected automaton Π (Am,r ,2p ×AT ,2p)

0∗ rep2p (mT + r) = 0∗ {rep2p(mt + r) : t ∈ T }

0T 1T 2T 3T 4T 5T

0B 1B 2B 3B 4B 5B

0

1

3
2
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Proposition

The automaton Π
(
Am,r ,2p ×AT ,2p

)
is

complete,
deterministic,
accessible,
coaccessible.

Proposition

In the automaton Π
(
Am,r ,2p ×AT ,2p

)
, the states (i ,T ) and (i ,B)

are disjoined for all i ∈ J 0,m−1 K.
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The automaton Π (A6,2,4 ×AT ,4)

0T 1T 2T 3T 4T 5T

0B 1B 2B 3B 4B 5B

0

1
2

3
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The automaton Π (A6,2,4 ×AT ,4)

0T 1T 2T 3T 4T 5T

0B 1B 2B 3B 4B 5B0B

0

1
2

3
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The classes of the automaton Π(A24,23,4 ×AT ,4)

rep4(23) = 113
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Definition

Let N = max
{⌈

z
p

⌉
, | rep2p(r)|

}
. For α ∈ J 0,N K,

C ′α =

{ {(⌊
r

2αp

⌋
+ ` m

2αp ,T`
)

: 0 ≤ ` ≤ 2αp − 1
}

if α ≤ z
p{(⌊

r
2αp

⌋
+ `k,T`

)
: 0 ≤ ` ≤ 2z − 1

}
else.

and Cα = C ′α \
α−1⋃
β=0

C ′β.

For (j ,X ) ∈ (J 0, k−1 K×{T ,B}) \ {(0,T )}, we define

D ′(j ,X ) = {(j + k`,X`) : 0 ≤ ` ≤ 2z − 1}

and

D(j ,X ) = D ′(j ,X ) \
N⋃
α=0

Cα.

28/39
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Theorem
Let p,m ∈ N≥ 1 and r ∈ J 0,m−1 K. The state complexity of the
language 0∗ rep2p (mT + r) is equal to

2k +

⌈
z

p

⌉
if m = k2z with k odd.
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Back to 6T +2

0T 1T 2T 3T 4T 5T

0B 1B 2B 3B 4B 5B

0

1
2

3
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Back to 6T +2

0

1

2

3

2× 3 + d12e = 7
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Part 3
–

Automatic sequences based on Parry
or Bertrand numeration systems



Integer base systems ( Pisot numeration systems
Ui+1=2Ui ,U0=1 Fi+2=Fi+1+Fi ,F0=1,F1=2

( Parry numeration systems
Ui+4=3Ui+3+2Ui+2+3Ui ,

U0=1,U1=4,U2=15,U3=54

( Bertrand numeration systems
Bi+1=3Bi+1,B0=1

32/39



Factor complexity

Definition
The factor complexity function px(n) of an infinite word x counts
the number of factors of length n in x.

Proposition (Cobham, 1972)

The factor complexity function of a b-automatic sequence is subli-
near.

Theorem
The factor complexity function of a Parry-automatic sequence is sub-
linear.

Theorem
There exists a Bertrand-automatic sequence with superlinear factor
complexity.
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Closure properties

Integer base systems ( Pisot n. s. ( Parry n. s. ( Bertrand n. s.

Proposition (Bruyère, Hansel, 1997)

The image of a Pisot-automatic sequence under a substitution of
constant length is a Pisot-automatic sequence.

Theorem
There is a Parry numeration system U such that the class of U-
automatic sequences is not closed under taking image by a uniform
morphism.

Ui+4 = 3Ui+3 + 2Ui+2 + 3Ui ,U0 = 1,U1 = 4,U2 = 15,U3 = 54
Consider the characteristic sequence x of the set {Ui : i ∈ N} :

x = 0100100000000001000000000000 · · ·

µ : 0 7→ 0t , 1 7→ 10t−1, t ≥ 4
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Proposition (Bruyère, Hansel, 1997)

Pisot-automatic sequences are closed under periodic deletion.

Theorem
There exists a Parry numeration system U such that the class of
U-automatic sequences is not closed under periodic deletion.

{Ui/2 : i ∈ N,Ui ∈ 2N}

y = 0010000000000000000000000001 · · ·
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Perspectives



Ultimate periodicity

Can we weaken our hypotheses ?

Who are the numeration systems not satisfying

FX − 1−
∣∣∣∣repU ( πXmX

− 1
)∣∣∣∣ ≥ Z?

Ui+2 = 4Ui : 1, 3, 4, 6, 8, 12, · · ·

Is there a strategy working for both integer bases and other
positional numeration systems ?

What about the time complexity ?
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Thue-Morse

Replacing T by a b-recognizable set X : mX + r ?

What about positional numeration system which are not an
integer base ?

LSDF
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Automatic sequences

Theorem (Pansiot, 1984)

Let x be a purely morphic word. Then one of the following holds :
px(n) = Θ(1),
px(n) = Θ(n),
px(n) = Θ(n log log n),
px(n) = Θ(n log n),
px(n) = Θ(n2).
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