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The European and worldwide directives and targets for renewable energy integration,

motivated by the imminent need to decarbonize the electricity sector, are imposing severe

changes to the conventional electrical power system. The inherent unpredictability of the

instantaneous energy production from variable renewable energy sources (VRES) is expected

to make the reliable and secure operation of the system, a challenging task. Flexibility, and in

particular, energy storage is expected to assume a key role in the integration of large shares

of VRES in the power system, and thus, in the transition towards a carbon-free electricity

sector. One of the main storage mechanisms that can facilitate the integration of VRES

is energy arbitrage, i.e. the transfer of electrical energy from a period of low demand to

another period of high demand. In this thesis, we investigate and develop novel operating

strategies for maximizing the value of energy arbitrage from storage units at different scales

(i.e. grid-scale or distributed) and in different settings (i.e. interconnected or off-grid). The

decision-making process of an operator optimizing the energy arbitrage value of storage is an

inherently complex problem, mainly due to uncertainties induced by: i) the stochasticity of

market prices and ii) the variability of renewable generation. In view of the great successes of

deep reinforcement learning (DRL) in solving challenging tasks, the goal of this thesis is to

investigate its potential in solving problems related to the control of storage in modern energy

systems.

Firstly, we address the energy arbitrage problem of a storage unit that participates in the

European Continuous Intraday (CID) market. We develop an operational strategy in order to

maximize its arbitrage value. A novel modeling framework for the strategic participation of

energy storage in the European CID market is proposed, where exchanges occur through a

process similar to the stock market. A detailed description of the market mechanism and the

storage system management is provided. A set of necessary simplifications that constitutes

the problem tractable are described. The resulting problem is solved using a state-of-the-art

DRL algorithm. The outcome of the proposed method is compared with the state-of-the-art

industrial practices and the resulting policy is found able to outperform this benchmark.

Secondly, we address the energy arbitrage problem faced by an off-grid microgrid operator

in the context of rural electrification. In particular, we propose a novel model-based reinforce-

ment learning algorithm that is able to control the storage device in order to accommodate the

different changes that might occur over the microgrid lifetime. The algorithm demonstrates

generalisation properties, transfer capabilities and better robustness in case of fast-changing

system dynamics. The proposed algorithm is compared against two benchmarks, namely a

rule-based and a model predictive controller (MPC). The results show that the trained agent is
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able to outperform both benchmarks in the lifelong setting where the system dynamics are

changing over time.

In the context of an off grid-microgrid, the optimal size of the components (i.e. the capacity

of photovoltaic (PV) panels, storage) depends heavily on the control policy applied. In this

thesis, we propose a new methodology for jointly sizing a system and designing its control law

that is based on reinforcement learning. The objective of the optimization problem is to jointly

find a control policy and an environment over the joint hypothesis space of parameters such

that the sum of the initial investment and the operational cost are minimized. The optimization

problem is then addressed by generalizing the direct policy search algorithms to an algorithm

we call Direct Environment Search with (projected stochastic) Gradient Ascent (DESGA). We

illustrate the performance of DESGA on two benchmarks. First, we consider a parametrized

space of Mass-Spring-Damper (MSD) environments and control policies. Then, we use

our algorithm for optimizing the size of the components and the operation of a small-scale

autonomous energy system, i.e. a solar off-grid microgrid, composed of photovoltaic panels,

batteries. On both benchmarks, we show that DESGA results in a set of parameters for which

the expected return is nearly equal to its theoretical upper-bound.

Finally, in Chapter 6, we provide the general conclusions and remarks of this thesis and

we propose a list of future research directions that emerge as an outcome of this work.
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Chapter 1

Introduction

Climate change, as a result of the excessive anthropogenic emissions of greenhouse gases

taking place from the mid-20th century until today, is a major contemporary challenge. This

change in the climate of the planet is translated among other effects, into a global temperature

rise. It is estimated that Earth’s average temperature has risen more than 1.2 °C since the

late 19th century, with years 2016 and 2020 being the warmest years ever recorded [1].

The Intergovernmental Panel on Climate Change (IPCC), which includes more than 1,300

scientists from countries around the world, forecasted a temperature rise of 1.4°C to 5.5°C

over the next century depending on the assumptions [1]. The effects of this temperature rise

are manifold and the net damage costs1 are likely to be significant and to increase over time.

Some of these effects have the potential to be long-lasting and even irreversible, such as the

loss of ecosystems [2]. In an attempt to combat climate change, one that for the first time

brings nearly all nations together into a common cause, the Paris Agreement 2 [3] establishes

a clear goal to limit the global temperature increase to well below 2°C and, ideally to 1.5°C,

as compared to pre-industrial levels. A deep transformation of the global energy landscape is

necessary to achieve this climate target. The main goal of this transformation is to considerably

limit any energy-related CO2 emissions and to reach carbon neutrality3 by 2050.

The European Union (EU) has well aligned its energy policy with the target established

by the Paris Agreement. In 2019, the EU agreed on the Clean Energy for all Europeans

package (so-called Clean Energy package) [4], a new energy rulebook that facilitates the

energy transition and the implementation of the energy union strategy. The Clean Energy

package contains directives that aim at accomplishing targets related to improving the energy

1The IPCC predicts that increases in global mean temperature of 1 to 3 degrees Celsius above 1990 levels will
produce beneficial impacts in some regions and harmful ones in others. Net annual economic costs will increase
over time as global temperatures increase.

2The Paris Agreement was adopted by 196 Parties at COP 21 in Paris, on 12 December 2015 and entered into
force on 4 November 2016

3Carbon neutrality (or net zero) means having a balance between emitting carbon and absorbing carbon from
the atmosphere into carbon sinks.
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performance in buildings, enhancing the overall efficiency of energy use to 32.5% by 2030

and increasing the share of renewable energy sources (RES) in the energy mix of the EU up to

32% by 2030. Additionally, it aims at establishing a modern harmonized electricity market

design that would facilitate energy exchanges across regions, which plays a crucial role in

the integration of RES and thus, in a successful energy transition strategy by 2050. Finally, it

contains a robust governance and regulation system to ensure that each member state adopts

and fulfils a National Energy and Climate Plan (NECP). Every two years, the most recent

NECPs submitted by each Member State to the European Commission are used to define a

central policy scenario named National Trends in the Ten Year National Development Plans

(TYNDPs) 2020 scenario report [5] published by the European Network of Transmission

System Operators for electricity and gas (ENTSO-E and ENTSOG respectively). In addition to

that, the ENTSOs provide two more scenarios called Distributed Energy and Global Ambition

in an attempt to capture the different pathways (centralized vs decentralized) towards achieving

the COP 21 targets (see footnote 2). All three scenarios represent projections of how the

demand and supply of energy, as well as the CO2 emissions, will evolve by 2050. A key

common aspect in all three scenarios is the fact that by 2030, more than 40% of the European

electricity demand will be covered by variable renewable energy sources (VRES). At a global

level, the plans for renewable electrification and, in particular, for VRES installations follow

similar trends to reach the EU goals. The Global Renewables Outlook report published by

the International Renewable Energy Association (IRENA) in 2020 presents two scenarios

describing the evolution of the energy sector by 2050, namely the Planned Energy Scenario4

and the Transforming Energy Scenario5. According to the former, VRES installations are

expected to reach globally, 38% of the total generation capacity by 2030 and 55% by 2050,

whereas the more ambitious Transforming Energy Scenario projects a 57% share of VRES by

2030 and 86% by 2050 [6].

The inherent unpredictability of the instantaneous energy production from VRES will

inevitably lead to situations when the originally forecasted supply of electricity will not match

the demand in real-time. This effect will become critical when large shares of VRES are

integrated in the power system. High levels of variability in the power systems are expected

to make the reliable and secure operation of the system, a challenging task [7]. To this end,

flexibility is a key factor to enable the large-scale integration of VRES and has a vital role in the

4The Planned Energy Scenario provides a perspective on energy system developments based on governments’
current energy plans and other planned targets and policies (as of 2019), including Nationally Determined
Contributions under the Paris Agreement unless the country has more recent climate and energy targets or plans.

5The Transforming Energy Scenario describes an ambitious, yet realistic, energy transformation pathway based
largely on RES and steadily improved energy efficiency



Chapter 1. Introduction 3

future power system. The flexibility of a power system refers to "the extent to which a power

system can modify electricity production or consumption in response to variability, expected

or otherwise" [8]. Flexibility resources can be actively used to offset any discrepancies6

between demand and supply and they constitute one of the main mechanisms that ensures the

reliable operation of the power system. There exist various sources of flexibility that originate

from both the supply and the demand side. Due to the abrupt and sharp changes in the residual

load curve7, all flexibility sources need to share a common feature, that is their fast/agile

response time [9]. At this stage of technological development, flexibility sources include:

• Fast-ramping power plants, which are able to regulate (increase or decrease) on-

demand their generation output rapidly and have short start-up/shut-down times. In

this category, gas-fired power plants are the dominant technology due to their inherent

fast ramping capabilities [10]. Coal power plants are less suitable to provide this

type of flexibility due to thermal and other operational contraints [11]. In addition to

conventional fossil-fueled units, fully-controllable renewable-based power plants, such

as biogas power plants, hydroelectric power plants and geothermal power plants can be

used to provide flexibility.

• Transmission capacity, which can be used to transfer power accross the grid between

neighbouring regions/grids in order to cover for power deficits. In this direction, the

International Grid Control Cooperation (IGCC) was launched by ENTSO-E in 2016 to

implement the imbalance netting process8 [12].

• Demand-side flexibility, where consumers adjust (reduce, increase or shift in time)

their consumption in order to facilitate the stable and/or economical operation of the

system. Demand-side flexibility is usually offered by large industrial consumers or

aggregators that manage portfolios of consumers (that may be industrial or residential).

Smart metering and information and communications technology (ICT) infrastructure

enable the monitoring and control of electricity consumption with high granularity.

Consequently, and in contrast with the conventional doctrine, the demand can adapt

its consumption behavior to match the volatility of VRES and facilitate the large

integration of these generation technologies. In addition to that, demand-side flexibility

6These discrepancies are commonly known as imbalances.
7The difference between demand and VRES production
8Transmission system operators (TSOs) coordinate in order to avoid the simultaneous activation of frequency

restoration reserves (FRR) in opposing signs.
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can facilitate the total system cost reduction by shifting demand from peak to off-peak
9.

• Sector coupling, where the power grid is part of an integrated (larger) system that

contains other carriers. For instance, the gas network can be closely operated with

the electrical network and serve as a buffer for storing energy in the form of biogas

by making use of technologies like power-to-gas and methanation. Moreover, the

electrification of the transportation sector can serve as an additional energy integration

lever that could provide flexibility to the power grid. Additionally, the thermal or water

networks can be used to store energy and thus, provide flexibility.

• Storage, where electricity energy is transformed and stored so that it can be used at

a later moment. There exist three main forms of energy storage that are currently

used at large. First, kinetic energy-based technologies, such as pumped hydro energy

storage (PHES) plants, compressed air energy storage (CAES) and flywheels, have been

traditionally used in grid-scale applications. Among these technologies, PHES units

harness the potential energy of water at height by consuming the excess of electricity

from the network and using it to pump water from a lower to a higher reservoir. Inversely,

water passes through hydraulic turbines on its way to the lower reservoir thus producing

electricity when needed. In a similar process, CAES units compress air that is directed

and stored to underground caverns. The compressed air then flows through turbines to

produce electricity when needed. Second, electrochemical technologies, where energy

is stored in different types of batteries such as Li-ion, lead-acid or flow batteries. These

batteries are used in both grid-scale and small-scale applications. Finally, in thermal

storage technologies, energy is stored by heating or cooling a liquid or solid storage

medium (e.g. water, salts).

All the aforementioned flexibility sources are essential for the efficient integration of

VRES. However, as the costs of storage technologies and, in particular, of lithium-ion (Li-ion)

battery storage, are declining and will continue in this trend for the next 30 years, storage has

emerged as a potentially attractive, carbon-free solution to the problems posed by increased

VRE penetration [13]. According to [6], the amount of stationary storage (excluding electric

vehicles) is expected to increase from around 30 GWh today to over 9,000 GWh by 2050.

When considering storage capacity from the electric vehicles (EV) fleet, this value is expected

9Peak (off-peak) periods are considered to be parts of the day with high (low) electricity consumption.
Indicatively, peak periods can be considered from 7 am to 10 pm on weekdays (Monday to Friday) while off-peak
periods are from 10 pm to 7 am on weekdays (Monday to Friday) and the weekend
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to reach globally a level of 23,000 GWh. In the context of this thesis, motivated by the

increasing capacity and the importance that it is expected to assume in the years to come, we

focus on the role of storage in the future energy systems.

There is a wide range of flexibility services that storage systems can provide depending

on their capacity, their underlying technology, their point of connection to the grid (e.g.

transmission, distribution level) and their use case [14]. For instance, large-scale energy

storage devices can be used for energy services such as arbitrage (the transfer of electrical

energy from a period of low demand to another period of high demand), ancillary services

(e.g. primary, secondary and tertiary reserves10, black-start capability etc.) or frequency

regulation11. Additionally, energy storage can be used in the transmission or the distribution

level to guarantee the reliability of the system (e.g. congestion relief, transmission/distribution

deferral12) and to ensure power quality by dampening variations in voltage magnitude [14].

Medium-scale and small-scale storage devices can be used at the end-consumer level for

reducing the peak power that is drawn from the grid, thus ensuring uninterrupted power supply,

and for improving self-sufficiency rates13 for prosumers (i.e. consumers that can also inject

power to the grid, usually coming from renewable sources such as solar photovoltaic panels).

In particular, when coupled with VRES (in the context of virtual power plants, grid-connected

microgrids) such as wind or solar power, energy storage can provide a nearly constant power

output by absorbing peaks and by reducing the rate of change of the RES generation. On the

other hand, energy storage is an essential component for the operation of off-grid microgrids,

especially when large shares of VRES are used to supply the load, as in the case of rural

electrification.

1.1 Energy Arbitrage

Out of the various value proposition mechanisms of storage, in this thesis, we study the

energy arbitrage that storage can achieve as a way to transform intermittent renewable energy

production to electricity that can be used on-demand, during periods when it is needed. In

particular, we investigate different ways in which existing storage capacity can be operated

in order to optimize the value of energy arbitrage and, consequently, to maximize the VRES

10Capacity available to the system operator within a short interval of time to meet demand in case a generator
goes down or there is another disruption to the supply.

11Frequency regulation is the process of injecting or withdrawing electricity from the power grid for purposes
of maintaining system frequency in between the safe operational bandwidth.

12Installing storage capacity at certain points of the network can relieve congested parts of the grid and result in
delay or avoidance of costly equipment upgrades.

13Percentage of energy consumed by the users that is produced locally by the distributed VRES.
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utilization in an indirect or a direct way. The indirect way (price arbitrage) refers to settings

where storage is considered to participate in electricity markets and maximizing VRES

utilization is achieved implicitly by optimizing its market returns. The direct way usually

refers to settings where the main goal is to operate energy storage with an objective that

directly translates to VRES utilization. For instance, the operational strategy for energy

storage in a microgrid setting usually achieves that objective by minimizing grid imports or

fossil-fuel generated energy. In the following, we elaborate on the value of price arbitrage

in electricity markets and on the value of energy arbitrage in the decentralized context of

microgrids. We provide an overview of the existing methodologies for optimizing the arbitrage

value of storage devices. The complex nature of the storage control problem under uncertainty

as well as the computational limitations of the existing methods constitute a bottleneck to the

optimization of the energy arbitrage value. Alternatively, recent advancements in the field of

deep reinforcement learning (DRL) in combination with the availability of large datasets have

been proven able to tackle very complex problems. At the end of this section we provide a

short description of the underlying principles of DRL.

1.1.1 Storage participation in the electricity markets

In this thesis, we firstly address the problem of how to operate grid-connected storage capacity

in today’s electricity markets in a profitable way. The desired outcome from the participation

of energy storage in the markets is to perform price arbitrage, i.e. to buy (charge) energy from

the market when the prices are low and to sell (discharge) energy when the prices are high. In

electricity markets, low-price periods usually coincide with low-demand periods and inversely,

high-price periods coincide with high-demand periods. Therefore, the price arbitrage can

be considered to be also energy arbitrage through the underlying market mechanism. The

effective market value capture for energy storage devices depends on:

• the technical characteristics of the storage unit. A storage device is typically char-

acterized by its power capacity (MW), its energy capacity (MWh), and its roundtrip

efficiency14. The round-trip efficiency has a large impact on the value of storage due

to the fact that a more inefficient device not only needs to charge more hours, but

these added hours are typically more expensive [15]. Additionally, the relative size of

the storage unit with respect to the rest of the market participants affects the value of

arbitrage. A comparatively large storage unit has the potential to shift the prices in an

unfavourable way (price maker), thus reducing the value that can be captured, while a
14The fraction of energy added into the storage that can be retrieved.
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small storage unit has a negligible impact impact on the prices and thus cannot affect

the potential value (price taker).

• the energy mix, the fuel prices, as well as the hourly load profile. More specifically, the

price-setting units at peak vs off-peak periods define in a straightforward way the price

spread that generates the arbitrage value of storage. The price spread depends largely

on the underlying fuel mix of the supply curve and the hourly off- and on-peak loads.

Thus, storage can be more valuable in regions where cheap nuclear, hydroelectric, and

coal are available for off-peak electricity generation while expensive gas is the marginal

fuel during peak periods. Additionally, the marginal price of the price-setting fuels (i.e.

gas and coal) significantly impacts the potential benefits that can be captured by energy

storage.

• the market mechanism characteristics, i.e. the rules and the regulatory framework that

define the way in which electricity is exchanged. For instance, the design of a market

that operates close to real-time with available products that offer refined granularity can

create a level-playing field for fast, flexible storage units.

• the operational control strategy that is applied. The hourly operation of storage typically

depends on market price patterns that are highly correlated to load patterns. There

are two main load seasonality patterns in modern energy systems, namely i) the daily

pattern that consists of peak and off-peak periods and ii) the weekday vs weekend

patterns that lead to different load levels and subsequently price levels. Therefore, in

principle, a good storage control policy is predictable to obtain and the arbitrage value

can be estimated in a straightforward manner. However, unexpected short-term changes

in the weather, the supply and the load can substantially increase the arbitrage value

captured by storage, as well as the complexity of finding a good control policy [15].

Price arbitrage has been extensively studied in the literature for the case where energy

storage units participate in the short-term electricity markets either self-standing or in com-

bination with VRES. In the first case, price uncertainties are the main source of risk when

attempting to identify the optimal bidding strategies for storage. In particular, the arbitrage

potential for PHES and CAES in European markets is analysed in [16]. The authors point

out a number of factors that influence the value of arbitrage such as the market integration,

the market efficiency and the market competition levels as well as the amount of existing

flexibility. Among those factors, one of the most critical, is the adopted operational strategy

used to control the storage unit. There exists a wide range of methods used for optimizing
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the operational strategy for storage units in short-term markets. A rather simple backcasting

strategy is considered in [15], where the operation of the next 2-weeks period is defined

by the optimal operation plan of the previous 2-weeks period. A stochastic optimization

framework is proposed in [17], where the participation of a storage unit in the day-ahead

market and real-time market is considered. The results indicate that by taking explicitly into

consideration the uncertainty regarding the market prices leads to increased revenues for

the storage operator in comparison to the deterministic approach. Alternatively, stochastic

dynamic programming (SDP) [18], stochastic dual dynamic programming (SDDP) [19] and

approximate dual dynamic programming (ADDP) [20] are different methodologies that can

tackle sequential decision-making problems under uncertainty in day-ahead markets with

storage. The main differences between these three methods stem from the representation of the

problem (state and action spaces) and the way the updates of the value functions are performed.

These methods are shown to lead to optimal charging/discharging decisions for storage units,

while accounting for market and system uncertainty, however they scale unfavourably with

the size of the state/action space and the number of decision steps, so they usually come at

a high computational cost for real life problems. In [21], the authors propose an analytical

solution method to the multi-stage energy arbitrage problem under price uncertainty, that

has increased computational performance compared to the SDDP benchmark. In [22], ap-

proximate dynamic programming (ADP) is proposed for optimizing real-time decisions for a

storage unit participating in the hour-ahead market organized by the New York Independent

System Operator. In [23], the authors tackle the problem of real-time price arbitrage using

reinforcement learning. They propose a novel reward function that not only reflects the instant

profit of charge/discharge decisions but also the historical information from past trades. The

proposed method leads to significant performance improvements when compared to existing

benchmarks. Alternatively, market participation of storage can be considered in combination

with VRES. in this case, uncertainties in the decision-making process originate from both

the market prices and the variability of renewable generation. In [24], the day-ahead bidding

problem of a wind farm coupled with storage is formulated as a robust optimization model

where uncertainties regarding prices and wind generation are considered. The conditional

value at risk (CVaR) is used as a measure to determine the worst-case scenarios and the

resulting decisions yield improved revenues when compared to a deterministic benchmark.
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1.1.2 Storage in the context of microgrids

In the second part of this thesis, we focus on the energy arbitrage that storage can provide in

order to facilitate the penetration and the utilization of VRES in the energy mix. In addition to

grid-scale energy storage, flexibility in future power systems will be also provided in a decen-

tralized manner by integrating microgrids at the customer or community level. Microgrids

are small electrical networks composed of distributed energy resources and electricity loads

that are controlled and operated locally. Recent technological advances and the development

of smart microgrid control strategies enabled the efficient utilization of RES and enhanced

security of supply. Microgrids, when connected to the main grid, can be operated either

interconnected or in islanded mode [25]. When connected to the main grid, microgrids can

facilitate the operation of the power system by providing flexibility. On the other hand, in the

event of a black-out, microgrids can disconnect and operate in islanded mode and later assist

with the power restoration process. The benefits from energy arbitrage are demonstrated in

[26], where the authors investigate the factors that impact the self-sufficiency rate and, as such,

the economic benefits that can be achieved by a grid-connected solar photovoltaic microgrid.

The simulation results show that increasing the installed capacity of energy storage installed

(Li-ion batteries in particular) leads to increased levels of self-sufficiency rates. However,

the authors conclude that, for these high self-sufficiency rates to be attained, the battery cost

should be well below the value of the considered level of battery prices (2016). Additionally, in

many cases, microgrids can be installed and operated completely off-grid. Off-grid microgrids

are receiving a growing interest for rural electrification purposes in developing countries

due to their ability to ensure affordable, sustainable and reliable energy services [27], [28].

Off-grid microgrids rely on VRES coupled with storage systems to supply the electricity

consumption. The inherent uncertainty introduced by VRES, as well as the stochastic nature

of the electrical demand in rural contexts pose significant challenges to the efficient lifelong

control of off-grid microgrids [27]. A critical issue in the lifelong microgrid operation is

that the optimal operational strategy changes over its lifetime due to permanent shifts in the

consumption profile [29]. For instance, the population of the rural area where the microgrid is

installed can progressively increase because more people want to have access to electricity

and thus, are connect to the microgrid. Additionally, the change in the routines of people can

have similar impact, e.g. selecting electrical stoves instead of wood-fire ovens can introduce

changes in the shape of the daily demand profile. Moreover, the degradation or damage of the

various components such as the storage devices or the photovoltaic panels affect accordingly

the operational strategy that needs to be adapted in order to maintain the safe operation of the



10 Chapter 1. Introduction

microgrid.

Overall, the methods proposed for tackling the operational control in the context of

an off-grid microgrid are similar to the ones used for price arbitrage. Fundamentally, the

main difference between the two problems lies in the fact that the uncertainty does not

originate from the market price formation process (as it is the case in price arbitrage) but

from the underlying variability of the distributed VRES and the load. To this end, a simple

set of expertly engineered rules can be proven to be a quite effective solution to the energy

management problem of a microgrid [30]. As an extension to the rule-based control, a control

strategy based on fuzzy logic is proposed in [31]. The logic implemented is similar to human

reasoning in a way that it tolerates uncertainties and imprecision. A more complex approach,

the so-called model predictive control (MPC), is based on solving an optimization model and

requires forecasts of the uncertainty (typically induced by load and VRES variability). The

output of the forecasting models, in combination with the system parameters, are used to

compute the optimal control actions that need to be taken. The optimization of the operational

control actions can be performed using the simulation model of the microgrid. MPC is

a feedback control law that is meant to compensate for the realization of uncertainty and

is often used for achieving economic efficiency in microgrid operation management [32],

[33]. A comparison between the two distict methods, namely rule-based and MPC can be

found in [34]. Probabilistic forecasting models attempt not only to provide the best point

forecast15 but instead capture the distribution of the uncertainty. The output of these models

can be used to solve stochastic variants of MPC [35], [36]. In [35], a two-stage stochastic

programming approach is applied to efficiently optimize microgrid operations while satisfying

a time-varying request and operation constraints. Depending on the reliability concerns

related to the microgrid use case, robust MPC can provide more secure ways of dealing with

uncertainty [37].

1.1.3 Reinforcement learning

Reinforcement learning is a methodology that lies at the intersection between optimal control

theory and machine learning. It is a branch of machine learning that deals with ways to

learn control laws (known as policies) through experience. Reinforcement learning provides

a framework to study and to optimize sequential decision making problems. It is based on

trial and error and on the notion of receiving positive/negative feedback after each interaction

of an agent with its environment. The considered agent learns a good control strategy or a

15The prediction of the expected value of a random variable.
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FIGURE 1.1: Schematic of the interactions between an agent with its environ-
ment in reinforcement learning.

good set of actions through positive and negative reinforcement. The main difference with

respect to optimal control theory is that reinforcement learning relies on the availability of

a simulator (that generates data from the interactions) for the design of a good control law,

whereas dynamic programming requires a model of the environment.

There exist two broad classifications of the reinforcement learning algorithms. Depending

on whether or not we have prior knowledge of the environment, we can categorize reinforce-

ment learning methods in offline or online. The former class is used to train the agent on data

that are generated in advance. After the agent is trained, it can start interacting with the real

environment. On the other hand, online methods are applied when there is no data from the

environment beforehand and the agent learns during the interactions with the environment.

When a model (or any approximation) of the environment dynamics is available, it can be

used (online or offline) to generate data which in turn can be used to accelerate learning and

to speed-up the performance improvement of the agent. Depending on whether we have in

our possession a model of the environment or not we can categorize reinforcement learning

methods in model-free or model-based.

Background

Let us consider an agent that is interacting in an environment as illustrated in Figure 1.1. The

agent, at each discrete decision step t, measures its current state st in the environment and takes

a new action at in the environment. Subsequently, the environment performs a transition to the

next state st+1 and yields a scalar reward rt . The transitions can be deterministic or stochastic.

Depending on the actual application that is considered, the rewards that are received can be

dense or sparse. This means that in some cases the agent may receive a reward signal only

when the desirable task is achieved (e.g. escaping a maze), as opposing to receiving rewards

for every action that is taken. The dynamics of the environment, the function that generates the
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reward signal, as well as the sets of states and actions, constitute what is known as a Markov

decision process (MDP). The agent is considered to take an action a given the observed state s,

following a policy π according to a∼ π(s). Assuming an infinite horizon problem, the value

V of being at the initial state s and following a policy π is defined as the expected cumulative

reward collected and is given by:

V π(s) = E

(
∞

∑
t=0

γ
trt |s0 = s

)
(1.1)

The parameter γ is called the discount factor and assumes values in the interval (0,1]. When

the considered task has a finite horizon then we can consider γ = 1. In the case that the horizon

is infinite, the value of γ is strictly less than one and attempts to emulate the fact that rewards

collected far into the future are less important than immediate rewards. The value function V π

of a current policy π can be computed using trajectories that are produced by taking actions

according to the considered policy. Once we compute the value function in practice we can

evaluate how much better off (aligned with the agent goals) the agent is by being in one state

versus another.

The goal in reinforcement learning is to optimize the policy function π in order to

maximize the cumulative discounted rewards (value function) obtained by the interaction of

the agent with the environment as:

π
∗ = argmaxπ V π (1.2)

Reinforcement learning algorithms generally attempt to solve this optimization problem

by estimating and optimizing these two elements, namely the value function and/or the policy.

Depending on the way they accomplish that, they can be broken down into the following three

subclasses:

• Value iteration algorithms that search for the optimal value function V ∗, that represents

the maximal cumulative rewards from every state that is visited. Subsequently, the

optimal value function is used to compute an optimal policy according to equation (1.2).

• Policy iteration algorithms that proceed in two steps. First, they evaluate an existing

policy by computing its value function, and subsequently they use this value function to

update/improve the existing policy. These steps, namely policy evaluation and policy

improvement are performed iteratively until convergence.
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• Policy search algorithms that use optimization techniques to directly search for an

optimal policy.

These algorithms have convergence and optimality guarantees when an exact (tabular)

representation can be used for the value function, that is when the state and action spaces are

discrete and low dimensional. However, this condition does not hold for many problems where

the state and/or action spaces are continuous. For these problems, function approximators can

be used instead of the exact representations of value and/or policy functions. An approximate

version of the mentioned algorithms can then be applied in order to obtain approximately

optimal policies [38]. By doing so, many issues arise regarding the convergence guarantees

of the resulting approximate algorithms and the optimality gap of the obtained policies.

Additionally, the selection process of an appropriate function approximator for a given

problem is not a trivial task.

This section intends to provide an overview of the reinforcement learning framework and

the existing categories of algorithms. The interested reader can refer to [39] for a detailed

description of the basic reinforcement learning concepts and algorithms. Additionally, great

resources for exact and approximate dynamic programming can be found in [40], [41]. The

links between all different stochastic optimization methods, including reinforcement learning,

can be found in [42]. A valuable source on the application of function approximation to

reinforcement learning algorithms can be found in [38].

Recent advancements

While reinforcement learning and dynamic programming methods date back to the 1950s, they

have recently received increasing attention. The main reason for that stems from the recent

advancements in the field of Deep Learning (DL). DL is a subfield of machine learning (ML)

where models (function approximators) are represented as a network of artificial neurons. Each

neuron performs a linear algebraic operation to the incoming signal and, in combination with

a non-linear activation function it can represent highly non-linear functions, given sufficient

data. Research in artificial neural networks is a fairly old field of research as well. However,

developments in recent years of new software regarding back-propagation in combination

with the acceleration gained by using graphical processing units has significantly reduced the

computational time. This has led to a substantial increase in the size of the neural networks i.e.

the number of layers and the number of neurons in each layer, leading to the construction of

deep neural networks with millions of tunable parameters. The increase in model complexity

(number of parameters) that deep neural networks introduce is translated into the capacity
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to approximate very complex non-linear functions. This in turn, in conjunction with the

increasing availability of large datasets, has led to impressive results in different ML tasks and

has given birth to new types of neurons such as the convolutional or recurrent cells that are

specialized in the way they process information for dedicated tasks such as computer vision

or language translation.

The use of novel deep learning architectures in the field of reinforcement learning have

given rise to a new field of research: deep reinforcement learning (DRL). In this field,

the previously discussed components such as the value, the policy and the model are now

approximated using deep neural networks. This has led to a number of very complex problems

being successfully solved using DRL. In the past years, there has been an upsurge of novel

algorithms starting from the deep Q-networks (DQN) [43] algorithm. The DQN agent, without

any prior experience and only using raw pixels on the screen as its state, managed to reach

human level performance in half of the 50 Atari games to which it was applied. Following

this breakthrough, many improvements to this algorithm followed, such as further stabilising

the learning dynamics [44], prioritising the replayed experiences [45], normalising [46],

aggregating [47] and re-scaling [48] the outputs. The combination of these improvements

has led to a large improvement in mean score across 50 Atari games. A number of additional

improvements, have allowed the DRL agent to reach human-level performance in almost

all of the Atari games [49]. Furthermore, another asynchronous and distributed algorithm,

so-called asynchronous advantage actor-critic (A3C) [50], has managed to largely decrease

the computation time while reaching new records in performances not only in Atari games but

also on many Labyrinth tasks.

In March 2016 AlphaGo [51], a computer program that uses a combination of deep neural

networks with a state-of-the-art tree search, defeated Lee Sedol, the world grandmaster in

the game of Go. Later in 2018, an extension of AlphaGo called AlphaZero [52] managed to

master the games of chess, shogi, and Go, beating a world-champion program in each case

only by having knowledge of the rules of each game and no prior training. Later in 2020, a

new model based algorithm called MuZero [53] managed to tackle all three games without

any information about the rules of each game.

Besides its enormous success in games, deep reinforcement learning has been applied

successfully to several real world problems. For instance, it was recently shown to have

several appications in fluid mechanics [54]. In particular, DRL has been used for automat-

ing turbulence modelling with plenty of practical applications in aircraft design, weather

forecasting and climate prediction [55]. Additionally, DRL has multiple applications in the
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field of robotics [56]. For instance, in [57] the authors present a DRL algorithm based on

off-policy training of deep Q-functions that can scale to complex 3D manipulation tasks and

can learn deep neural network policies in a scalable way so that they can be trained on real

physical robots. Additionally, a novel algorithm for managing dynamic tasks like table tennis

by robotic arms is proposed in [58]. The algorithm combines simulation and real training

by randomly replaying recorded ball trajectories in simulation and applying actions to the

real robot. Another quite promising field of application for DRL is healthcare [59], [60]. In

particular, DRL has been proposed for the development of dynamic treatment strategies based

on registry data [61] and for learning treatment policies for sepsis [62]. The potential of DRL

has been recently exploited in various applications in the energy field. For instance, DRL

agents demonstrated impressive results in an open challenge called Learn to Run a Power

Network, organized by RTE (the French TSO) [63]. The goal of this challenge was to optimize

the operation of a high voltage network while avoiding blackouts.

1.2 Contributions and outline of this thesis

In view of the great successes of DRL in solving challenging tasks, the goal of this thesis is to

investigate its potential in solving complex problems related to the control of storage in modern

energy systems. In particular, we investigate and develop novel operating strategies for energy

storage units at different scales (i.e. grid-scale or distributed) and in different settings (i.e.

interconnected or off-grid). Subsequently, we highlight the importance of jointly optimizing

the size and the control of a storage system and propose an novel algorithm to address this

problem. Moreover, in our work we develop modeling frameworks for the problems at hand

that allow practitioners from various disciplines (i.e. computer science, engineering) to join

forces and progressively tackle these problems.

We start in Chapter 2 of this thesis by addressing the energy arbitrage problem of a storage

unit that participates in the short-term electricity markets. In particular, it is expected that

energy transactions will take place closer to real time in order to reward flexibility resources

and to enable better forecasting and control of VRES and electricity demand [64]. Motivated

by this, we select to study, in the context of this thesis, the price arbitrage opportunities for

storage units in the European Continuous Intraday (CID) market. We develop an operational

strategy in order to maximize its arbitrage value. To this end, a novel modeling framework for

the strategic participation of energy storage in the European CID market is proposed, where

exchanges occur through a process similar to the stock market. A detailed description of the
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market mechanism and the storage system management is provided. The assumptions that

allow the formulation of the problem of market participation for storage devices as a Markov

Decision Process (MDP) are elaborated. A set of necessary simplifications that constitute

the problem tractable are described. The resulting problem is solved using a state-of-the-art

DRL algorithm. The outcome of the proposed method is compared with the state-of-the-art

industrial practices and the resulting policy is found able to outperform this benchmark.

Additionally, we discuss a number of limitations arising from the proposed implementation

that are related to: i) the insufficient amount of relevant information contained in the state

variable and ii) the limited state space exploration.

In Chapter 3 of this thesis, we address the limitations identified in Chapter 2, related to the

state space exploration. In particular, we introduce a set of modifications to the described CID

market participation problem that lead to a significant increase in the general performance of

the proposed strategy. First, we motivate the use of a more compact state space representation

and we propose the use of day-ahead prices in order to stationarize the states observed. We

then proceed by normalizing the trading rewards in each day, by dividing them with the total

profits obtained by the benchmark strategy. The proposed changes are evaluated in a new case

study. In order to obtain a good grasp of the performance improvement potential we define a

new benchmark that is anticipative, i.e. the policy has access to the future rewards and can

act accordingly. The results demonstrate that our method can outperform the benchmark and

reach a performance that is comparable to the anticipative policy.

In Chapter 4 of this thesis, we address the energy arbitrage problem faced by an off-grid

microgrid operator in the context of rural electrification. In particular, we deal with the lifelong

control problem of an isolated microgrid. The set of changes that may occur over its life

span are categorized in progressive and abrupt changes. The main challenges for an effective

control policy stem from the various changes that take place over time. Generally speaking, an

operational strategy that relies on MPC has shown to be highly effective for the control of an

off-grid microgrid. In this work, inspired by the comparison and the similarities between MPC

and reinforcement learning, as they are presented in [65], we propose a novel model-based

reinforcement learning algorithm that is able to address both types of changes. The algorithm

demonstrates generalisation properties, transfer capabilities and better robustness in case of

fast-changing system dynamics. The proposed algorithm is compared against two benchmarks,

namely a rule-based and an MPC controller. The results show that the trained agent is able to

outperform both benchmarks in the lifelong setting where the system dynamics are changing

over time.
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In Chapter 4, we also argue that in the context of an off grid-microgrid, the optimal size

of the components (i.e. the capacity of photovoltaic (PV) panels, storage) depends heavily

on the control policy applied. When the capacity of the installed components is large, a

myopic policy can be as good as a look-ahead policy. On the other hand, a good policy that is

able to anticipate changes and to act accordingly allows for the reduction of the components

size and subsequently the investment cost. Generally speaking, the size of a system and

the control that is applied to it are highly interdependent. In Chapter 5, we propose a new

methodology for jointly sizing a dynamical system and designing its control law. First, the

problem is formalized by considering parametrized reinforcement learning environments and

parametrized policies. The objective of the optimization problem is to jointly find a control

policy and an environment over the joint hypothesis space of parameters such that the sum of

rewards gathered by the policy in this environment is maximal. The optimization problem

is then addressed by generalizing the direct policy search algorithms to an algorithm we

call Direct Environment Search with (projected stochastic) Gradient Ascent (DESGA). We

illustrate the performance of DESGA on two benchmarks. First, we consider a parametrized

space of Mass-Spring-Damper (MSD) environments and control policies. Then, we use

our algorithm for optimizing the size of the components and the operation of a small-scale

autonomous energy system, i.e. a solar off-grid microgrid, composed of photovoltaic panels,

batteries. On both benchmarks, we compare the results of the execution of DESGA with a

theoretical upper-bound on the expected return. Furthermore, the performance of DESGA

is compared to an alternative algorithm. The latter performs a grid discretization of the

environment’s hypothesis space and applies the REINFORCE algorithm [66] to identify

pairs of environments and policies resulting in a high expected return. The choice of this

algorithm is also discussed and motivated. On both benchmarks, we show that DESGA and

the alternative algorithm result in a set of parameters for which the expected return is nearly

equal to its theoretical upper-bound. Nevertheless, the execution of DESGA is much less

computationally costly.

Finally, in Chapter 6, we provide the general conclusions and remarks of this thesis and

we propose a list of future research directions that emerge as an outcome of this work.

1.3 Publications

This thesis is based on a number of scientific articles in the field of DRL for the energy

management of storage. The list of papers as well as a personal contribution statement for
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each one of them are hereby presented:

• [67] A Deep Reinforcement Learning Framework for Continuous Intraday Market

Bidding, Ioannis Boukas, Damien Ernst, Thibaut Théate, Adrien Bolland, Alexandre

Huynen, Martin Buchwald, Christelle Wynants and Bertrand Cornélusse, Accepted with

minor revisions in Machine Learning Springer:

Conceptualization, formal analysis, investigation, methodology, data curation, software,

validation, writing - original draft, writing - review & editing, project administration

• [68] Lifelong Control of Off-grid Microgrid with Model Based Reinforcement Learning,

Simone Totaro16, Ioannis Boukas16, Anders Jonsson and Bertrand Cornélusse, Under

review in Energy Elsevier:

Conceptualization, formal analysis, investigation, methodology, data curation, software,

writing - original draft, writing - review & editing, project administration

• [69] Learning optimal environments using projected stochastic gradient ascent, Adrien

Bolland, Ioannis Boukas, François Cornet, Mathias Berger and Damien Ernst, Submit-

ted in Journal of Artificial Intelligence Research:

Formal analysis, methodology, data curation, software, validation, writing - original

draft

Additionally, research work in the context of this thesis has led to the publication/submission

of the following articles that are not included in this manuscript:

• [70] Intra-day bidding strategies for storage devices using deep reinforcement learning,

Ioannis Boukas, Damien Ernst, Anthony Papavasiliou and Bertrand Cornélusse, In

2018 15th International Conference on the European Energy Market (EEM),

EEM 2018 Best student paper award

• [71] Real-time bidding strategies from micro-grids using reinforcement learning, Ioan-

nis Boukas, Damien Ernst and Bertrand Cornélusse, In Proceedings of CIRED Work-

shop 2018

• [72] Probabilistic Forecasting of Imbalance Prices in the Belgian Context, Jonathan

Dumas, Ioannis Boukas, Miguel Manuel de Villena, Sébastien Mathieu and Bertrand

Cornélusse, In 2019 16th International Conference on the European Energy Market

(EEM)

16Equal contribution
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• [73] Sizing and Operation of an Isolated Microgrid with Cold Storage, Selmane Dakir,

Ioannis Boukas, Vincent Lemort and Bertrand Cornélusse, In 2019 IEEE Milan Pow-

erTech

• [28] Sizing and Operation of an Isolated Microgrid With Building Thermal Dynamics

and Cold Storage, Selmane Dakir, Ioannis Boukas, Vincent Lemort and Bertrand

Cornélusse, In IEEE Transactions on Industry Applications

• [74] A Framework to Integrate Flexibility Bids into Energy Communities to Improve Self-

Consumption, Miguel Manuel de Villena, Ioannis Boukas and Sebastien Mathieu, Eric

Vermeulen and Damien Ernst, In 2020 IEEE Power Energy Society General Meeting

(PESGM)

• Analyzing Trade in Continuous intra-day Electricity Market: An Agent-based Modeling

Approach, Priyanka Shinde 17, Ioannis Boukas 17, David Radu, Miguel Manuel de

Villena, Mikael Amelin, Submitted in Energies

17Equal contribution
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Chapter 2

A Deep Reinforcement Learning

Framework for Continuous Intraday

Market Bidding

In this chapter, we address the energy arbitrage problem of a storage unit that participates in

the European CID market. In particular, we aim at developing an operational strategy in order

to maximize its arbitrage value. To this end, a novel modeling framework for the strategic

participation of energy storage in the European CID market is proposed, where exchanges

occur through a process similar to the stock market. A detailed description of the market

mechanism and the storage system management is provided. The assumptions that allow the

formulation of the problem of market participation for storage devices as a Markov Decision

Process (MDP) are elaborated. A set of necessary simplifications that make the problem

tractable are described. The resulting problem is solved using a DRL algorithm. The outcome

of the proposed method is compared with the state-of-the-art industrial practices and the

resulting policy is found able to outperform this benchmark.

2.1 Introduction

The vast integration of renewable energy resources (RES) into (future) power systems, as

directed by the recent worldwide energy policy drive [75], has given rise to challenges related

to the security, sustainability and affordability of the power system (“The Energy Trilemma”).

The impact of high RES penetration on the modern short-term electricity markets has been the

subject of extensive research over the last few years. Short-term electricity markets in Europe

are organized as a sequence of trading opportunities where participants can trade energy in the

day-ahead market and can later adjust their schedule in the intraday market until the physical
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delivery. Deviations from this schedule are then corrected by the transmission system operator

(TSO) in real time and the responsible parties are penalized for their imbalances [76].

Imbalance penalties serve as an incentive for all market participants to accurately forecast

their production and consumption and to trade based on these forecasts [77]. Due to the

variability and the lack of predictability of RES, the output planned in the day-ahead market

may differ significantly from the actual RES output in real time [78]. Since the RES forecast

error decreases substantially with a shorter prediction horizon, the intraday market allows

RES operators to trade these deviations whenever an improved forecast is available [79]. As a

consequence, intraday trading is expected to reduce the costs related to the reservation and

activation of capacity for balancing purposes. The intraday market is therefore a key aspect

towards the cost-efficient RES integration and enhanced system security of supply.

Owing to the fact that commitment decisions are taken close to real time, the intraday

market is a suitable market floor for the participation of flexible resources (i.e. units able to

rapidly increase or decrease their generation/consumption). However, fast-ramping thermal

units (e.g. gas power plants) incur a high cost when forced to modify their output, to operate

in part load, or to frequently start up and shut down. The increased cost related to the cycling

of these units will be reflected to the offers in the intraday market [64]. Alternatively, flexible

storage devices (e.g. pumped hydro storage units or batteries) with low cycling and zero fuel

cost can offer their flexibility at a comparatively low price, close to the gate closure. Hence,

they are expected to play a key role in the intraday market.

2.1.1 Intraday markets in Europe

In Europe, the intraday markets are organized in two distinct designs, namely auction-based

or continuous trading.

In auction-based intraday markets, participants can submit their offers to produce or

consume energy at a certain time slot until gate closure. After the gate closure, the submitted

offers are used to form the aggregate demand and supply curves. The intersection of the

aggregate curves defines the clearing price and quantity [80]. The clearing rule is uniform

pricing, according to which there is only one clearing price at which all transactions occur.

Participants are incentivized to bid at their marginal cost since they are paid at the uniform

price. This mechanism increases price transparency, although it leads to inefficiencies, since

imbalances after the gate closure can no longer be traded [81].

In continuous intraday (CID) markets, participants can submit at any point during the

trading session orders to buy or to sell energy. The orders are treated according to the first
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come first served (FCFS) rule. A transaction occurs as soon as the price of a new “Buy"

(“Sell") order is equal or higher (lower) than the price of an existing “Sell" (“Buy") order.

Each transaction is settled following the pay-as-bid principle, stating that the transaction

price is specified by the oldest order of the two present in the order book. Unmatched

orders are stored in the order book and are accessible to all market participants. The energy

delivery resolution offered by the CID market in Europe ranges between hourly, 30-minute

and 15-minute products, and the gate closure takes place between five and 60 minutes before

actual delivery. Continuous trading gives the opportunity to market participants to trade

imbalances as soon as they appear [81]. However, the FCFS rule is inherently associated

with lower allocative inefficiency compared to auction rules. This implies that, depending

on the time of arrival of the orders, some trades with a positive welfare contribution may not

occur while others with negative welfare contribution may be realised [82]. It is observed

that a combination of continuous and auction-based intraday markets can increase the market

efficiency in terms of liquidity and market depth, and results in reduced price volatility [80].

In practice, the available contracts (“Sell" and “Buy" orders) can be categorized into three

types:

• The market order, where no price limit is specified (the order is matched at the best

price)

• The limit order, which contains a price limit and can only be matched at that or at a

better price

• The market sweep order, which is executed immediately (fully or partially) or gets

cancelled.

Limit orders may appear with restrictions related to their execution and their validity. For

instance, an order that carries the specification Fill or Kill should either be fully and immedi-

ately executed or cancelled. An order that is specified as All or Nothing remains in the order

book until it is entirely executed [83].

The European Network Codes and specifically the capacity allocation and congestion

management guidelines [76] (CACM GL) suggest that continuous trading should be the main

intraday market mechanism. Complementary regional intraday auctions can also be put in

place if they are approved by the regulatory authorities [76]. To that direction, the Cross-

Border Intraday (XBID) Initiative [84] has enabled continuous cross-border intraday trading

across Europe. Participants of each country have access to orders placed from participants of
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any other country in the consortium through a centralized order book, provided that there is

available cross-border capacity.

2.1.2 Bidding strategies in literature

The strategic participation of power producers in short-term electricity markets has been

extensively studied in the literature. In order to co-optimize the decisions made in the

sequential trading floors from day-ahead to real time the problem has been traditionally

addressed using multi-stage stochastic optimization. Each decision stage corresponds to a

trading floor (i.e. day-ahead, capacity markets, real-time), where the final decisions take into

account uncertainty using stochastic processes. In particular, the influence that the producer

may have on the market price formation leads to the distinction between “price-maker" and

“price-taker" and results in a different modelling of the uncertainty.

In [85], the optimization of a portfolio of generating assets over three trading floors (i.e.

the day-ahead, the adjustment and the reserves market) is proposed, where the producer

is assumed to be a “price-maker". The offering strategy of the producer is a result of the

stochastic residual demand curve as well as the behaviour of the rest of the market players.

On the contrary, a “price-taker" producer is considered in [86] for the first two stages of the

problem studied, namely the day-ahead and the automatic generation control (AGC) market.

However, since the third-stage (balancing market) traded volumes are small, the producer can

negatively affect the prices with its participation. Price scenarios are generated using ARIMA

models for the two first stages, whereas for the third stage a linear curve with negative slope is

used to represent the influence of the producer’s offered capacity on the market price.

Hydro-power plant participation in short-term markets accounting for the technical con-

straints and several reservoir levels is formulated and solved in [87]. Optimal bidding curves

for the participation of a “price-taker" hydro-power producer in the Nordic spot market are

derived accounting for price uncertainty. In [88], the bidding strategy of a two-level reservoir

plant is casted as a multi-stage stochastic program in order to represent the different sequen-

tial trading floors, namely the day-ahead spot market and the hour-ahead balancing market.

The effects of coordinated bidding and the “price-maker" versus “price-taker" assumptions

on the generated profits are evaluated. In [89], bidding strategies for a virtual power plant

(VPP) buying and selling energy in the day-ahead and the balancing market in the form of a

multi-stage stochastic optimization are investigated. The VPP aggregates a pumped hydro

energy storage (PHES) unit as well as a conventional generator with stochastic intermittent
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power production and consumption. The goal of the VPP operator is the maximization of the

expected profits under price uncertainty.

In these approaches, the intraday market is considered as auction-based and it is modelled

as a single recourse action. For each trading period, the optimal offered quantity is derived

according to the realization of various stochastic variables. However, in reality, for most

European countries, according to the EU Network Codes [76], modern intraday market trading

will primarily be a continuous process.

The strategic participation in the CID market is investigated for the case of an RES

producer in [82] and [90]. In both works, the problem is formulated as a sequential decision-

making process, where the operator adjusts its offers during the trading horizon, according

to the RES forecast updates for the physical delivery of power. Additionally, in [91] the use

of a PHES unit is proposed to undertake energy arbitrage and to offset potential deviations.

The trading process is formulated as a Markov Decision Process (MDP) where the future

commitment decision in the market is based on the stochastic realization of the intraday price,

the imbalance penalty, the RES production and the storage availability.

The volatility of the CID prices, along with the quality of the forecast updates, are found

to be key factors that influence the degree of activity and success of the deployed bidding

strategies [82]. Therefore, the CID prices and the forecast errors are considered as correlated

stochastic processes in [90]. Alternatively, in [82], the CID price is constructed as a linear

function of the offered quantity with an increasing slope as the gate closure approaches. In

this way, the scarcity of conventional units approaching real time is reflected. In [91], real

weather data and market data are used to simulate the forecast error and CID price processes.

For the sequential decision-making problem in the CID market, the offered quantity

of energy is the decision variable to be optimized [90]. The optimization is carried out

using Approximate Dynamic Programming (ADP) methods, where a parameterised policy is

obtained based on the observed stochastic processes for the price, the RES error and the level of

the reservoir [91]. The ADP approach presented in [91] is compared in [92] to some threshold-

based heuristic decision rules. The parameters are updated according to simulation-based

experience and the obtained performance is comparable to the ADP algorithm. The obtained

decision rules are intuitively interpretable and are derived efficiently through simulation-based

optimization.

The bidding strategy deployed by a storage device operator participating in a slightly

different real-time market organized by NYISO is presented in [22]. In this market, the

commitment decision is taken one hour ahead of real-time and the settlements occur intra-hour



26
Chapter 2. A Deep Reinforcement Learning Framework for Continuous Intraday Market

Bidding

every five minutes. In this setting, the storage operator selects two price thresholds at which

the intra-hour settlements occur. The problem is formulated as an MDP and is solved using an

ADP algorithm that exploits a particular monotonicity property. A distribution-free variant

that assumes no knowledge of the price distribution is proposed. The optimal policy is trained

using historical real-time price data.

Even though the focus of the mentioned articles lies on the CID market, the trading

decisions are considered to take place in discrete time-steps. A different approach is presented

in [93], where the CID market participation is modelled as a continuous time process using

stochastic differential equations (SDE). The Hamilton Jacobi Bellman (HJB) equation is used

for the determination of the optimal trading strategy. The goal is the minimization of the

imbalance cost faced by a power producer arising from the residual error between the RES

production and demand. The optimal trading rate is derived assuming a stochastic process for

the market price using real market data and the residual error.

In the approaches presented so far, the CID price is modelled as a stochastic process

assuming that the participating agent is a “price-taker". However, in the CID market, this

assumption implies that the CID market is liquid and the price at which one can buy or sell

energy at a given time are similar or the same. This assumption does not always hold, since

the mean bid-ask spread in a trading session in the German intraday market for 2015 was

several hundred times larger than the tick-size (i.e. the minimum price movement of a trading

instrument) [94]. It is also reported in the same study that the spread decreases as trading

approaches the gate closure.

An approach that explicitly considers the order book is presented in [95]. A threshold-

based policy is used to optimize the bid acceptance for storage units participating in the CID

market. A collection of different factors such as the time of the day are used for the adaptation

of the price thresholds. The threshold policy is trained using a policy gradient method

(REINFORCE) and the results show improved performance against the rolling intrinsic

benchmark.

The rolling intrinsic benchmark was originally introduced in [96] as a gas storage valuation

method and relies on repeated re-optimization as new price information arrives. According

to this method, the trader starts with an initial position and when new information about the

prices arrives it calculates whether the profit of (partially) changing its position and taking

the optimal position based on these new prices outweighs the transaction costs. The rolling

intrinsic strategy yields profits if the spread between different tradable products changes

sign and if it makes sense to swap trading decisions. This strategy, although risk-free, is not
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fundamentally maximizing profit.

2.1.3 Contributions of the chapter

In this chapter, we focus on the sequential decision-making problem related to the optimal

operation of a storage device participating in the CID market. Firstly, we present a novel

modelling framework for the CID market, where the trading agents exchange energy via a

centralized order book. Each trading agent is assumed to dynamically select the orders that

maximize its benefits throughout the trading horizon. Secondly, we model the asset trading

process and describe explicitly the dynamics of the storage system.

We elaborate on a set of assumptions that allow the formulation of the resulting problem

as an MDP. In particular, we consider that the strategy of the trading agents is modeled by

a stochastic process that depends on the previous order book observations. The exogenous

information to the trading process is considered to be the outcome of a time-dependent

stochastic model and the charging/discharging decisions of the storage unit are always such

that they minimize any resulting imbalances. Additionally, in order to reduce the possible

trading actions, we assume that the trading agent can only select existing orders and is not able

to post new free-standing offers (aggressor). In order to fully comply with German regulation

policies, we further restrict the agent to select orders if and only if it does not result in any

imbalances. Lastly, since in practice the storage unit is used for other operational obligations

(reserves etc.), we consider that its initial and final state of charge for each day are decided in

advance and are fixed during each CID trading session. This assumption allows the decoupling

of the full optimization horizon in smaller (daily) windows.

Due to the high-dimensionality and the dynamically evolving size of the order book, we

propose a novel low-dimensional order book representation that allows to capture the relevant

order book information about the arbitrage opportunities of a storage unit. In particular, we

pool the available orders and we engineer features that serve as a proxy of the potential benefit

from this order book configuration for a storage device. Additionally, due to the dynamically

evolving size of the order book, the set of possible actions is still large despite our assumption

on our agent being an aggressor. We thus define a set of two high level actions, i.e. “Trade"

and “Idle". The new action space allows us to design a set of policies that are variants of the

rolling intrinsic strategy, where instead of sequentially repeating the optimization steps as new

information arrives, we introduce the possibility to wait.
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In the absence of a realistic model for the rest of the participants in the market we use

historical data, to construct the trading environment in which the storage agent engages.

The CID market trading problem of a storage device is solved using Deep Reinforcement

Learning techniques, specifically an asynchronous distributed variant of the fitted Q iteration

RL algorithm with deep neural networks as function approximators [97]. The resulting policy

is evaluated using real data from the German CID market [98]. The results suggest that the

designed trading agent has the ability to identify the moments in which it would be better off

by waiting based on a sequence of market indicators as well as other exogenous information.

In summary, the contributions of this work are the following:

• We model the CID market trading process as an MDP where the energy exchanges

occur explicitly through a centralized order book.

• We construct a novel state representation in order to provide a structured lower dimen-

sional representation of the order book.

• We derive, using a batch-mode reinforcement algorithm, an operational policy that is

able to identify the opportunity cost between trading and idling.

2.1.4 Outline of the chapter

The rest of the chapter is organized as follows. In Section 2.2, the CID market trading

framework is presented. The interaction of the trading agents via a centralized order book

is formulated as a dynamic process. All the available information for an asset trading agent

is detailed and the objective is defined as the cumulative profits. In Section 2.3, all the

assumptions necessary to formulate the bidding process in the CID market as an MDP are

listed. The methodology utilised to find an optimal policy that maximizes the cumulative

profits of the proposed MDP is detailed in Section 2.4. A case study using real data from the

German CID market is performed in Section 2.5. The results as well as considerations about

limitations of the developed methodology are discussed in Section 2.6. Finally, conclusions

of this work are drawn and future recommendations are provided in Section 2.7. A detailed

nomenclature is provided at the Appendix 2.8.

2.2 Continuous Intraday Bidding process

In this section, we firstly present a detailed description of the CID market mechanism. Sec-

ondly, we model the dynamics and the decision-making process of an asset trading agent
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FIGURE 2.1: Trading (continuous and discrete) and delivery timelines for
products Q1 to Q4

that participates in the CID market. The goal of the presented framework is to describe in a

generic way the process under consideration. In the following sections, we introduce a number

of assumptions and restrictions to this generic framework targeting a problem that can be

tractable to solve.

2.2.1 Continuous Intraday market design

The participation in the CID market is a continuous process similar to the stock exchange.

Each market product x ∈ X , where X is the set of all available products, is defined as the

physical delivery of energy in a pre-defined time slot. The time slot corresponding to product

x is defined by its starting point tdelivery(x) and its duration λ (x). The trading process for time

slot x opens at topen(x) and closes at tclose(x). During the time interval t ∈ [topen(x), tclose(x)],

a participant can exchange energy with other participants for the lagged physical delivery

during the interval δ (x), with:

δ (x) = [tdelivery(x), tdelivery(x)+λ (x)] .

The exchange of energy takes place through a centralized order book that contains all the

unmatched orders o j, where j ∈ Nt corresponds to a unique index that every order receives

upon arrival. The set Nt ⊆N gathers all the unique indices of the orders available at time t.
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We denote the status of the order book at time t by sOB
t = (o j,∀ j ∈ Nt). As time progresses

new orders appear and existing ones are either accepted or cancelled.

Trading for a set of products is considered to start at the gate opening of the first product

and to finish at the gate closure of the last product. More formally, considering an ordered set

of available products (hourly, half-hourly and quarter-hourly) X = {H1, ..,H24,HH1, ...,HH48,

Q1, ...,Q96}, the corresponding trading horizon is defined as T = [topen(Q1), tclose(Q96)]. For

instance, in the German CID market, trading of hourly (quarter-hourly) products for day D

opens at 3 pm (4 pm) of day D−1 respectively. For each product x, the gate closes 30 minutes

before the actual energy delivery at tdelivery(x). The timeline for trading products Q1 to Q4

that correspond to the physical delivery in 15-minute time slots from 00:00 until 01:00, is

presented in Figure 2.1. It can be observed that the agent can trade for all products until

23:30. After each subsequent gate closure the number of available products decreases and

the commitment for the corresponding time slot is defined. Potential deviations during the

physical delivery of energy are penalized in the imbalance market.

2.2.2 Continuous Intraday market environment

As its name indicates, the CID market is a continuous environment. In order to solve the trading

problem presented in this chapter, it has been decided to perform a relevant discretization

operation. As shown in Figure 1, the trading timeline is discretised in a high number of

time-steps of constant duration ∆t. Each discretised trading interval for product x can be

denoted by the set of time-steps T (x) = {topen(x), topen(x)+∆t, ..., tclose(x)−∆t, tclose(x)}.
Then, the discrete-time trading opportunities for the entire set of products X can be modelled

such that the time-steps are defined as t ∈ T =
⋃

x∈X T (x). In the following, for the sake of

clarity, the increment (decrement) operation t + 1 (t−1) will be used to model the discrete

transition from time-step t to time-step t +∆t (t−∆t).

It is important to note that in theory the discretization operation leads to suboptimalities

in the decision-making process. However, as the discretization becomes finer (∆t→ 0), the

decisions taken can be considered near-optimal. Increasing the granularity of the decision

time-line results in an increase of the number of decisions that can be taken and hence, the

size of the decision-making problem. Thus, there is a clear trade-off between complexity and

quality of the resulting decisions when using a finite discretization.

Let Xt denote the set of available products at time-step t ∈ T such that:

Xt = {x|x ∈ X , t ≤ tclose(x)} .
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We define the state of the CID market environment at time-step t as sOB
t ∈ SOB. The state

contains the observation of the order book at time-step t ∈ T i.e. the unmatched orders for all

the available products x ∈ Xt ⊂ X .

A set of n agents I = {1,2, ...,n} are continuously interacting in the CID environment

exchanging energy. Each agent i ∈ I can express its willingness to buy or sell energy by

posting at instant t a set of new orders ai,t ∈ Ai in the order book, which results in the joint

action at = (a1,t , ...,an,t) ∈∏
n
i=1 Ai.

The process of designing the set of new orders ai,t for agent i at instant t consists, for

each new order, in determining the product x ∈ Xt , the side of the order y ∈ {“Sell”,“Buy”},
the volume v ∈ R+, the price level p ∈ [pmin, pmax] of each unit offered to be produced or

consumed, and the various validity and execution specifications e ∈ E. The index of each new

order j belongs to the set j ∈ N′t .

The set of new orders is defined as ai,t = ((x j,y j,v j, p j,e j),∀ j ∈ N′t ⊆N). We will use

the notation for the joint action at = (ai,t ,a−i,t) to refer to the action that agent i selects ai,t

and the joint action that all other agents use a−i,t = (a1,t , ...,ai−1,t ,ai+1,t , ...,an,t).

TABLE 2.1: Order Book for Q1 and time slot 00:00-00:15

i Side v [MW] p [e/MWh]

4 “Sell” 6.25 36.3
2 “Sell” 2.35 34.5 ←− ask

1 “Buy” 3.15 33.8 ←− bid
3 “Buy” 1.125 29.3
5 “Buy” 2.5 15.9

The orders are treated according to the first come first served (FCFS) rule. Table 2.1

presents an observation of the order book for product Q1. The difference between the most

expensive “Buy" order (“bid") and the cheapest “Sell" order (“ask") defines the bid-ask spread

of the product. A deal between two counter-parties is struck when the price pbuy of a “Buy”

order and the price psell of a “Sell” order satisfy the condition pbuy ≥ psell . This condition

is tested at the arrival of each new order. The volume of the transaction is defined as the

minimum quantity between the “Buy” and “Sell” order (min(vbuy,vsell)). The residual volume

remains available in the market at the same price. As mentioned in the previous section, each

transaction is settled following the pay-as-bid principle, at the price indicated by the oldest

order.

Finally, at each time-step t, every agent i observes the state of the order book sOB
t , performs

certain actions (posting a set of new orders) ai,t , inducing a transition which can be represented
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by the following equation:

sOB
t+1 = f (sOB

t ,ai,t ,a−i,t). (2.1)

2.2.3 Asset trading

An asset optimizing agent participating in the CID market can adjust its position for product

x until the corresponding gate closure tclose(x). However, the physical delivery of power is

decided at tdelivery(x). An additional amount of information (potentially valuable for certain

players) is received during the period
{

tclose(x), .., tdelivery(x)
}

, from the gate closure until the

delivery of power. Based on this updated information, an asset-trading agent may need to or

have an incentive to deviate from the net contracted power in the market.

Let vcon
i,t = (vcon

i,t (x),∀x ∈ Xt) ∈R|Xt |, gather the volumes of power contracted by agent i

for the available products x ∈ Xt at each time-step t ∈ T . In the following, we will adopt the

convention for vcon
i,t (x) to be positive when agent i contracts the net volume to sell (produce)

and negative when the agent contracts the volume to buy (consume) energy for product x at

time-step t.

Following each market transition as indicated by equation (2.1), the volumes contracted

vcon
i,t are determined based on the transactions that have occurred. The contracted volumes vcon

i,t

are derived according to the FCFS rule that is detailed in [99]. The mathematical formulation

of the clearing algorithm is provided in [100]. The objective function of the clearing algorithm

is comprised of two terms, namely the social welfare and a penalty term modelling the price-

time priority rule. The orders that maximize this objective are matched, provided that they

satisfy the balancing equations and constraints related to their specifications. The clearing

rule is implicitly given by:

vcon
i,t = clear(i,sOB

t ,ai,t ,a−i,t). (2.2)

We denote as Pmar
i,t (x) ∈ R the net contracted power in the market by agent i for each

product x ∈ X , which is updated at every time-step t ∈ T according to:

Pmar
i,t+1(x) = Pmar

i,t (x)+ vcon
i,t (x). (2.3)

∀x ∈ Xt
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The discretization of the delivery timeline T̄ is done with time-steps of duration ∆τ , equal

to the minimum duration of delivery for the products considered. The discrete delivery timeline

T̄ is considered to start at the beginning of delivery of the first product τinit and to finish at the

end of the delivery of the last product τterm. For the simple case where only four quarter-hourly

products are considered, as shown in Figure 2.1, the delivery time-step is ∆τ = 15min and the

delivery timeline T̄ = {00 : 00,00 : 15, ...,01 : 00}, where τinit = 00 : 00 and τterm = 01 : 00.

In general, when only one type of product is considered (e.g. quarter-hourly), there is a

straightforward relation between time of delivery τ and product x, since τ = tdelivery(x) and

∆τ = λ (x). Thus, terms x or τ can be used interchangeably. For the sake of keeping the

notation relatively simple, we will only consider quarter-hourly products in the rest of the

chapter. In such a context, the terms Pmar
i,t (τ) or Pmar

i,t (x) can be used interchangeably to denote

the net contracted power in the market by agent i at trading step t for delivery time-step τ

(product x).

As the trading process evolves the set of delivery time-steps τ for which the asset-

optimizing can make decisions decreases as trading time t crosses the delivery time τ . Let

T̄ (t)⊆ T̄ be a function that yields the subset of delivery time-steps τ ∈ T̄ that follow time-step

t ∈ T such that:

T̄ (t) = {τ|τ ∈ T̄ \{τterm} , t ≤ τ} .

The participation of an asset-optimizing agent in the CID market is composed of two cou-

pled decision processes with different timescales. First, the trading process where a decision

is taken at each time-step t about the energy contracted until the gate closure tclose(x). During

this process, the agent can decide about its position in the market and create scenarios/make

projections about the actual delivery plan based on its position. Second, the physical delivery

decision that is taken at the time of the delivery τ or tdelivery(x) based on the total net contracted

power in the market during the trading process.

An agent i participating in the CID market is assumed to monitor the state of the order

book sOB
t and its net contracted power in the market Pmar

i,t (x) for each product x ∈ X , which

becomes fixed once the gate closure occurs at tclose(x). Depending on the role it presumes

in the market, an asset-optimizing agent is assumed to monitor all the available information

about its assets. We distinguish the three following cases among the many different roles that

can be played by an agent in the CID market:

• The agent controls a physical asset that can generate and/or consume electricity. We
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define as Gi,t(τ) ∈
[
Gi,Gi

]
the power production level for agent i at delivery time-step

τ as computed at trading step t. In a similar way, we define the power consumption

level Ci,t(τ) ∈
[
Ci,Ci

]
, where Ci,Ci,Gi,Gi ∈ R+. We further assume that the actual

production gi,t(t ′) and consumption level ci,t(t ′) during the time-period of delivery

t ′ ∈ [τ ,τ +∆τ), is constant for each product x such that:

gi,t(t ′) = Gi,t(τ), (2.4)

ci,t(t ′) =Ci,t(τ), (2.5)

∀t ′ ∈ [τ ,τ +∆τ) .

At each time-step t during the trading process, agent i can decide to adjust its generation

level by ∆Gi,t(τ) or its consumption level by ∆Ci,t(τ). According to these adjustments

the generation and consumption levels can be updated at each time-step t according to:

Gi,t+1(τ) = Gi,t(τ)+∆Gi,t(τ), (2.6)

Ci,t+1(τ) =Ci,t(τ)+∆Ci,t(τ), (2.7)

∀τ ∈ T̄ (t).

Let wexog
i,t denote any other relevant exogenous information to agent i such as the

RES forecast, a forecast of the actions of other agents, or the imbalance prices. The

computation of ∆Gi,t(·) and ∆Ci,t(·) depends on the market position, the technical

limits of the assets, the state of the order book and the exogenous information wexog
i,t .

We define the residual production Pres
i,t (τ) ∈R at delivery time-step τ as the difference

between the production and the consumption levels and can be computed by:

Pres
i,t (τ) = Gi,t(τ)−Ci,t(τ). (2.8)

We note that the amount of residual production Pres
i,t (τ) aggregates the combined effects

that Gi,t(τ) and Ci,t(τ) have on the revenues made by agent i through interacting with

the markets (intraday/imbalance).

The level of generation and consumption for a market period τ can be adjusted at any

time-step t before the physical delivery τ , but it becomes binding when t = τ . We denote

as ∆i,t(τ) the deviation from the market position for each time-step τ , as scheduled at
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time t, after having computed the variables Gi,t(τ) and Ci,t(τ), as follows:

Pmar
i,t (τ)+∆i,t(τ) = Pres

i,t (τ), (2.9)

∀τ ∈ T̄ (t).

The term ∆i,t(τ) represents the imbalance for market period τ as estimated at time t.

This imbalance may evolve up to time t = τ . We denote by ∆i(τ) = ∆i,t=τ(τ) the final

imbalance for market period τ .

The power balance of equation (2.9) written for time-step t + 1 is given by:

Pmar
i,t+1(τ)+∆i,t+1(τ) = Gi,t+1(τ)−Ci,t+1(τ) (2.10)

∀τ ∈ T̄ (t + 1).

It can be observed that by substituting equations (2.3), (2.6) and (2.7) in equation (2.10)

we have:

Pmar
i,t (τ)+ vcon

i,t (τ)+∆i,t+1(τ) =

Gi,t(τ)+∆Gi,t(τ)− (Ci,t(τ)+∆Ci,t(τ)) (2.11)

∀τ ∈ T̄ (t).

The combination of equations (2.8) and (2.9) with equation (2.11) yields the update of

the imbalance vector according to:

∆i,t+1(τ) = ∆i,t(τ)+∆Gi,t(τ)−∆Ci,t(τ)− vcon
i,t (τ) (2.12)

∀τ ∈ T̄ (t).

• The agent does not own any physical asset (market maker). It is equivalent to the

first case with Ci = Ci = Gi = Gi = 0. The net imbalance ∆i,t(τ) is updated at every

time-step t ∈ T according to:

Pmar
i,t (τ)+∆i,t(τ) = 0, (2.13)

∀τ ∈ T̄ (t).
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• The agent controls a storage device that can produce, store and consume energy. We can

consider an agent controlling a storage device as an agent that controls generation and

production assets with specific constraints on the generation and the consumption level

related to the nature of the storage device. Following this argument, let Gi,t(τ) (Ci,t(τ))

refer to the level of discharging (charging) of the storage device for delivery time-step

τ , updated at time t. Obviously, if Gi,t(τ) > 0 (Ci,t(τ) > 0), then we automatically

have Ci,t(τ) = 0 (Gi,t(τ) = 0) since a battery cannot charge and discharge energy at

the same time. In this case, agent i can decide to adjust its discharging (charging) level

by ∆Gi,t(τ) (∆Ci,t(τ)). Let SoCi,t(τ) denote the state of charge of the storage unit at

delivery time-step τ ∈ T̄ as it is computed at time-step t, where SoCi,t(τ) ∈
[
SoCi,SoCi

]
.

The evolution of the state of charge during the delivery timeline can be updated at

decision time-step t as:

SoCi,t(τ +∆τ) = SoCi,t(τ)+

∆τ ·
(

ηCi,t(τ)−
Gi,t(τ)

η

)
, (2.14)

∀τ ∈ T̄ (t).

Parameter η represents the charging and discharging efficiencies of the storage unit

which, for simplicity, we assume are equal. We note that for batteries, charging and

discharging efficiencies may be a function of the battery conditions. As can be observed

from equation (2.14), time-coupling constraints are imposed on Ci,t(τ) and Gi,t(τ) in

order to ensure that the amount of energy that can be discharged during some period

already exists in the storage device. Additionally, constraints associated with the

maximum charging power Ci and discharging power Gi, as well as the maximum and

minimum energy level (SoCi, SoCi) are considered in order to model the operation of

the storage device.

Equation (2.14) can be written for time-step t + 1 as:

SoCi,t+1(τ +∆τ) = SoCi,t+1(τ)+

∆τ ·
(

ηCi,t+1(τ)−
Gi,t+1(τ)

η

)
, (2.15)

∀τ ∈ T̄ (t + 1).
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Combining equations (2.14) and (2.15) we can derive the updated vector of the state of

charge at time-step t + 1 depending on the decided adjustments (∆Gi,t(τ),∆Ci,t(τ)) as:

SoCi,t+1(τ +∆τ)−SoCi,t+1(τ) =

SoCi,t(τ +∆τ)−SoCi,t(τ)+

∆τ · (η∆Ci,t(τ)−
∆Gi,t(τ)

η
), (2.16)

∀τ ∈ T̄ (t).

The state of charge SoCi,t(τ) at delivery time-step τ can be updated until t = τ . Let us

also observe that there is a bijection between Pres
i,t (τ) and the terms Ci,t(τ) and Gi,t(τ)

or, in other words, determining Pres
i,t is equivalent to determining Ci,t(τ) and Gi,t(τ) and

vice versa. The deviation from the committed schedule ∆i,t+1(τ) at delivery time-step

τ at each time-step t + 1 can be computed by equation (2.12).

All the new information arriving at time-step t for an asset-optimizing agent i (control-

ling a storage device) is gathered in variable:

si,t = (sOB
t ,

(Pmar
i,t (τ),∆i,t(τ),Gi,t(τ),Ci,t(τ),SoCi,t(τ),∀τ ∈ T̄ ),

wexog
i,t ) ∈ Si.

The control action applied by an asset-optimizing agent i trading in the CID market at time-step

t consists of posting new orders in the CID market and adjusting its production/consumption

level or equivalently its charging/discharging level for the case of the storage device. The

control actions can be summarised in variable ui,t = (ai,t , (∆Ci,t(τ),∆Gi,t(τ),∀τ ∈ T̄ )).

In this chapter, we consider that the trading agent adopts a simple strategy for determining,

at each time-step t, the variables ∆Ci,t(τ), ∆Gi,t(τ) once the trading actions ai,t have been

selected. In this case, the decision regarding the trading actions ai,t fully defines action ui,t

and thus the notation ui,t will not be further used. This strategy will be referred to in the rest

of the chapter as the “default" strategy for managing the storage device. According to this

strategy, the agent aims at minimizing any imbalances (∆i,t+1(τ)) and therefore we use the
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following decision rule:

(∆Ci,t(τ),∆Gi,t(τ),∀τ ∈ T̄ ) = argmin ∑
τ∈T̄

| ∆i,t+1(τ) |,

s.t. (2.2), (2.3), (2.8), (2.9), (2.12), (2.14). (2.17)

One can easily see that from equation (2.11) this decision rule is equivalent to imposing

Pres
i,t+1(τ) as close as possible to Pmar

i,t+1(τ), given the operational constraints of the device. We

will elaborate later in this chapter on the fact that adopting such a strategy is not suboptimal

in a context where the agent needs to be balanced for every market period while being an

aggressor in the CID market.

For the sake of simplicity, we assume that the decision process of an asset-optimizing agent

terminates at the gate closure tclose(x) along with the trading process. Thus, the final residual

production Pres
i (τ) for delivery time-step τ is given by Pres

i (τ) = Pres
i,t=tclose(x)

(τ). Similarly,

the final imbalance is provided by ∆i(τ) = ∆i,t=tclose(x)(τ).

Although this approach can be used for the optimization of a portfolio of assets, in this

chapter, the focus lies on the case where the agent is operating a storage device. We note that

this case is particularly interesting in the context of energy transition, where storage devices

are expected to play a key role in the energy market.

2.2.4 Trading rewards

The instantaneous reward signal collected after each transition for agent i is given by:

ri,t = Ri (t,si,t ,ai,t ,a−i,t) , (2.18)

where Ri : T ×Si×A1× ...×An→R.

The reward function Ri is composed of the following terms:

i. The trading revenues obtained from the matching process of orders at time-step t, given

by ρ where ρ is a stationary function ρ : SOB×A1× ...×An→R,

ii. The imbalance penalty for deviation ∆i(τ) from the market position for delivery time-

step τ at the imbalance price I(τ). The imbalance settlement process for product x ∈ X

(delivery time-step τ) takes place at the end of the physical delivery tsettle(x) (i.e. at

τ +∆τ), as presented in Figure 2.1. We define the imbalance settlement timeline T Imb, as
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T Imb = {τ +∆τ ,∀τ ∈ T̄}. The imbalance penalty1 is only applied when time instance t

is an element of the imbalance settlement timeline.

The function Ri is defined as:

Ri (t,si,t ,ai,t ,a−i,t) =

ρ
(
sOB

t ,ai,t ,a−i,t
)
+


∆i(τ) · I(τ) , if t ∈ T Imb,

0 ,otherwise
.

(2.19)

2.2.5 Trading policy

All the relevant information that summarises the past and that can be used to optimize the mar-

ket participation is assumed to be contained in the history vector hi,t = (si,0,ai,0,ri,0, ...,si,t−1,ai,t−1,

ri,t−1,si,t) ∈ Hi. Trading agent i is assumed to select its actions following a non-anticipative

history-dependent policy πi(hi,t) ∈Π from the set of all admissible policies Π, according to:

ai,t ∼ πi(·|hi,t).

2.2.6 Trading objective

The return collected by agent i in a single trajectory ζ = (si,0,ai,0, ...,ai,K−1,si,K) of K− 1

time-steps, given an initial state si,0 = si ∈ Si, which is the sum of cumulated rewards over

this trajectory is given by:

Gζ (si) =
K−1

∑
t=0

Ri (t,si,t ,ai,t ,a−i,t) |si,0 = si. (2.20)

The sum of returns collected by agent i, where each agent i is following an arbitrary policy

πi ∈Π are consequently given by:

V πi(si) = E
ai,t∼πi,a−i,t∼π−i

{
K−1

∑
t=0

Ri (t,si,t ,ai,t ,a−i,t) |si,0 = si

}
. (2.21)

The goal of the trading agent i is to identify an optimal policy π∗i ∈Π that maximizes the

expected sum of rewards collected along a trajectory. An optimal policy is obtained by:

π
∗
i = argmaxπi∈Π V πi(si). (2.22)

1The imbalance price I(τ) is defined by a process that depends on a plethora of factors among which is the net
system imbalance during delivery period τ , defined by the imbalance volumes of all the market players (∑I ∆i(τ)).
For the sake of simplicity we will assume that it is randomly sampled from a known distribution over prices that is
not conditioned on any variable.
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2.3 Markov Decision Process Formulation

In this section, we propose a series of assumptions that allow us to formulate the previously

introduced problem of a storage device operator trading in the CID market using a reinforce-

ment learning (RL) framework. Based on these assumptions, the decision-making problem is

cast as an MDP; the action space is tailored in order to represent a particular market player

and additional restrictions on the operation of the storage device are introduced.

2.3.1 Assumptions on the decision process

Assumption 1 (Behaviour of the other agents). The other agents −i interact with the order

book in between two discrete time-steps in such a way that agent i is the only agent interacting

with the CID market at each time-step t. Moreover, it is assumed that the other agents −i

can only react in the market according to the previously observed order book states. More

precisely their actions a−i,t depend strictly on the history of order book states sOB
t−1 and thus by

extension on the history hi,t−1 for every time-step t:

a−i,t ∼ Pa−i,t (·|hi,t−1). (2.23)

Assumption (1) suggests that the agents engage in a way that is very similar to a Markov

Game [101]. The process under consideration is such that it interleaves between agent i taking

actions ai,t followed by its opponents −i taking actions a−i,t . Furthermore, the joint strategy

of the opponents is modeled with Equation (2.23) such that the agent i is involved in an

MDP. This behaviour is illustrated in Figure 2.1 (magnified area). Given this assumption, the

notation a−i,t can also be seen as referring to actions selected during the interval (t−∆t, t).

Assumption 2 (Exogenous information). The exogenous information wexog
i,t is given by a

stochastic model that depends solely on k past values, where 0 < k ≤ t and a random distur-

bance ei,t according to:

wexog
i,t = b(wexog

i,t−1, ...,wexog
i,t−k,et), (2.24)

ei,t ∼ Pei,t (·|hi,t). (2.25)

Assumption 3 (Strategy for storage control). The control decisions related to the charging

(∆Ci,t(τ)) or discharging (∆Gi,t(τ)) power to/from the storage device are made based on the

“default" strategy described in Section 2.2.3.
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As described in Section 2.2.3, the original control action that can be applied at each

time-step t is ui,t = (ai,t , (∆Ci,t(τ),∆Gi,t(τ),∀τ ∈ T̄ )). It can be observed that with such an

assumption, the storage control decisions (∆Ci,t(τ) and ∆Gi,t(τ)) are obtained as a direct

consequence of the trading decisions ai,t . Indeed, after the trading decisions are submitted

and the market position is updated, the storage control decisions are subsequently derived

following the “default" strategy. Assumption (3) results in reducing the dimensionality of the

action space and consequently the complexity of the decision-making problem.

2.3.2 Decision process

Following Assumptions (1), (2) and (3), one can simply observe that the decision-making

problem faced by an agent i operating a storage device and trading energy in the CID market

can be formalised as a fully observable finite-time MDP with the following characteristics:

• Discrete time-step t ∈ T , where T is the optimization horizon.

• State space Hi, where the state of the system hi,t ∈ Hi at time t summarises all past

information that is relevant for future optimization.

• Action space Ai, where ai,t ∈ Ai is the set of new orders posted by agent i at time-step t.

• Transition probabilities hi,t+1 ∼ P(·|hi,t ,ai,t), that can be inferred by the following

processes:

1. a−i,t ∈ A−i is drawn according to equation (2.23)

2. The state of the order book sOB
t+1 follows the transition given by equation (2.1)

3. The exogenous information wexog
i,t is given by equation (2.24) and the noise by

(2.25)

4. The variable si,t+1 that summarises the information of the storage device optimiz-

ing agent follows the transition given by equations (2.1), (2.6)-(2.12) (2.24), (2.25)

and (2.16)

5. The instantaneous reward ri,t collected after each transition is given by equations

(2.18) and (2.19).

The elements resulting from these processes can be used to construct hi,t+1 in a straight-

forward way.
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2.3.3 Assumptions on the trading actions

Assumption 4 (Aggressor). The trading agent can only submit new orders that match already

existing orders at their price (i.e. aggressor or liquidity taker).

Let Ared
i be the space that contains only actions that match pre-existing orders in the order

book. According to Assumption (4), the ith agent, at time-step t, is restricted to select actions

ai,t ∈ Ared
i ⊂ Ai. Let sOB

t = ((xOB
j ,y′OB

j ,vOB
j , pOB

j ,eOB
j ),∀ j ∈ Nt) be the order book observation

at trading time-step t. We use y′OB to denote that the new orders have the opposite side

(“Buy" or “Sell") than the existing orders. We denote as a j
i,t ∈ [0,1] the fraction of the volume

accepted from order j. The reduced action space Ared
i is then defined as:

Ared
i = {(xOB

j ,y′OB
j ,a j

i,t · vOB
j , pOB

j ,eOB
j ),a j

i,t ∈ [0,1],∀ j ∈ Nt}.

At this point, posting a new set of orders ai,t ∈ Ared
i boils down to simply specifying the vector

of fractions:

āi,t =
(

a j
i,t ,∀ j ∈ Nt

)
∈ Āred

i

that define the partial or full acceptance of the existing orders. The action ai,t submitted by an

aggressor is a function l of the observed order book sOB
t and the vector of fractions āi,t and is

given by:

ai,t = l(sOB
t , āi,t). (2.26)

2.3.4 Restrictions on the storage operation

Assumption 5 (No imbalances permitted). The trading agent can only accept an order to buy

or sell energy if and only if it does not result in any imbalance for the remaining delivery

periods.

According to Assumption (5) the agent is completely risk-averse in the sense that, even if

it stops trading at any given point, its position in the market can be covered without causing

any imbalance. This assumption is quite restrictive with respect to the full potential of an asset-

optimizing agent in the CID market. We note that, according to the German regulation policies

(see [102]), the imbalance market should not be considered as an optimization floor and the

storage device should always be balanced at each trading time-step t (∆i,t(τ) = 0,∀τ ∈ T̄ ).

In this respect, we can view Assumption 5 as a way to comply with the German regulation
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policies in a risk-free context where each new trade should not create an imbalance that would

have to be covered later.

Assumption 6 (Optimization decoupling). The storage device has a given initial value for the

storage level SoCinit
i at the beginning of the delivery timeline. Moreover, it is constrained to

terminate at a given level SoCterm
i at the end of the delivery timeline.

Under Assumption (6) the optimization of the storage unit over a long trading horizon can

be decomposed into shorter optimization windows (e.g. of one day). In the simulation results

reported later in this chapter, we will choose SoCinit
i = SoCterm

i .

2.4 Methodology

In this section, we describe the methodology that has been applied for tackling the MDP

problem described in subsection 2.3. We consider that, in reality, an asset-optimizing agent

has at its disposal a set of trajectories (one per day) from participating in the CID market in

the past years. The process of collecting these trajectories and their structure is presented

in Section 2.4.1. Based on this dataset, we propose in subsection 2.4.2 the deployment of

the fitted Q iteration algorithm as introduced in [97]. This algorithm belongs to the class of

batch-mode RL algorithms that make use of all the available samples at once for updating the

policy. This class of algorithms is known to be very sample efficient.

Despite the different assumptions made on the operation of the storage device and the

way it is restricted to interact with the market, the dimensionality of the action space still

remains very high. Due to limitations related to the function approximation architecture used

to implement the fitted Q iteration algorithm, a low-dimensional and discrete action space

is necessary, as discussed in subsection 2.4.3. Therefore, as part of the methodology, in

subsection 2.4.4 we propose a way for reducing the action space. Afterwards, in subsection

2.4.5, a more compact representation of the state space is proposed in order to reduce the

computational complexity of the training process and increase the sample efficiency of the

algorithm.

Finally, the low number of available samples (one trajectory per day) gives rise to issues

related to the limited exploration of the agent. In order to address these issues, we generate

a large number of trading trajectories of our MDP according to an ε-greedy policy, using

historical trading data. In the last part of this section, we elaborate on the strategy that is used

in this chapter for generating the trajectories and the limitations of this procedure.
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2.4.1 Collection of trajectories

As previously mentioned, an asset-optimizing agent can collect a set of trajectories from

previous interactions with the CID market. Based on Assumption (6), each day can be

optimized separately and thus, trading for one day corresponds to one trajectory. We consider

that the trading horizon defined in Section 2.2.2 consists of K discrete trading time-steps such

that T = {0, ...,K}. A single trajectory sampled from the MDP described in Section 2.3 is

defined as:

ζm =
(
hm

i,0,am
i,0,rm

i,0, ...,hm
i,K−1,am

i,K−1,rm
i,K−1,hm

i,K
)

.

A set of M trajectories can be then defined as:

F = {ζm,m = 1, ...,M} .

The set of trajectories F can be used to generate the set of sampled one-step system

transitions F ′ defined as:

F ′ =


(h1

i,0,a1
i,0,r1

i,0,h1
i,1), · · · (h1

i,K−1,a1
i,K−1,r1

i,K−1,h1
i,K),

...
. . .

...

(hM
i,0,aM

i,0,rM
i,0,hM

i,1), · · · (hM
i,K−1,aM

i,K−1,rM
i,K−1,hM

i,K)

 .

The set F ′ is split into K sets of one-step system transitions F ′t defined as:

F ′t =
{
(hm

i,t ,a
m
i,t ,r

m
i,t ,h

m
i,t+1),m = 1, ...,M

}
t ,

∀t ∈ {0, ...,K−1} .

In the following subsection, the type of RL algorithm used for inferring a high-quality

policy from this set of one-step system transitions is explained in detail.

2.4.2 Batch-mode reinforcement learning

Q-functions and Dynamic Programming: In this section, the fitted Q iteration algorithm

is proposed for the optimization of the MDP defined in Section 2.3, using a set of collected

trajectories. In order to solve the problem, we first define the Q-function for each state-action

pair (hi,t ,ai,t) at time t as proposed in [40] as:
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Qt(hi,t ,ai,t) = E

a−i,t , ei,t

{ri,t +Vt+1(hi,t+1)} , (2.27)

∀t ∈ {0, ...,K−1} .

A time-variant policy π = {µ0, ..., µK−1} ∈ Π, consists in a sequence of functions µt ,

where µt : Hi→ Ared
i . An action ai,t is selected from this policy at each time-step t, according

to ai,t = µt(hi,t). We denote as π t+1 = {µt+1, ..., µK−1} the sequence of functions µt from

time-step t +1 until the end of the horizon. Standard results from dynamic programming (DP)

show that for the finite time MDP we are addressing in this chapter, there exists at least one

such time-variant policy which is an optimal policy as defined by equation (2.22). Therefore,

we focus on the computation of such an optimal time-variant policy. We define the value

function Vt+1 as the optimal expected cumulative rewards from stage t +1 until the end of the

horizon K given by:

Vt+1(hi) =

max
πt+1∈Π

E
(a−i,t+1 ,ei,t+1)

· · ·
(a−i,K−1 ,ei,K−1)

{
K−1

∑
k=t+1

Ri,k (hi,k, µk(hi,k),a−i,k) |hi,t+1 = hi

}
. (2.28)

We observe that Qt(hi,t ,ai,t) is the value attained by taking action ai,t at state hi,t and

subsequently using an optimal policy. Using the dynamic programming algorithm [40] we

have:

Vt(hi,t) = max
ai,t∈Ared

i

Qt(hi,t ,ai,t). (2.29)

Equation (2.27) can be written in the following form that relates Qt and Qt+1:

Qt(hi,t ,ai,t) = E
a−i,t , ei,t

{
ri,t + max

ai,t+1∈Ared
i

Qt+1(hi,t+1,ai,t+1)

}
. (2.30)

An optimal time-variant policy π∗=
{

µ∗0 , ..., µ∗K−1
}

can be identified using the Q-functions

as following:
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µ
∗
t = argmaxai,t∈Ared

i
Qt(hi,t ,ai,t), (2.31)

∀t ∈ {0, ...,K−1} .

Computing the Q-functions from a set of one-step system transitions: In order to

obtain the optimal time-variant policy π∗, the effort is focused on computing the Q-functions

defined in equation (2.30). However, two aspects render the use of the standard value

iteration algorithm impossible for solving the MDP defined in Section 2.3. First, the transition

probabilities of the MDP defined in Section 2.3 are not known. Instead, we can exploit the set

of collected historical trajectories to compute the exact Q-functions using an algorithm such

as Q-learning (presented in [103]). Q-learning is designed for working only with trajectories,

without any knowledge of the transition probabilities. Optimality is guaranteed given that

all state-action pairs are observed infinitely often within the set of the historical trajectories

and that the successor states are independently sampled at each occurrence of a state-action

pair [40]. In Section 2.4.6 we discuss the validity of this condition and we address the

problem of limited exploration by generating additional artificial trajectories. Second, due

to the continuous nature of the state and action spaces a tabular representation of the Q-

functions used in Q-learning is not feasible. In order to overcome this issue, we use a function

approximation architecture to represent the Q-functions [104].

The computation of the approximate Q-functions is performed using the fitted Q iteration

algorithm [97]. We present the algorithm for the case where a parametric function approxima-

tion architecture (Qt(hi,t ,at ;θt)) is used (e.g. neural networks). In this case, the algorithm is

used to compute, recursively, the parameter vectors θt starting from t = K−1. However, it

should be emphasized that the fitted Q iteration algorithm can be adapted in a straightforward

way to the case in which a non-parametric function approximation architecture is selected.

The set of M samples of quadruples F ′t =
{
(hm

i,t ,a
m
i,t ,r

m
t ,hm

i,t+1),m = 1, ...,M
}

obtained

from previous experience is exploited in order to update the parameter vectors θt by solving

the supervised learning problem presented in equation (2.32). The target vectors yt are

computed using the Q-function approximation of the next stage (Qt+1(hi,t+1,at+1;θt+1))

according to equation (2.33). The Q-function for the terminal state is set to zero (Q̂K ≡ 0) and

the algorithm iterates backwards in the time horizon T , producing a sequence of approximate

Q-functions denoted by Q̂ = {Q̂0, ..., Q̂K−1} until termination at t = 0.
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θt = argmin
θt

M

∑
m=1

(Qt(hm
i,t ,a

m
t ;θt)− ym

t )
2 (2.32)

ym
t = rm

t + max
ai,t+1∈Ared

i

Qt+1(hm
i,t+1,ai,t+1;θt+1) (2.33)

Once the parameters θt are computed, the time-variant policy π̂∗ =
{

µ̂∗0 , ..., µ̂∗K−1
}

is obtained

as:

µ̂
∗
t (hi,t) = argmaxai,t∈Ared

i
Qt(hi,t ,ai,t ;θt), (2.34)

∀t ∈ {0, ...,K−1} .

In practice, a new trajectory is collected after each trading day. The set of collected

trajectories F is consequently augmented. Thus, the fitted Q iteration algorithm can be used to

compute a new optimal policy when new data arrive.

2.4.3 Limitations

The fitted Q iteration algorithm, described in the previous section, can be used to provide a

trading policy based on the set of past trajectories at the disposal of the agent. Even though,

this approach is theoretically sound, in practice there are several limitations to overcome.

The efficiency of the described fitted Q iteration algorithm is overshadowed by the high-

dimensionality of the state and the action space.

The state variable

hi,t = (si,0,ai,0,ri,0, ...,si,t−1,ai,t−1,ri,t−1,si,t) ∈ Hi

is composed of :

• The entire history of actions (ai,0, ...,ai,t−1) before time t

• The entire history of rewards (ri,0, ...,ri,t−1) before time t
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• The history of order book states
(
sOB

0 , ...,sOB
t
)

up to time t and, of the private information

(sprivate
i,0 , ...,sprivate

i,t ) up to time t, where:

sprivate
i,t =((Pmar

i,t (τ),∆i,t(τ),

Gi,t(τ),Ci,t(τ),SoCi,t(τ),∀τ ∈ T̄ ),

wexog
i,t ).

The state space Hi as well as the action space Ared
i , as described in Section 2.3.3, depend

explicitly on the content of the order book sOB
t . The dimension of these spaces at each time-

step t depends on the total number of available orders | Nt | in the order book. However,

the total number of orders is changing at each step t. Thus, both the state and the action

spaces are high-dimensional spaces of variable size. In order to reduce the complexity of the

decision-making problem, we have chosen to reduce these spaces so as to work with a small

action space of constant size and a compact state space. In the following, we describe the

procedure that was carried out for the reduction of the state and action spaces.

2.4.4 Action space reduction: High-level actions

In this section, we elaborate on the design of a small and discrete set of actions that is an

approximation of the original action space. Based on Assumptions (1), (2), (3), (4), (5) and

(6), a new action space A′i is proposed, which is defined as A′i = {“Trade”,“Idle”}. The new

action space is composed of two high-level actions a′i,t ∈ A′i. These high-level actions are

transformed to an original action through mapping p : A′i→ Ared
i , from space A′i to the reduced

action space Ared
i . The high-level actions are defined as follows:

“Trade”

At each time-step t, agent i selects orders from the order book with the objective of maximizing

the instantaneous reward under the constraint that the storage device can remain balanced

for every delivery period, even if no further interaction with the CID market occurs. As a

reminder, this constraint was imposed by Assumption (5).

Under this assumption, the instantaneous reward signal ri,t , presented in equation (5.78),

consists only of the trading revenues obtained from the matching process of orders at time-step

t. We will further assume that mapping u : R+×{“Sell”,“Buy”}→R that adjusts the sign of

the volume vOB of each order according to their side yOB. Orders posted for buying energy

will be associated with positive volume and orders posted for selling energy with negative
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volume, or equivalently:

u(vOB,yOB) =


vOB, if yOB = “Buy”,

−vOB, if yOB = “Sell”.
(2.35)

Consequently, the reward function ρ defined in Section 2.2.4 is adapted according to the

proposed modifications. The new reward function ρ , where ρ : SOB× Āred
i →R, is a stationary

function of the orders observed at each time-step t and the agent’s response to the observed

orders. An analytical expression for the instantaneous reward collected is given by:

ri,t = ρ
(
sOB

t , āi,t
)
=

Nt

∑
j=1

a j
i,t ·u(vOB

j ,yOB
j ) · pOB

j . (2.36)

The High-level action “Trade" amounts to solving the bid acceptance optimization problem

presented in Model 2. The objective function of the problem, formulated in equation (2.37),

consists of the revenues arising from trading. It is important to note that the operational

constraints guarantee that no order will be accepted if it causes any imbalance. We denote as

Nτ ⊂N the set of unique indices of the available orders that correspond to delivery time-step

τ and Nt =
⋃

τ∈T̄ Nτ . In equation (2.38), the energy purchased and sold (∑ j∈Nτ
a j

i,tu(v
OB
j )),

the past net energy trades (Pmar
i,t (τ)) and the energy discharged by the storage (Gi,t(τ)) must

match the energy charged by the storage (Ci,t(τ)) for every delivery time-step τ . The energy

balance of the storage device, presented in equation (2.39), is responsible for the time-coupling

and the arbitrage between two products x (delivery time-steps τ). The technical limits of the

storage level and the charging and discharging process are described in equations (2.40) to

(2.44). The binary variables ki,t = (ki,t(τ),∀τ ∈ T̄ ) restrict the operation of the unit for each

delivery period in only one mode, either charging or discharging.

The optimal solution to this problem yields the vector of fractions:

āi,t =
(

a j
i,t ,∀ j ∈ Nt

)
∈ Āred

i

that are used in equation (2.26) to construct the action ai,t ∈ Ared
i . The optimal solution

also defines at each time-step t the adjustments in the level of the production (discharge)

∆Gi,t = (∆Gi,t(τ),∀τ ∈ T̄ (t)) and the consumption (charge) ∆Ci,t = (∆Ci,t(τ),∀τ ∈ T̄ (t)).

The evolution of the state of charge SoCi,t+1 = (SoCi,t+1(τ),∀τ ∈ T̄ (t)) of the unit as well

as the production Gi,t+1 = (Gi,t+1(τ),∀τ ∈ T̄ (t)) and consumption Ci,t+1 = (Ci,t+1(τ),∀τ ∈
T̄ (t)) levels are computed for each delivery period.
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Algorithm 2 “Trade"

Input: t, sOB
t , Pmar

i,t , SoCi, SoCi, Ci, Ci, Gi, Gi, SoCinit
i , SoCterm

i ,τinit , τterm,Gi,t , Ci,t
Output: āi,t , SoCi,t+1, Gi,t+1, Ci,t+1, ∆Gi,t , ∆Ci,t , ki,t+1, ri,t
Solve:

max
āi,t , SoCi,t+1
Gi,t+1 , Ci,t+1
∆Gi,t , ∆Ci,t
ki,t+1 , ri,t

∑
j∈Nt

a j
i,t ·u(vOB

j ,yOB
j ) · pOB

j (2.37)

s.t. ∑
j∈Nτ

a j
i,tu(v

OB
j ,yOB

j )+Pmar
i,t (τ)+

Ci,t+1(τ) = Gi,t+1(τ), ∀τ ∈ T̄ (t) (2.38)

SoCi,t+1(τ +∆τ) = SoCi,t+1(τ)+

∆τ ·
(

η ·Ci,t+1(τ)−
Gi,t+1(τ)

η

)
, ∀τ ∈ T̄ (t) (2.39)

SoCi ≤ SoCi,t+1(τ) ≤ SoCi, ∀τ ∈ T̄ (t) (2.40)

SoCinit
i = SoCi,t+1(τinit), (2.41)

SoCterm
i = SoCi,t+1(τterm), (2.42)

Ci ≤Ci,t+1(τ) ≤ ki,t+1(τ) ·Ci, ∀τ ∈ T̄ (t) (2.43)

Gi ≤ Gi,t+1(τ) ≤ (1− ki,t+1(τ))Gi, ∀τ ∈ T̄ (t) (2.44)

Gi,t+1(τ) = Gi,t(τ)+∆Gi,t(τ), ∀τ ∈ T̄ (t) (2.45)

Ci,t+1(τ) =Ci,t(τ)+∆Ci,t(τ), ∀τ ∈ T̄ (t) (2.46)

ki,t+1(τ) ∈ {0,1} , ∀τ ∈ T̄ (t) (2.47)

a j
i,t ∈ [0,1] , ∀ j ∈ Nt (2.48)

“Idle”

No transactions are executed, and no adjustment is made to the previously scheduled quantities.

Under this action, the vector of fractions āi,t is a zero vector. The discharge and charge as well

as the state of charge of the storage device remain unchanged (∆Gi,t ≡ 0 and ∆Ci,t ≡ 0) and

we have:

Gi,t+1(τ) = Gi,t(τ),∀τ ∈ T̄ (t), (2.49)

Ci,t+1(τ) =Ci,t(τ),∀τ ∈ T̄ (t), (2.50)

SoCi,t+1(τ) = SoCi,t(τ),∀τ ∈ T̄ (t). (2.51)

With such a reduction of the action-space, the agent can choose at every time-step t

between the two described high-level actions (a′i,t ∈ A′i = {“Trade”,“Idle”}). Note that when

the agent learns to idle, given a current situation, it does not necessarily mean, that if it had

chosen to “Trade” instead, he would not make a positive immediate reward. Indeed, the agent

would choose “Idle” if it believes that there may be a better market state emerging, i.e. the
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agent would learn to wait for the ideal opportunity of orders appearing in the order book at

subsequent time-steps. We compare this approach to an alternative, which we refer to as the

“rolling intrinsic” policy. According to this policy, at every time-step t of the trading horizon

the agent selects the combination of orders that optimises its operation and profits, based

on the current information assuming that the storage device must remain balanced for every

delivery period as presented in [105]. The “rolling intrinsic” policy is, thus, equivalent to

sequentially selecting the action “Trade” (Algorithm 2), as defined in this framework. The

algorithm proposed later in this chapter exploits the experience that the agent can gain through

(artificial) interaction with its environment, in order to learn the value of trading or idling at

every different state that agent may encounter.

2.4.5 State space reduction

In this section, we propose a more compact and low-dimensional representation of the state

space Hi. The state hi,t , as explained in Section 2.4.3, contains the entire history of all the

relevant information available for the decision-making process up to time t. As such, the

information contained in the trajectories is represented as unstructured sets. We consider

each one of the components of the state hi,t , namely the entire history of actions, order book

states and private information, and we provide an alternative form. This alternative form is

engineered with the aim to capture the structure between observed bids in the order book.

First, the vector containing the entire history of actions is reduced to a vector of binary

variables after the modifications introduced in Section 2.4.4.

Second, the vector containing the history of order book states is reduced into a vector of

engineered features. We start from the order book state sOB
t = ((xOB

j ,y′OB
j ,vOB

j , pOB
j ,eOB

j ),∀ j ∈
Nt ⊆N) ∈ SOB that is defined in Sections 2.2.1 and 2.2.2 as a high-dimensional continuous

vector used to describe the state of the CID market. Owing to the variable (non-constant) and

large amount of orders |Nt |, the space SOB has a non-constant size with high-dimensionality.

In order to overcome this issue, we proceed as following. First, we consider the market

depth curves for each product x. The market depth of each side (“Sell” or “Buy”) at a time-

step t, is defined as the total volume available in the order book per price level for product x.

The market depth for the “Sell” (“Buy”) side is computed by stacking the existing orders in

ascending (descending) price order and accumulating the available volume. The market depth

for each of the quarter-hourly products Q1 to Q6 at time instant t is illustrated in Figure 2.2a

using data from the German CID market. The market depth curves serve as a visualization

of the order book that provides information about the liquidity of the market. Moreover, it
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provides information about the maximum (minimum) price that a trading agent will have to

pay in order to buy (sell) a certain volume of energy. If we assume a fixed-price discretization,

certain upper and lower bounds on the prices and interpolation of the data in this price range,

the market depth curves of each product x can be approximated by a finite and constant set of

values.

Even though this set of values has a constant size, it can still be extremely large. Its

dimension is not a function of the number of existing orders any more, but it depends on

the resolution of the price discretization, the price range considered, and the total number of

products in the market. Instead of an individual market depth curve for each product x, we

consider a market depth curve for all the available products, i.e. existing orders in ascending

(descending) price order and accumulating the available volumes for all the products. In

this way we can construct the aggregated market depth curve, presented in Figure 2.2b. The

aggregated market depth curve illustrates the total available volume (“Sell” or “Buy”) per

price level for all products.

The motivation for considering the aggregated curves comes from the very nature of a

storage device. The main profit-generating mechanism of a storage device is the arbitrage

between two delivery periods. Its functionality involves the purchasing (charging) of electricity

during periods of low prices and the selling (discharging) during periods of high prices.

For instance, in Figure 2.2a, a storage device would buy volume for product Q4 and sell

volume back for product Q5. The intersection of the “Sell” and “Buy” curves in Figure 2.2b

defines the maximum volume that can be arbitraged by the storage device if no operational

constraints were considered and serves as an upper bound for the profits at each step t.

Alternatively, the market depth for the same products Q1 to Q6 at a different time-step of the

trading horizon is presented in Figure 2.3a. As illustrated in Figure 2.3b, there is no arbitrage

opportunity between the products, hence the aggregated curves do not intersect. Thus, we

assume, that the aggregated curves provide a sufficient representation of the order book.

At this point, considering a fixed-price discretization and a fixed price range would yield

a constant set of values able to describe the aggregated curves. However, in order to further

decrease the size of the set of values with sufficient price discretization, we motivate the use

of a set of distance measures between the two aggregated curves that succeed in capturing the

arbitrage potential at each trading time-step t as state variables, as presented in Figures 2.2b

and 2.3b.

For instance, we define as D1 the signed distance between the 75th percentile of “Buy”

price and the 25th percentile of “Sell” price and as D2 the absolute distance between the mean
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value of “Buy” and “Sell” volumes. Other measures used are the signed price difference and

absolute volume difference between percentiles (25%, 50%, 75%) and the bid-ask spread. A

detailed list of the distance measures is provided in Table 2.2.

TABLE 2.2: Order book features used for the state reduction.

Symbol Definition Description

D1 pBuy
max− pSell

min Signed diff. between the maximum “Buy” price and the minimum “Sell” price

D2 pBuy
mean− pSell

mean Signed diff. between the mean “Buy” price and the mean “Sell” price

D3 pBuy
25%− pSell

75% Signed diff. between the 25th percentile “Buy” price and the 75th percentile “Sell” price

D4 pBuy
50%− pSell

50% Signed diff. between the 50th percentile “Buy” price and the 50th percentile “Sell” price

D5 pBuy
75%− pSell

25% Signed diff. between the 75th percentile “Buy” price and the 25th percentile “Sell” price

D6 |vBuy
min− vSell

min | Abs. diff. between the minimum “Buy” cum. volume and the maximum “Sell” cum. volume

D7 |vBuy
mean− vSell

mean| Abs. diff. between the mean “Buy” cum. volume and the mean “Sell” cum. volume

D8 |vBuy
25%− vSell

25%| Abs. diff. between the 25th percentile “Buy” cum. volume and the 25th percentile “Sell” cum. volume

D9 |vBuy
50%− vSell

50%| Abs. diff. between the 50th percentile “Buy” cum. volume and the 50th percentile “Sell” cum. volume

D10 |vBuy
75%− vSell

75%| Abs. diff. between the 75th percentile “Buy” cum. volume and the 75th percentile “Sell” cum. volume

The new, continuous, low-dimensional observation of the order book s′OB
t ∈ S′OB =

{D1, ..,D10} is used to represent the state of the order book and, in particular, its profit

potential. It is important to note that in contrast to sOB
t ∈ SOB, the new order book observation

s′OB
t ∈ S′OB does not depend on the number of orders in the order book and therefore has a

constant size, i.e. the cardinality of S′OB is constant over time.

Finally, the history of the private information of agent i, that is not publicly available, is a

vector that contains the high-dimensional continuous variables sprivate
i,t related to the operation

of the storage device. As described in Section 2.4.3, sprivate
i,t is defined as:

sprivate
i,t =((Pmar

i,t (τ),∆i,t(τ),

Gi,t(τ),Ci,t(τ),SoCi,t(τ),∀τ ∈ T̄ ),

wexog
i,t ).

According to Assumption (5), the trading agent cannot perform any transaction if it

results in imbalances. Therefore, it is not relevant to consider the vector ∆i,t since it will

always be zero according to the way the high-level actions are defined in Section 2.4.4.

Additionally, Assumption (3) regarding the default strategy for storage control in combination

with Assumption (5) yields a direct correlation between vectors Pmar
i,t and Gi,t , Ci,t , SoCi,t .

Thus, it is considered that Pmar
i,t contains all the required information and thus vectors Gi,t , Ci,t

and SoCi,t can be dropped.

Following the previous analysis we can define the low-dimensional pseudo-state zi,t =



54
Chapter 2. A Deep Reinforcement Learning Framework for Continuous Intraday Market

Bidding

(A) Market depth per product (for products Q1 to Q6) at a time-step t with no arbitrage potential.

(B) The corresponding aggregated curves for a non profitable order book.

FIGURE 2.2

(s′i,0,a′i,0,ri,0, ...,a′i,t−1,ri,t−1,s′i,t) ∈ Zi, where s′i,t = (s′OB
t ,Pmar

i,t ,wexog
i,t ) ∈ S′i. This pseudo-state

can be seen as the result of applying an encoder enc : Hi→ Zi which maps a true state hi,t to

pseudo-state zi,t .

In the following, it is considered that the pseudo-state zi,t ∈ Zi contains all the relevant

information for the optimization of the CID market trading of an asset-optimizing agent. Thus,

replacing the true state hi,t with pseudo-state zi,t is not considered to lead to a sub-optimal

policy. The resulting decision process after the state and action spaces reductions is illustrated

in Figure 2.4.

2.4.6 Generation of artificial trajectories
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(A) Market depth per product (for products Q1 to Q6) at a time-step t with no arbitrage potential.

(B) The corresponding aggregated curves for a non profitable order book.

FIGURE 2.3

In this section, the generation of artificial trajectories for addressing exploration issues

in an offline setting is discussed. Indeed, if we were to implement an agent that selects at

every time-step among the “Idle" and “Trade" actions, we would collect a certain number

of trajectories (one per day) over a certain period of interactions with the real market. The

collected dataset could be used to train a policy using a batch mode RL algorithm, as described

in Section 2.4.2. Every time a new trajectory would arrive, it would be appended in the

previous set of trajectories and the entire dataset could be used to improve the trading policy.

As discussed in Section 2.4.2, sufficient exploration of the state and action spaces is a

key requirement for converging to a near-optimal policy. The RL agent needs to explore

unknown grounds in order to discover interesting policies (exploration). It should also apply
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a−i,t ri,t a−i,t+1 ri,t+1

· · · hi,t CID Env Storage hi,t+1 CID Env Storage · · ·

e ai,t e ai,t+1

zi,t p zi,t+1 p

πi a′i,t πi a′i,t+1

strategy

“default"

strategy

“default"

FIGURE 2.4: Schematic of the decision process. The original MDP is
highlighted in a gray background. The state of the original MDP hi,t is
encoded in pseudo-state zi,t . Based on zi,t , agent i takes an high-level action
a′i,t , according to its policy πi. This action a′i,t is mapped to an original action
ai,t and submitted to the CID market. The CID market makes a transition
based on the action of agent i and the actions of the other agents a−i,t . After
this transition, the market position of agent i is defined and the control actions
for storage device are derived according to the “default" strategy. Each

transition yields a reward ri,t and a new state hi,t .

Output QTrade QIdle

FC5 shape: (batch size, 36, 2) F F · · · F

Fully Connected
...

...
...

FC2 shape: (batch size, 36, 36) F F · · · F

FC1 shape: (batch size, 128, 36) F F · · · F

Hidden state hi,0 hi,1 · · · hi,t

LSTM hi,−1 LSTM LSTM · · · LSTM

Inputs s̄i,t−h̄ s̄i,t−h̄+1 · · · s̄i,t

Input shape: (batch size, h̄, 263)

Lstm output: (batch size, 128)

FIGURE 2.5: Schematic of the neural network architecture.
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Algorithm 3 Generation of artificial trajectories
1: Input: Ltrain, E, ep, ε , decay
2: Output: Q̂, F
3: Initialize Q̂≡ 0
4: M← E · |Ltrain|
5: m← 0
6: while m≥M do
7: for iter j← 0 to ep do
8: d← rand(Ltrain) B Randomly pick a day d from train set Ltrain

9: ζm← simulate(d,ε−greedy(Q̂))
10: B Generate trajectory ζm by simulating day d using ε-greedy policy
11: F .add(ζm) B Append trajectory from day d to set F
12: ε ← anneal(ε ,decay, iteri) B Anneal the value of ε based on decay parameter
13: m← m+ 1
14: end for
15: end while
16: Update Q̂ using set F according to equations (2.32), (2.33) B Fit new Q̂ functions
17: return Q̂,F

these learned policies to get high rewards (exploitation). However, since the set of collected

trajectories would come from a real agent, the visitation of many different states is expected

to be limited.

Furthermore, the aforementioned approach requires the direct interaction with the CID

market in order to collect samples from the unknown initial state distribution and from the

opponents’ actions. In the RL context, exploration is then performed when the agent selects a

different action than the one that, according to its experience, will yield the highest rewards.

In real life, it is unlikely for a trader to select such actions, and potentially bear negative

revenues, for the sake of gaining more experience. This leads to limited exploration of the

learning process and would result in a suboptimal policy.

Assumption 7 (No impact on the behaviour of the rest of the agents). The actions of trading

agent i do not influence the future actions of the rest of the agents −i in the CID market. In

this way, agent i is not capable of influencing the market.

Assumption (7) implies that each of the agents −i entering in the market would post

orders solely based on their individual needs. Furthermore, its actions are not considered as a

reaction to the actions of the other market players.

Leveraging Assumption (7) allows one to tackle the exploration issues discussed previously

in an offline setting by generating several artificial trajectories using historical order book

data. An artificial trajectory is generated as follows. At each time t, the agent i takes an action

according to the current state of the order book. Under Assumption (7), the next state of the

order book is then the historical state at time t + 1 from which the bids accepted by agent i
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have been removed. Finally, in this framework, such an artificial trajectory corresponds to a

trajectory sampled from the CID model developed. We denote by E the number of episodes

(times) each day from historical data is repeated and by Ltrain the set of trading days used to

train the agent. We can then obtain the total number of trajectories M as M = E · |Ltrain|.
The simulation of trajectories is performed according to the process described in Figure 1

in [97]. Nevertheless, in this framework, trajectories are generated artificially as described

previously rather than directly sampled from the system. This process interleaves the genera-

tion of trajectories with the computation of an approximate Q-function using the trajectories

already generated. As shown in Algorithm 3, for a number of episodes ep, we randomly

select days from the training set which we simulate using an ε-greedy policy. According to

this policy, an action is chosen at random with probability ε and according to the available

Q-functions with probability (1− ε). The generated trajectories are added to the set of tra-

jectories. The second step consists of updating the Q-function approximation using the set

of collected trajectories. This process is terminated when the total number of episodes has

reached the specified number E.

This process introduces parameters Ltrain, E, ep, ε and decay. The selection of these

parameters impacts the training progress and the quality of the resulting policy. The set of

days considered for training (Ltrain) is typically selected as a proportion (e.g. 70%) of the

total set of days available. The total number of episodes E should be large enough so that

convergence is achieved and is typically tuned based on the application. The frequency with

which the trajectory generation and the updates are interleaved is controlled by parameter ep.

A small number of ep results in a large number of updates. Parameter ε is used to address the

trade-off between exploration-exploitation during the training process. As the training evolves,

this parameter is annealed based on some predefined parameter decay, in order to gradually

reduce exploration and to favour exploration along the (near-)optimal trajectories. In practice,

the size of the buffer F cannot grow infinitely due to memory limitations, so typically a limit

on the number of trajectories stored in the buffer is imposed. Once this limit is reached, the

oldest trajectories are removed as new ones arrive. The buffer is a double-ended queue of

fixed size.

2.4.7 Neural Network architecture

As described in Section 2.4.5, pseudo-state zi,t contains a sequence of variables whose length

is proportional to t. This motivates the use of Recurrent Neural Networks (RNNs), that are

known for being able to efficiently process variable-length sequences of inputs. In particular,
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we use Long Short-term Memory (LSTM) networks [107], a type of RNNs where a gating

mechanism is introduced to regulate the flow of information to the memory state.

All the networks in this study have the architecture presented in Figure 2.5. It is composed

of one LSTM layer with 128 neurons followed by five fully connected layers with 36 neurons

where “ReLU" was selected as the activation function. The structure of the network (number

of layers and neurons) was selected after cross-validation.

Theoretically, the length of the sequence of features that is provided as input to the

neural network can be as large as the total number of trading steps in the optimization

horizon. In practice though, there are limitations with respect to the memory that is required

to store a tensor of this size. As we can observe in Figure 2.5, each sample in the batch

contains a vector of size 249 for each time-step. Assuming a certain batch size, there is

a certain limit to the number of steps that can be stored in the memory. Therefore, for

practical reasons and due to hardware limitations, we assume a history length h̄ defined as

zi,t = (a′i,t−h̄−1,ri,t−h̄−1,s′i,t−h̄,a′i,t−h̄,ri,t−h̄, ...,a′i,t−1,ri,t−1,s′i,t) ∈ Zi. At each step t, the history

length h̄ takes the minimum value between the time-step t and h̄max, (h̄ = min(t, h̄max)).

Additionally, we provide the variable s̄t = (a′i,t−1,ri,t−1,s′i,t), as a fixed size input for each step

t of the LSTM. Consequently, the pseudo-state can be written as zi,t = (s̄t−h̄, ..., s̄t).

2.4.8 Asynchronous Distributed Fitted Q iteration

The exploration requirements of the continuous state space, as defined previously introduce

the necessity for collecting a large number of trajectories M. The total time required for

gathering these trajectories heavily depends on the simulation time needed for one episode. In

this particular setting developed, the simulation time can be quite long since, at each decision

step, if the action selected is “Trade", an optimization model is constructed and solved.

In order to address this issue, we resort to an asynchronous architecture, similar to the one

proposed in [108], presented in Figure 2.6. The two processes, described in Section 2.4.6,

namely generation of trajectories and computation of the Q-functions, run concurrently with

no high-level synchronization.

Multiple actors that run on different threads are used to generate trajectories. Each actor

contains a copy of the environment, an individual ε-greedy policy based on the latest version of

the Q functions and a local buffer. The actors use their ε-greedy policy to perform transitions

in the environment. The transitions are stored in the local buffer. When the local buffer of

each actor is filled, it is appended to the global buffer, the agent collects the latest Q-functions
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Learner
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Actor
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Network parameters Local buffer

Experiences

FIGURE 2.6: Schematic of the asynchronous distributed architecture. Each
actor runs on a different thread and contains a copy of the environment,
an individual ε-greedy policy based on the latest version of the network
parameters and a local buffer. The actors generate trajectories that are stored in
their local buffers. When the local buffer of each actor is filled, it is appended
to the global buffer and the agent collects the latest network parameters from
the learner. A single learner runs on a separate thread and is continuously

training using experiences from the global buffer.

from the learner and continues the simulation. A single learner continuously updates the

Q-functions using the simulated trajectories from a global buffer.

The benefits from asynchronous methods in Deep Reinforcement Learning (DRL) are

elaborated in [50]. Each actor can use a different exploration policy (different initial ε value

and decay) in order to enhance diversity in the collected samples which leads to a more stable

learning process. Additionally, it is shown that the total computational time scales linearly

with the number of threads considered. Another major advantage is that distributed techniques

were shown to have a super-linear speedup for one-step methods that are not only related to

computational gains. It is argued that, the positive effect of having multiple threads leads to a

reduction of the bias in one-step methods [50]. In this way, these algorithms are shown to be

much more data efficient than the original versions.

2.5 Case study

The proposed methodology is applied to the case of a PHES unit. Firstly, the parameters and

the exogenous information used for the optimization of the CID market participation of a

PHES operator are described. Secondly, the benchmark strategy used for comparison purposes
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and the process that was carried out for validation are presented. Finally, performance results

of the obtained policy are presented and discussed.

2.5.1 Parameters specification

The proposed methodology is applied for an instance of a PHES unit2 participating in the

German CID market with the following characteristics:

• SoCi = 40 MWh,

• SoCi = 0 MWh,

• SoCinit
i = SoCterm

i =
(
SoCi−SoCi

)
/2,

• Ci = Gi = 8 MW,

• Ci = Gi = 0 MW,

• η = 90%.

The discrete trading horizon has been selected to be the full day, i.e. T = {16 : 00, ...,00 : 00, ...,23 : 15}.
The trading time interval is selected to be ∆t = 15 min. Thus the trading process takes

K = 124 steps until termination. Moreover, all 96 quarter-hourly products of the day, X =

{Q1, ..,Q96}, are considered. Consequently, the delivery timeline is T̄ = {00 : 00, ...,23 : 45},
with τinit = 00 : 00 and τterm = 24 : 00 and the delivery time interval is ∆τ = 15 min. Each

product can be traded until 30 minutes before the physical delivery of electricity begins (e.g.

tclose(Q1) = 23 : 30 etc.).

For the construction of the training/test sets, we proceed as following. Due to the high

computational burden, we train our algorithm on a period of |Ltrain|= 36 days in which a high

variance in prices is observed and therefore high profit potential. Subsequently, we evaluate its

performance in the following |Ltest |= 110 days. The total number of simulated episodes was

selected to be E = 10000 episodes for the artificial trajectories generation process, described

in Section 2.4.6. During the trajectories generation process the high-level actions (“Trade"

or “Idle") were chosen following an ε-greedy policy. As described in Section 2.4.8, each of

the actor threads is provided with a different exploration parameter ε that is initialised with a

random uniform sample in the range [0.1,0.5]. The parameter ε is then annealed exponentially

until a zero value is reached.
2A small instance of the storage unit was selected due to the low volumes available in the historical order book

data used.
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The pseudo-state zi,t = (s′i,0,a′i,0,ri,0, ...,a′i,t−1,ri,t−1,s′i,t) ∈ Zi is composed of the entire

history of observations and actions up to time-step t, as described in Section 2.4.5. For the

sake of memory requirements, as explained in Section 2.4.7, we assume that the last ten trading

steps contain sufficient information about the past. Thus, the pseudo-state is transformed in

sequences of fixed length h̄max = 10.

2.5.2 Exogenous variable

The exogenous variable wexog
i,t represents any relevant information available to agent i about

the system. In this case study, we assumed that the variable wexog
i,t contains:

• The 24 values of the Day-ahead price for the entire trading day

• The Imbalance price and the system Imbalance for the four quarters preceding each

time-step t

• The 96 values of the intraday auction prices for the entire trading day

• Time features: i) the month and ii) whether the traded day is a weekday or weekend

2.5.3 Benchmark strategy

The strategy selected for comparison purposes is the rolling intrinsic policy [106], denoted

by πRI . According to this policy, the agent selects at each trading time-step t the action

“Trade", as described in Section 2.4.4. This benchmark is selected since it represents the

current practice in some industrial applications for the optimization of PHES unit market

participation. Additionally, the benchmark presented in [95] could be used for comparison

purposes. However, the basis of our analysis is significantly different. In particular, the

assumptions related to the storage operation (Assumptions 5 and 6) as well as the fact that

quarterly products are considered (instead of hourly) in this chapter, constitute the comparison

impossible.

2.5.4 Validation process

The performance of the policy obtained using the fitted Q iteration algorithm, denoted by

πFQ, is evaluated on test set Ltest that contains historical data from 110 days. These days are

not used during the training process. This process of backtesting a strategy on historical data

is widely used because it can provide a measure of how successful a strategy would be if it

had been executed in the past. However, there is no guarantee that this performance can be
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expected in the future. This validation process heavily relies on Assumption (7) about the

inability of the agent to influence the behaviour of the other players in the market. It can still

provide an approximation on the results of the obtained policy before deploying it in real life.

However, the only way to evaluate the exact viability of a strategy is to deploy it in real life.

We compare the performances of the policy obtained by the fitted Q iteration algorithm

πFQ and the rolling intrinsic policy πRI . The comparison is based on the computation of the

return of the policies on each day. For a given policy, the return over a day is simply computed

by running the policy on the day and summing up the rewards obtained.

Our learning algorithm has two sources of variance, namely those related to the generation

of the new trajectories and those related to the learning of the Q-functions from the set of

trajectories. Hence, we perform several runs and average the performances of the policies

learned. In the following, when we report the performance of a fitted Q iteration policy over

a dataset, we will actually report the average performances of ten learned policies over this

dataset.

We describe the different indicators that will be used afterwards to assess the performance

of our method. These indicators are computed for both the training set and the test set, but are

detailed hereafter when they are computed for the test set. It is straightforward to adapt the

procedure for computing the indicators for the training set.

Let V πFQ

d and V πRI

d denote the total return of the fitted Q and the rolling intrinsic policy

for day d, respectively. We gather the obtained returns of each policy for each day d ∈ Ltest .

We sort the returns in ascending order, and we obtain an ordered set containing a number of

|Ltest | values for each policy. We provide descriptive statistics about the distribution of the

returns of each policy V πFQ

d and V πRI

d on the test set Ltest . In particular, we report the mean,

the minimum and maximum values achieved for the set considered. Moreover, we provide the

values obtained for each of the quartiles (25%, 50% and 75%) of the set.

Additionally, we compute the sum of returns over the entire set of days as follows:

V πFQ
= ∑

d∈Ltest

V πFQ

d , (2.52)

V πRI
= ∑

d∈Ltest

V πRI

d . (2.53)

An alternative performance indicator considered is the discrepancy of the returns coming

from the fitted Q policy with respect to the risk-averse rolling intrinsic policy. We define the

profitability ratio rd for each day d ∈ Ltest , that corresponds to the signed percentage difference

between the two policies as follows:
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rd =
V πFQ

d −V πRI

d

V πRI

d

·100%. (2.54)

In a similar fashion, we sort the profitability ratios obtained for each day in the test set and

we provide descriptive statistics about its distribution across the set. The mean, minimum and

maximum values of the profitability ratio as well as the values of each quartile are reported.

Finally, we compute the profitability ratio for the sum of returns over the entire set between

the two policies, as:

rsum =
V πFQ−V πRI

V πRI ·100%. (2.55)

2.5.5 Results

The performance indicators described previously are computed for both the training and the

test set. The results obtained are summarised in Tables 2.3 and 2.4. Descriptive statistics about

the distribution of the returns from both policies as well as the profitability ratio are presented

for each dataset.

It can be observed that on average πFQ yields better returns than πRI both on the training

and the test set. More specifically, on the training set, the obtained policy performs, on

average 7.6% better than the rolling intrinsic policy. For the top 50% of the training days the

profitability ratio is higher than 3.5% and in some cases it even exceeds 10%. Overall, the total

profits coming from the fitted Q policy add up to e14523.1, yielding a difference of e1144.

(8.5%) more than the profits from the rolling intrinsic for the set of 36 days considered.

TABLE 2.3: Descriptive statistics of the returns obtained on the days of the
training set for policies πFQ and πRI . The last column also provides the

corresponding profitability ratios.

πFQ returns (e) πRI returns (e) r (%)

mean 403.4 371.6 7.6
min 232.2 114.4 −12.7
25% 298.9 202.1 −2.2
50% 351.5 287.1 3.5
75% 463.9 345.1 7.5
max 1064.6 416.5 69.0
sum 14523.1 13378.5 8.5

The fitted Q policy yields on average a 2.25% greater profit on the test set with respect
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to the returns of the rolling intrinsic policy. It is important to highlight that for 50% of the

test set, the profits from the fitted Q policy are higher than 1% in comparison to the rolling

intrinsic. The difference between the total profits resulting from the two policies over the set

of 110 days considered amounts to e901.4 (2.16%).

TABLE 2.4: Descriptive statistics of the returns obtained on the days of
the test set for policies πFQ and πRI . The last column also provides the

corresponding profitability ratios.

πFQ returns (e) πRI returns (e) r (%)

mean 401.5 392.9 2.25
min 121.3 126.8 −4.7
25% 272.7 266.9 −1.5
50% 347.4 345.5 1.7
75% 463.9 465.9 4.8
max 1351.4 465.9 19.5
sum 42559.2 41657.7 2.16

The distribution of training and test set samples according to the obtained profitability

ratio is presented in Figure 2.7. It can be observed that most samples are spread in the interval

between 0−5% and that the distribution has a positive skew. From the standpoint of practical

implementation this result allows us to construct a wrapper around the current industrial

standard practices and expect an average improved performance of 2%. However, as discussed

earlier, the back-testing of a strategy in historical data may differ from the outcomes in real

deployment for various reasons.

The evolution of the expected return of the fitted Q iteration policy V πFQ
as function of

the training episodes (number of trajectories collected) is presented in Figure 2.8. We can

observe that at the early steps of the training the fitted Q policy performs very similar to the

rolling intrinsic. Later in the training process it progressively learns the right moments to idle

in order to increase its returns. The progressive evaluation of the fitted Q policy in the test set

is illustrated in Figure 2.8. The shaded area in both graphs represents the variance obtained

between the ten different runs.

2.6 Discussion

In this section, we provide some remarks related to the practical challenges encountered and

the validity of the assumptions considered throughout this chapter.
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FIGURE 2.7: Profitability ratio.

FIGURE 2.8: Progressive evaluation in the train set.
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FIGURE 2.9: Progressive evaluation in the test set.

2.6.1 Behaviour of the rest of the agents

In this chapter, we assumed (Assumption 1) that the rest of the agents −i post orders in the

market based on their needs and some historical information of the state of the order book. In

reality, the available information that the other agents possess is not accessible by agent i. This

fact gives rise to issues related to the validity of the assumption that the process is Markovian.

We further assumed (Assumption 7) in Section 2.4.6 that the behaviour of agent i does not

influence the strategy of the other agents −i. Based on this assumption the training and the

validation process were performed using historical data. However, the strategy of each of the

market participants is highly dependent on the actions of the rest participants, especially in a

market with limited liquidity such as the CID market.

These assumptions, although slightly unrealistic and optimiztic, provide us with a mean-

ingful testing protocol for a trading strategy. The actual profitability of a strategy can be

obtained by deploying the strategy in real-time. However, it is important to show that the

strategy is able to obtain substantial profits in back-testing first.
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2.6.2 Partial observability of the process

In Section 2.3, the decision-making problem studied in this chapter was framed as an MDP

after considering certain assumptions. Theoretically, this formulation is very convenient, but

does not hold in practice. In particular, the reduced pseudo-state may not contain all the

relevant information required.

Indeed, the trading agents do not have access to all the information required. For instance,

a real agent does not know how many other agents are active in the market. They do not know

the strategy of each agent either. There is also a lot of information gathered by wexog which

is not available for the agent. Finally, the fact that the state space was reduced results in an

inevitable loss of information.

Therefore, it would be more accurate to consider a Partially Observable Markov Decision

Process (POMDP) instead. In a POMDP, the real state is hidden and the agent only has access

to observations. For an RL algorithm to properly work with a POMDP, the observations have

to be representative of the real hidden states.

2.6.3 Action space reduction

The presented action space (High-level actions) is rather restricted in the sense that the storage

unit will buy energy for a product only if it can sell it back to another product at the same

instant. According to this definition of the action space, there is no risk of buying energy

without using it later. However, as expected, this strategy results in reduced profits eventually.

The action space reduction performed leads to a rather constrained set of admissible policies.

The restrictions arise from the imposed rule that no trade of energy is allowed if it cannot be

physically backed (Assumption 5). Although this assumption is made to fully comply with

the German regulation, it is rather restrictive on the profits that can be achieved by the storage

unit.

Alternatively, one can relax this assumption and use the reduced action space Ared . This

would significantly increase the dimensionality of the action space and the need for exploration.

Additionally, that would imply the need for a risk measure in order to quantify and control the

freedom to which the resulting policy is operating.
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2.6.4 Exploration

There are two main issues related to the state space exploration that result in the somewhat

limited performance of the obtained policy. First, in the described setting, the way in which

we generate the artificial trajectories is very important for the success of the method. The

generated states must be “representative" in the sense that the areas around these states are

visited often under a near optimal policy [40]. In particular, the frequency of appearance

of these areas of states in the training process should be proportional to the probability of

occurrence under the optimal policy. However, in practice, we are not in a position to know

which areas are visited by the optimal policy. In that respect, the asynchronous distributed

algorithm used in this chapter was found to successfully address the issue of state exploration.

Second, the assumptions (Assumptions 3, 4, 5) related to the operation of the storage

device according to the “default" strategy without any imbalances allowed, as well as the

participation of the agent as an aggressor, are restrictive with respect to the set of all admissible

policies. Additionally, the adoption of the reduced discrete action space described in Section

2.4.4 introduces further restrictions on the set of available actions. Although having a small and

discrete space is convenient for the optimization process, it leads to limited state exploration.

For instance, the evolution of the state of charge of the storage device is always given as the

output of the optimization model based on the order book data. Thus, in this configuration, it is

not possible to explore all areas of the state space (storage levels) but only certain areas driven

by the historical order book data. However, evaluating the policy on a different dataset might

lead to areas of the state space (e.g. storage level) that are never visited during training, leading

to poor performance. Potential mitigations of this issue involve diverse data augmentation

techniques and/or different representation of the action space.

2.7 Conclusions and future work

In this chapter, a novel RL framework for the participation of a storage device operator in the

CID market is proposed. The energy exchanges between market participants occur through

a centralized order book. A series of assumptions related to the behaviour of the market

agents and the operation of the storage device are considered. Based on these assumptions, the

sequential decision-making problem is cast as an MDP. The high dimensionality of both the

action and the state spaces increase the computational complexity of finding a policy. Thus,

we motivate the use of discrete high-level actions that map into the original action space. We

further propose a more compact state representation. The resulting decision process is solved
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using fitted Q iteration, a batch mode reinforcement learning algorithm. The results illustrate

that the obtained policy is a low-risk policy that is able to outperform on average the state of

the art for the industry benchmark strategy (rolling intrinsic) by 2.2% on the test set. The

proposed method can serve as a wrapper around the current industrial practices that provides

decision support to energy trading activities with low risk.

The main limitations of the developed strategy originate from: i) the insufficient amount

of relevant information contained in the state variable, either because the state reduction

proposed leads to a loss of information or due to the unavailability of information and ii) the

limited state space exploration as a result of the proposed high-level actions in combination

with the use of historical data. To this end and as future work, a more detailed and accurate

representation of the state should be devised. This can be accomplished by increasing the

amount of information considered, such as RES forecasts, and by improving the order book

representation. We propose the use of continuous high-level actions in an effort to gain state

exploration without leading to very complex and high-dimensional action space.

Appendix

2.8 Nomenclature

Acronyms

ADP Approximate Dynamic Programming.

CID Continuous Intraday.

DRL Deep Reinforcement Learning.

FCFS First Come First Served.

MDP Markov Decision Process.

OB Order Book.

PHES Pumped Hydro Energy Storage.

RES Renewable Energy Sources.

Sets and indexes

Name Description

i Index of an agent.

−i Index of all the agents except agent i.
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j Index of an order.

m Index of a sample of quadruples.

d Index of a day in a set.

t Trading time-step.

τ Discrete time-step of delivery.

A Joint action space for all the agents.

Ai Action space of agent i.

A−i Action space of the rest of the agents −i.

Ared
i Reduced action space of agent i.

A′i Set of high-level actions for agent i.

Āi Set of all factors for the partial/full acceptance of orders by agent i.

E Set of conditions that can apply to an order.

F Set of all sampled trajectories.

F ′ Set of sampled one-step transitions.

F ′t Set of sampled one-step transitions for time t.

Hi Set of all histories for agent i.

I Set of agents.

Ltrain Set of trading days used to train the agent.

Ltest Set of trading days used to evaluate the agent.

Nt Set of all available order unique indexes at time t.

N′t Set of all the unique indexes of new orders posted at time t.

Nτ Set of all the unique indexes of orders for delivery at τ .

Ot Set of all available orders in the order book at time t.

SOB Set of all available orders in the order book.

S′OB Low dimensional set of all available orders in the order book.

Si State space of agent i.

T Trading horizon, i.e. time interval between first possible trade and last

possible trade.

T (x) Discretization of the trading timeline for product x.

T̄ Discretization of the delivery timeline.

T̄ (t) Discretization of the delivery timeline at trading step t.
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T Imb Discretization of the imbalance settlement timeline.

X Set of all available products.

Xt Set of all available products at time t.

Zi Set of pseudo-states for agent i.

Π Set of all admissible policies.

Parameters

Name Description

Ci Maximum consumption level for the asset of agent i.

Ci Minimum consumption level for the asset of agent i.

E Number of episodes.

e Conditions applying on an order other than volume and price.

ep Number of simulations between two successive Q function updates.

decay Parameter for the annealing of ε .

Gi Maximum production level for the asset of agent i.

Gi Minimum production level for the asset of agent i.

h̄ Sequence length of past information.

h̄max Maximum sequence length of past information.

I(τ) Imbalance price for delivery period δ (x).

K Number of steps in the trading period.

M Number of samples of quadruples.

n Number of agents.

ot Market order.

p Price of an order.

pmax Maximum price of an order.

pmin Minimum price of an order.

SoCi Maximum state of charge of storage device.

SoCi Minimum state of charge of storage device.

SoCinit
i State of charge of storage device at the beginning of the delivery timeline.

SoCterm
i State of charge of storage device at the end of the delivery timeline.

tclose(x) End of trading period for product x.

tdelivery(x) Start of delivery of product x.
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topen(x) Start of trading period for product x.

tsettle(x) Time of settlement for product x.

v Volume of an order.

x Market product.

y Side of an order (“Sell" or “Buy").

ym
t Target computed for sample m at time t.

δ (x) Time interval covered by product x (delivery).

∆t Time interval between trading time-steps.

∆τ Time interval between delivery time-steps.

ε Parameter for the ε-greedy policy.

η Charging/discharging efficiency of storage device.

θt Parameters vector of function approximation at time t.

λ (x) Duration of time-interval δ (x).

ζ A single trajectory.

ζm A single indexed trajectory.

τinit Initial time-step of the delivery timeline.

τterm Terminal time-step of the delivery timeline.

Variables

Name Description

at Joint action from all the agents at time t.

ai,t Action of posting orders by agent i at time t.

a−i,t Action of posting orders by the rest of the agents −i at time t.

a′i,t High-level action by agent i at time t.

a j
i,t Acceptance (partial/full) factor for order j by agent i at time t.

āi,t Factors for the partial/full acceptance of all orders by agent i at time t.

Ci,t(τ) Consumption level at delivery time-step τ computed at time t.

ci,t(t ′) Consumption level during the delivery interval.

ei,t Random disturbance for agent i at time t.

Gi,t(τ) Generation level at delivery time-step τ computed at t.

gi,t(t ′) Generation level during the delivery interval.

hi,t History vector of agent i at time t.
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ki,t(τ) Binary variable that enforces either charging or discharging of the storage

device.

Pmar
i,t (x) Net contracted power of agent i for product x (delivery time-step τ) at time

t.

Pres
i,t (τ) Residual production of agent i delivery time-step τ (for product x) at time t.

Pres
i (τ) Final residual production of agent i for product

ri,t Instantaneous reward of agent i at time t.

rd Profitability ratio at day d.

rsum Profitability ratio for the sum of returns over set.

si,t State of agent i at time t.

SoCi,t(τ) State of charge of device at delivery time-step τ computed at t.

sOB
t State of the order book at time t.

s′OB
t Low dimensional state of the order book at time t.

sprivate
i,t Private information of agent i at time t.

s̄t Triplet of fixed size, part of pseudo-state zi,t that serves as an input at LSTM

at time t.

ui,t Aggregate (trading and asset) control action of the asset trading agent i at

time t.

vcon
i,t (x) Volume of product x contracted by agent i at time t.

wexog
i,t Exogenous information of agent i at time t.

zi,t Pseudo-state for agent i at time t.

∆i,t(τ) Imbalance for delivery time τ for agent i computed at time t.

∆i(τ) Final imbalance for delivery time τ for agent i.

∆Gi,t Change in the production level for the asset of agent i at time t.

∆Ci,t : Change in the consumption level for the asset of agent i at time t.

Functions

Name Description

clear(·) Market clearing function.

b(·) Univariate stochastic model for exogenous information.

enc(·) Encoder that maps from the original state space Hi to pseudo-state space Zi.

f (·) Order book transition function.

Gζ (·) Revenue collected over a trajectory.



2.8. Nomenclature 75

g(·) System dynamics of the MDP.

k(·) System dynamics of asset trading process.

l(·) Reduced action space construction function.

Pa−i,t (·) Probability distribution function for the actions of the rest of the agents −i.

Pet (·) Random disturbance probability distribution function.

P(·) Transition probabilities of the MDP.

PFQ(·) The stochastic process (algorithm) of fitted Q iteration.

Pθt,0(·) Distribution of the initial parameters θt,0.

p(·) Mapping from high-level actions A′i to the reduced action space Ared
i .

Qt(·, ·) State-action value function at time t.

Q̂(·, ·) Sequence of Q-function approximations.

R(·) Reward function.

u(·) Signing convention for the volume wrt. the side (‘Buy" or ‘Sell") of each

order.

V πi(·) Total expected reward function for policy πi.

V πFQ

d (·) Return of the fitted Q policy π
FQ
i for day d.

V πRI

d (·) Return of the “rolling" intrinsic policy πRI
i for day d.

µt(·) Policy function at time t.

πi(·) Policy followed by agent i.

ρ(·) Trading revenue function.
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Chapter 3

Expanding the scope of the CID agent

In this chapter, we introduce a set of modifications to the described CID market participation

problem that lead to a significant increase in the general performance of the proposed strategy.

First, we motivate the use of a more compact state space representation. Moreover, we

propose a process of scaling the observed states so as to have a stationary input to the function

approximator predicting the optimal action. To achieve that, we propose the use of the

respective day-ahead prices for each trading day, in order to scale the states coming from

different trading days. Additionally, we introduce a scaling of the rewards coming from

each trading day, based on the returns obtained by the rolling intrinsic benchmark policy

in this days. The proposed changes are evaluated in a new case study. In order to obtain a

good grasp of the performance improvement potential of these changes, we also define a new

benchmark policy that is anticipative, i.e. the policy has access to the future and thus, can

act in a near-optimal way. This policy cannot be implemented in practice because it relies

on future information that a storage operator would not have in its possession in real-time.

However, it is useful for quantifying the performance gap between the proposed policy and a

near-optimal one. The results demonstrate that our method can outperform the rolling intrinsic

benchmark and reach a performance that is comparable to the one of the anticipative policy.

3.1 New state space representation

As discussed in Section 2.6.4, one of the key factors curbs the performance of the proposed

method arises from the limited exploration of the state space. It is observed, that the states

visited during the testing phase are not “similar" (close) to the states visited during training.

More precicely, the states visited in the trajectories of the historical dataset did not seem to be

drawn from a stationary process as hypothesised in Section 2.3. Intuitively, it means that states

visited within each trading day are drawn from a different environment (distribution). This, in

turn, limits the performance that can be obtained by the proposed fitted Q iteration method
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that relies on visiting similar states during training and testing. In particular, the DRL agent

has limited generalization capabilities due to the fact that the states visited during training

come from a different distribution that the states visited during testing. In this section, we

will follow a two-step process by introducing modifications to the state space that attempt

to address this problem. Firstly, we propose a new, more compact state space representation

that still originates from the same principles used to build the one in Section 2.4.5. However,

instead of instead of a separate account of the market information and the market position,

the new state vector contains these two components in one compact representation we hereby

call the potential profit. Secondly, we propose a new way of scaling states (i.e. the potential

profits). In particular, it was empirically observed that the daily profits collected presented

large variance, i.e. the amount of profits collected would vary significantly from one day to

another. To address that issue, we use the day-ahead profits that the storage unit would collect

if it participated in the day-ahead market, to scale the potential profits at each step, i.e. the

new states.

3.1.1 Compact state space representation

The state reduction presented in Section 2.4.5 results in the state space vector zi,t = (s′i,0,a′i,0,ri,0,

...,a′i,t−1,ri,t−1,s′i,t) ∈ Zi, that contains (among others) past values of the variable s′i,t =

(s′OB
t ,Pmar

i,t ,wexog
i,t ) ∈ S′i. The first component of variable s′i,t is s′OB

t , that contains statistics of

the aggregated demand/supply curves. The second component of s′i,t is the market position

Pmar
i,t of the agent. The use of these two components is intended to provide a proxy of the

potential profits that could be collected at each trading step t by the storage unit operator.

Instead of using these two components, we can directly compute the profits that the storage

unit operator stands to make, should the operator selected the “Trade" action at time-step t i.e.

the potential profits r̂i,t . This is a hypothetical computation and has no impact on the actual

operation of the storage unit or on the market. The computation of the potential profits r̂i,t is

performed using the optimization problem defined in Algorithm 2 without applying the output

actions (āi,t) to the real system. More specifically, we solve the optimization problem as it is

presented in Algorithm 2 and the only information that we keep from the generated outputs

is the value of the objective function that corresponds to the potential profits r̂i,t . Figure 3.1

presents the evolution of the potential profits r̂i,t over the course of the trading horizon for two

distinct traded days, namely the 1st and the 2nd of January 2015. This modification allows

us to extract the useful information (how much profit would the operator make right a each

trading step), from the observed market and storage unit situation. This feature engineering
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FIGURE 3.1: States from two different days.

represents a much more compact (low-dimensional) representation of the state that is expected

to improve the performance of the trading agent and lead to computational performance gains.

3.1.2 Making the state stationary

As we can observe in Figure 3.1, the potential profits for two distinct days may be non-

stationary (take values from different distributions). In particular, we notice that, for the 1st

of January, the profits take values less than 4,000efor most of the (trading) horizon, while

for the 2nd of January profits reach values up to 12,000 e. State variables with such distinct

values are expected to lead to exploration issues both during training and testing. In order to

mitigate this side effect, we proceed by scaling the potential profits. In particular, for each day

d, we divide the potential profits r̂i,t observed at each step t, by the revenues that would be

collected by the same storage unit at day d, if the unit participated in the day-ahead market

rDA
d (dashed lines in Figure 3.1). We compute the scaled potential profit as:

r̂′i,t =
r̂i,t

rDA
d

(3.1)

For the computation of the day-ahead market revenues rDA
d , we solve an optimization
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FIGURE 3.2: Normalized states from two different days.

problem1 based on the the day-ahead prices for the trading day d, that exist in the exogenous

part of the state wexog
i,t . This scaling allows for comparing two days that may be very different in

terms of the scale of profits collected and thus, allows for isolating the patterns of the potential

profits in the day. For instance we can observe that a general pattern in the day is the increase

of the potential profit in the first 20 trading steps (steps leading towards the first gate closure at

23:30). The new information variable is now represented by s′′i,t = (r̂′i,t ,w
exog
i,t ) ∈ S′′i which is a

much more compact representation of the previous high-dimensional vector s′i,t . Therefore, the

new low-dimensional pseudo-state is defined as z′i,t = (s′′i,0,a′i,0,ri,0, ...,a′i,t−1,ri,t−1,s′′i,t) ∈ Z′i .

In the following, it is considered that the pseudo-state z′i,t ∈ Z′i contains all the relevant

information for the optimization of the CID market trading of an asset-optimizing agent.

3.2 New reward function

The large variance between the returns collected in different days can also influence the

value functions that we attempt to learn with the fitted Q iteration method. In particular, it is

observed that, for similar states that are visited in different days, the total returns can be in

1A profit maximization optimization model, considering the operational constraints of the storage unit.
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different value ranges. This leads to large variance in the optimal Q values for each day. Since

the Q functions represent the expected cumulative rewards given an observed state, as it is

shown in equations (2.27) and (2.29), the resulting Q functions fail to sufficiently approximate

the optimal Q functions.

3.2.1 Making the reward function stationary

To address this problem we design a reward function that divides the instantaneous profits

from trading ri,t , as it is computed by (2.36), to the returns of the rolling intrinsic V πRI

d for the

considered day d according to:

r′i,t =
ri,t

V πRI

d

(3.2)

The goal of this approach is to learn a value function that maximizes the improvement in

terms of revenues with respect to the rolling intrinsic. In this way, the value functions do not

depend on the rewards collected on each day, but on how much improvement can be achieved,

by taking a particular action at each state, with respect to the rolling intrinsic. The proposed

reward scaling in performed only during the learning process of the policy. During evaluation

in the test set this scaling does not occur.

3.3 Case study

The impact of the proposed changes in the state space and the reward function is evaluated in

this section. Firstly, the new set of parameters and the exogenous information used for the

optimization of the CID market participation of a PHES operator are described. Secondly, we

present a new anticipative strategy that is used in addition to the rolling intrinsic benchmark

for comparison purposes. Finally, performance results of the obtained policy are presented

and discussed.

3.3.1 Parameters specification

The proposed methodology is applied for an instance of a PHES unit participating in the

German CID market with the following characteristics:

• SoCi = 400 MWh,

• SoCi = 0 MWh,
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• SoCinit
i = SoCterm

i =
(
SoCi−SoCi

)
/2,

• Ci = Gi = 65 MW,

• Ci = Gi = 0 MW,

• η = 90%.

The discrete trading horizon has been selected in this case to be the full day, i.e. T =

{16 : 00, ...,00 : 00, ...,22 : 30}, and the trading time interval is selected to be ∆t = 15 min.

Thus, the trading process takes K = 124 steps until termination. However, in this case study

we use the dataset containing all 24 hourly products of the day, X = {H1, ..,H24}. We select

this dataset instead of the quarter-hourly products, due to the higher liquidity observed in the

former. Due to the existing liquidity in the hourly-products dataset, we also increased the size

of the storage unit, as compared to the PHES considered in Section 2.5. Consequently, the

delivery timeline is T̄ = {00 : 00, ...,23 : 00}, with τinit = 00 : 00 and τterm = 22 : 30 and the

delivery time interval is ∆τ = 1 hour. Each product can be traded until 30 minutes before

the physical delivery of electricity begins (e.g. tclose(H1) = 23 : 30). For the construction of

the training/test sets, we consider the first half of 2015 (i.e. 2015/01/01-2015/06/31) as train

set and the second half of 2015 (i.e. 2015/07/01-2015/12/31) as test set. The pseudo-state

z′i,t = (s′′i,0,a′i,0,ri,0, ...,a′i,t−1,ri,t−1,s′′i,t) ∈ Z′i is composed of the entire history of observations

and actions up to time-step t, as described in Section 3.1.1.

3.3.2 Exogenous variable

The exogenous variable wexog
i,t represents any relevant information available to agent i about the

system. In this case study, we assumed that the variable wexog
i,t contains only the time features:

i) the month and ii) whether the traded day is a weekday or weekend.

3.3.3 Anticipative benchmark strategy

In addition to the rolling intrinsic benchmark, we define an anticipative strategy which we

call look-ahead policy πLA. This policy cannot be implemented in practice because it relies

on future information that a storage operator would not have in its possession in real-time.

However, it can provide a good measure on how well the fitted Q iteration policy can anticipate

future rewards. According to this policy, at each decision step t the agent can fast-forward

a number of ψ steps into the future and compute the potential profits r̂i,t+ψ . If the future

profits r̂i,t+ψ are higher than the current potential profits r̂i,t , the agent selects to “Idle". On
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the opposite case the agent selects to “Trade". The look-ahead policy πLA can be summarized

by the following rule:

a′i,t ∼ π
LA(r̂i,t+ψ , r̂i,t) =


“Idle”, if r̂i,t+ψ ≥ r̂i,t ,

“Trade”, otherwise .
(3.3)

In the presented case study, we use the value ψ = 1. We use the profitability ratio denoted

by rLA to evaluate and compare the performance of the look-ahead policy with respect to the

rolling intrinsic in a similar way to the one presented in Section 2.5.4. These profitability ratio

rLA is defined as the percentage difference between the returns collected by the look-ahead

policy V πLA
and the ones collected by the rolling intrinsic V πRI

, according to:

rLA =
V πLA−V πRI

V πRI ·100%. (3.4)

3.3.4 Results

In this section, we present the results obtained, similarly to Section 2.5.5. Tables 3.1 and

3.2, contain descriptive statistics regarding the outcomes obtained in the train and the test

set respectively by the compared policies (i.e. πFQ, πRI and πLA). We can observe that

πFQ yields significant improvements with respect to the πRI in both the training and the test

set. In particular, the πFQ was found to achieve an average increase of 18% on the returns

collected in the train set in comparison to the πRI . Additionally, in the test set, the πFQ has

managed to obtain an improvement of 19.6% with respect to the πRI , similarly to the train

set. We conjecture that the new modifications proposed in this chapter enable the fitted Q

iteration algorithm to generalize better over unseen data. Moreover, the anticipative strategy

πLA with one step look-ahead results in 38.4% and 42.9% improvements in the train and test

set respectively. We can observe that, while πFQ is able to outperform the πRI , it does not yet

closely approach the performance of an anticipative policy.

The distribution of training and test set samples according to the obtained profitability ratio

is presented in Figure 3.3. It can be observed that both the train and test set distributions have

similar shapes. The vast majority of the samples are non-negative implying that following the

πFQ as a trading strategy in the CID market entails low risk.

The smoothened evolution of the expected return of the fitted Q iteration policy V πFQ
in

the train set as function of the training episodes (number of trajectories collected) is presented

in Figure 3.4. We observe that the πFQ progressively learns how to outperform the πRI and,
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TABLE 3.1: Descriptive statistics of the returns obtained on the days of the
training set for policies πFQ, πRI and πLA.

πFQ returns (e) πRI returns (e) r (%) πLA returns (e) rLA (%)

mean 3455.0 3020.7 18.0 4069.7 38.4
min 682.55 635.5 −14.8 730.2 −1.2
25% 2011.3 1699.6 7.5 2305.3 22.1
50% 3052.6 2602.2 15.6 3496.3 31.4
75% 4204.0 3497.9 25.2 4712.9 49.0
max 16448.5 1064.6 170.2 19600.0 168.0
sum 625,370.6 546,759.0 − 736,621.9 −

TABLE 3.2: Descriptive statistics of the returns obtained on the days of the
test set for policies πFQ, πRI and πLA.

πFQ returns (e) πRI returns (e) r (%) πLA returns (e) rLA (%)

mean 3855.0 3365.4 19.6 4634.6 42.9
min 473.5 343.6 −18.5 668.8 −17.4
25% 2380.6 1978.0 7.2 2684.0 22.2
50% 3426.5 2931.3 15.4 4079.2 38.8
75% 4865.4 4297.9 28.3 5711.3 55.7
max 13963.1 13003.5 110.3 16208.3 203.8
sum 709,328.0 619,246.2 − 852,772.1 −

after a number of episodes, it stabilizes to a value higher than V πRI
. Additionally, we can

observe that the learned policy achieves similar results to the anticipative policy πLA. The

progressive evaluation of the fitted Q policy in the test set is illustrated in Figure 3.5. In

addition to that, the πFQ presents a very similar behaviour during test set evaluation, which

suggests that indeed the proposed modifications have led to good generalization capabilities.

The shaded area in both graphs represents the variance obtained between the ten different

runs.

3.3.5 Policy analysis

In this section, we visualize the effect of the learned policy for each decision step in the trading

horizon. In particular, for each step t we compute the percentage of days in which the policy

suggests that the operator should “Trade". The results are presented in Figure 3.6. As we

can observe, at the beginning of the trading horizon there is much lower probability to select

the “Trade" action as compared to later in the day. Additionally, the spikes of high “Trade"

probability correspond to gate closures during the trading horizon. This suggests that it is

better to “Trade" in moments of high trading activity as there are high chances of capturing

larger price spreads (profits).
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FIGURE 3.3: Profitability ratio.

FIGURE 3.4: Progressive evaluation in the train set.
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FIGURE 3.5: Progressive evaluation in the test set.

FIGURE 3.6: Probability of trading for each decision step according to πFQ.
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3.4 Conclusions

In this chapter, we propose a set of modifications to the original problem of the participation

of a storage device operator in the CID market. We first propose a compact representation for

the state in which the potential profits are directly computed instead of being inferred from

raw market data and the agent’s market position. Then, we proceed proceed by scaling the

potential profits for each distinct day with its corresponding day-ahead returns. This leads to

a state representation that can be observed during both train and test sets. Additionally, we

propose a reward function that is defined as the ratio of the profits observed and the profits

coming from the rolling intrinsic benchmark. This allows for a better representation of the

value functions. The outcomes of these modifications are presented in a new case study

and are compared against an anticipative policy we call the look-ahead policy. The results

show that the proposed method yields significant improvements of approximately 19% on

average, with respect to the rolling intrinsic benchmark. In addition, we can see that the

proposed modifications allow for better generalization of the fitted Q method in out-of-sample

data. Finally, the results illustrate that the obtained policy is a low-risk policy that is able

to outperform on average the state of the art for the industrial rolling intrinsic benchmark

strategy.
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Chapter 4

Lifelong Control of Off-grid

Microgrid with Model Based

Reinforcement Learning

In this chapter, we address the energy arbitrage problem from the perspective of an off-grid

microgrid operator in the context of rural electrification. In particular, we deal with the

lifelong control problem of an isolated microgrid. The main challenges for an effective control

policy stem from the various changes that take place over time. For the design of an effective

control policy, we propose a novel model-based reinforcement learning algorithm that is able

to address the different changes that are encountered over the lifetime of the microgrid. The

algorithm demonstrates generalisation properties, transfer capabilities and better robustness

in case of fast-changing system dynamics. The proposed algorithm is compared against two

benchmarks, namely a rule-based and an MPC controller. The results show that the trained

agent is able to outperform both benchmarks in the lifelong setting where the system dynamics

are changing over time.

4.1 Introduction

Microgrids are small electrical networks composed of flexible consumption, distributed power

generation (renewable and/or conventional) and storage devices. The operation of a microgrid

is optimized in order to satisfy the demand while ensuring maximum reliability and power

quality and to maximize the renewable energy harvested locally while minimizing the total

system cost.

Centralized microgrid control is usually decomposed in four tasks: i) estimating the

parameters of the microgrid devices (for instance the charge efficiency of a battery storage
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device as a function of the state of charge and temperature, or the actual capacity of a battery

after a number of cycles), ii) forecasting the consumption and the renewable production,

iii) operational planning to anticipate weather effects and human activities, and iv) real-

time control to adapt planned decisions to the current situation. These tasks are preformed

sequentially during the lifetime of a microgrid in order to achieve near optimal operation and

to maximize the benefits arising from distributed generation.

After the initial parameters’ estimation step, it is important for the efficient microgrid

operation to incorporate in the decision making process all the sources of uncertainty. To

this end, forecasting techniques are deployed for the stochastic production and consumption.

There is a variety of forecasting techniques in the literature ranging from fundamental models

of consumption and renewable energy production [109] to statistical models using measured

data [27].

Subsequently, the outputs of the forecasting models in combination with the system

parameters are used to compute the optimal control actions that need to be taken. The

optimization of the control actions can be performed using the simulation model of the

microgrid. Model predictive control (MPC), a feedback control law meant to compensate for

the realization of uncertainty, is often used for achieving economic efficiency in microgrid

operation management [32]. Probabilistic forecasting models attempt not only to provide the

best point forecast but instead target the distribution of the uncertainty. The output of these

models can be used to solve stochastic variants of MPC [36]. Depending on the reliability

concerns related to the micorgrid use case, robust MPC can provide more secure ways of

dealing with uncertainty [110]. Given the data availability, the two preceding tasks, namely

forecasting and optimization, can be merged into one task and a control action can be derived

directly from the data observed.

In this chapter, we present an open-source reinforcement framework for the modeling of

an off-grid microgrid for rural electrification. Moreover, we formulate the control problem

of an isolated microgrid as a Markov Decision Process (MDP). Due to the high-dimensional

continuous action space we define a set of discrete meta-actions in a similar way to previous

work [111].

The main challenge for the lifelong control of an off-grid microgrid arises from the

uncertainty of the future renewable production and consumption. A critical issue in microgrid

operation is that often-times the policy learned during training on a dataset does not perform

well on unseen data. Additionally, the degradation or damage of the various components

such as the storage devices or the photovoltaic panels cause the previously learned policies to
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become sub-optimal over time.

To address these challenges we propose a novel model-based reinforcement learning

algorithm. In particular, this class of algorithms integrates planning and learning of an optimal

control. They do so by firstly estimating a model of the environment from samples collected by

interactions with the environment and by subsequently using this model to generate synthetic

trajectories that accelerate the learning process of the control policy. The motivation for

learning the dynamics of the environment stems from the enhanced exploration that yields

generalization and transferability properties that are highly desired in the context where

changes are introduced in the environment.

In particular, the proposed algorithm is an instance of DYNA [112], where the model

is trained using distributional losses and the policy is optimized using the Proximal Policy

Optimization (PPO) algorithm. A comprehensive description of the algorithms mentioned

can be found in Sections 4.4.2 and 4.4.3. The values of the policy are updated based on

the expectation computed over a set of states sampled from a model. This model is trained

online using samples from the real environment. We illustrate that this algorithm allows for

much better estimation of the values accounting for the uncertainties and yields enhanced

exploration. Additionally, we show that the enhanced exploration gained using the model to

sample states allows for better generalization to unseen data. Moreover, we show that the

knowledge of a previously trained policy can be efficiently transferred when training on a new

set of data. Finally, we demonstrate the ability of the controller to adapt to sudden changes

such as damage of the equipment without explicit knowledge of the event.

A key advantage of the model-based approach is that it can help cope with rare events, in

case those rare events have been experienced at least once before in the past. Since DYNA

builds a model of the dynamics and simulates transitions using the learned model, it can repeat

rare events many times in simulation and update the policy accordingly. The disadvantage is

that the non-stationary time series of consumption and renewable production are difficult to

predict, and that quantile regression may cause approximation errors.

To evaluate the performance of the obtained policy, we compare it with two benchmarks: i)

a rule-based control that takes decisions in a myopic manner based only on current information;

and ii) an optimization-based controller in which look-ahead is applied to forecast consumption

and RES generation.

This chapter is organized as follows. Section 4.2 elaborates on state-of-the-art methods

used for data-driven microgrid operation and control. In Section 4.3, the system dynamics

of the microgrid are detailed. Section 4.4 provides the theoretical background used for the



92
Chapter 4. Lifelong Control of Off-grid Microgrid with Model Based Reinforcement

Learning

developed framework and the algorithm proposed. In Section 4.5, we formulate the lifelong

control problem of an off-grid microgrid as an MDP. Section 4.6 presents the model-based

algorithm used to solve the lifelong microgrid control problem. The proposed algorithm is

compared against the two benchmark strategies presented in Section 4.7. Section 4.8 describes

the case study and results obtained. Finally, Section 4.9 concludes the main findings and

provides avenues for future research.

4.2 Related Work

A wide range of reinforcement learning techniques have been applied in the literature for

optimizing energy systems operations. A vast share of these techniques include model-free

reinforcement learning algorithms, where a controller is trained based solely on interactions

with the physical environment and without using prior knowledge regarding system dynamics.

For instance, the problem of controlling a storage device connected to the main grid in order to

maximize its returns and to facilitate RES integration is proposed in [113]. A bias correction

procedure of the classical Q-learning algorithm [114] was proposed and the results show a

much faster and more stable converge than the vanilla version of the algorithm. The efficient

storage control aiming at jointly mazimizing the usage of the battery during high electricity

demand and the RES utilization in a grid connected microgrid setting is proposed in [115].

Predictions about the wind generation serve as input to a reinforcement learning controller that

is responsible for the battery scheduling. In particular, the optimal control policy is computed

using the Q-learning method. In both settings the state and action spaces are discretized in

order to reduce the computational complexity and the results show increased utilization of

renewable energy sources (RES) production. However, this reduction of complexity inherently

puts a limit to the performance improvement margins.

Alternatively, the energy management of a grid-connected microgrid can be performed in a

distributed way. Each entity of the microgrid that owns equipment (e.g. PV panels, storage etc.)

acts as an autonomous agent who can learn the best response policy to increase their expected

rewards in a microgrid market though interaction with other agents [116]. Reinforcement

learning is used as a method to develop optimal strategies for energy management and the

authors show that the proposed game converges to the Nash equilibrium. A similar multi-agent

setting is adopted in [117] where the authors propose a fuzzy Q-Learning method to solve the

control problem in a decentralized manner. Each component (i.e. storage, load, PV panels)

act as independent learners and a common information state is shared between them in order
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to coordinate their behavior. Results show increased reliability and enhanced guarantees

of energy supply by adopting this decentralized coordinated control approach. However, a

centralized approach is more relevant in the context of rural electrification and generally

leads to more tractable problems. In this chapter, we consider a central entity that owns an

energy management system (EMS) and is making the control decisions over the controllable

components.

Recent advancements in the field of Deep Learning (DL) have enabled the use of powerful

function approximation techniques for representing value functions and policies that can

support (as input/output) continuous and high dimensional state/action spaces. For instance,

Q-learning combined with Artificial Neural Networks has been proposed for the optimal

operation and maintenance of power grid [118], which is inherently a very large and complex

problem. The proposed framework outperforms expert-based solutions to grid operation.

Leveraging these techniques, researchers have also proposed a Deep Q-learning approach

for the control of seasonal storage in an isolated microgrid [119]. In this framework, a

specific deep learning structure is presented in order to extract information from the past RES

production and consumption as well as the available forecasts. Despite the highly dimensional

continuous state space, the authors obtain a control policy that is able to utilize the long-term

storage in a meaningful way. However, in this approach it is assumed that the dynamics of the

system are linear and that forecasts of the variable resources are available.

As it is shown, model-free reinforcement learning methods are able to tackle quite well

the energy management problem in contexts (environments) where the dynamics remain

unchanged. However, in this chapter we consider an environment in which changes (gradual

and abrupt) are expected to occur during the operational horizon of the microgrid. To tackle

this problem, we resort to model-based reinforcement learning, where a model of the system

dynamics is learnt by interaction with the environment and then used for taking control actions.

Model-based methods have shown better performance in terms of enhanced exploration

[120], accelerated learning [121] and have proven to be suitable in real world non-stationary

environments [120], [122].

In this direction, in [123], the energy scheduling in a residential microgrid is performed

by adapting MuZero [124], a state of the art model-based reinforcement learning algorithm, to

the problem. It incorporates the learning of a complex model that is then used for performing

Monte-Carlo tree search (MCTS) for the selection of the optimal action. However, the MCTS

algorithm relies heavily on the accuracy of the learnt model for simulating several steps in the

future. In the context of a changing environment, this approach could lead to sub-optimalities
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driven by the increasing inaccuracy of the learnt model as the prediction length increases.

Additionally, the search for the next action is performed online given some computational

budget which might raise reliability issues. In the approach presented in this chapter, the

training of the policy is assisted by a model of the system dynamics and it is performed off-line.

The trained policy is then used in real time for dispatching the microgrid components.

The use of model-based reinforcement learning with Power Pinch Analysis (PoPA) has

proven to be an effective way to coordinate several storage technologies with complementary

features in order to enhance the reliability of intermittent renewable energy sources (RES)

[125]. In particular, the authors propose an adaptive version of PoPA where DYNA-Q [126]

is used to account for the variability introduced by RES and the demand. A physical model

is used together with the RES predictions to simulate the future evolution of the system.

Corrective actions are taken in order to avoid the violation of upper and lower limits set. In this

chapter, we do not consider a physical model of the system. Instead, we attempt to learn an

approximation (neural network) of the system dynamics based on simulated experience. In this

way, any changes that might occur in the environment can be learnt through demonstration.

The contributions of this chapter are the following:

• We present an open-source reinforcement learning framework for the lifelong modeling

of an off-grid microgrid for rural electrification. Any changes (gradual/abrupt) that may

occur over the lifetime of the microgrid are incorporated in this framework.

• We propose a novel model-based reinforcement learning algorithm, where the model

of the system is trained using quantile regression and the PPO algorithm is used for

training the policy.

• The proposed algorithm is evaluated by its ability to perform well in changing conditions.

To this end, we demonstrate that the algorithm is able to outperform the benchmark con-

trol algorithms in i) a setting where the electricity consumption is changing progressively

and ii) a setting where a sudden failure of the storage device occurs.

4.3 Microgrid Description

In this section, we provide a detailed description of the system considered (Figure 4.1). The

considered microgrid is composed of PV panels, a diesel generator, a battery and aims at

providing energy to variable loads. The Energy Management System (EMS) is responsible

for the interaction and the scheduling of the controllable components. As depicted in Figure
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4.1, the EMS receives as inputs information about the production from the pv panels and the

load consumption. Subsequently, the role of the EMS is to decide on whether to activate the

diesel generator and/or to discharge/charge the battery. In the following we provide a detailed

description of the components considered. Additionally, an off-grid microgrid designed for

rural electrification is inherently characterized by changes occurring in different time-scales.

We provide a formal description of the different types of changes and we motivate the need

for a lifelong control that has the ability to adapt to these changes.

PV

Genset

Storage 
Systems

EMS

Load

FIGURE 4.1: Schematic of the considered microgrid.

4.3.1 Components

An off-grid microgrid is composed of the following components:

Consumption

The consumption of the isolated microgrid C is considered to be non-flexible, meaning that

there is a high cost associated to the energy non-served. The consumption Ct at each time-step

t of the simulation is assumed to be a stochastic variable that is sampled from distribution PC
t ,

given the h previous realizations, according to:

Ct ∼ PC
t (Ct−1, ...,Ct−h). (4.1)

In this chapter, it is represented by real data gathered from an off-grid microgrid. The

distribution PC
t is indexed in time in order to indicate that changes occur in the aggregate

consumption over the life-time of the microgrid. For instance, a change in the consumption

profile can be caused by the fact that more users are progressively connected to the micro-grid.
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Storage model

The modeling of the storage system can become quite complex and highly-nonlinear depending

on the degree of accuracy required by each specific application. In this chapter, we use a linear

“tank” model for the simulation of the battery since we assume that the simulation time-step

size ∆t is large enough (1 hour). The dynamics of a battery are given by:

SoCt+1 = SoCt +∆t · (ηchPch
t −

Pdis
t

ηdis ), (4.2)

where SoCt denotes the state of charge at each time step t, Pch and Pdis correspond to the

charging and discharging power, respectively and ηch, ηdis represent the charging and dis-

charging efficiencies of the storage system. The charging (Pch) and discharging (Pdis) power

of the battery are assumed to be limited by a maximum charging rate P and discharging rate P,

respectively. Accounting for the storage system degradation, we consider that the maximum

capacity S of the storage system as well as the charging and discharging efficiencies (ηch,

ηdis) are decreasing as a linear function of the number of cycles nt that are performed at each

time-step t. We have, ∀t ∈ T ,

SoCt ,Pch
t ,Pdis

t ≥ 0 (4.3)

Pch
t ≤ P (4.4)

Pdis
t ≤ P, (4.5)

SoCt ≤ S, (4.6)

S = s(nt). (4.7)

Steerable generator model

Steerable generation is considered any type of conventional fossil-fuel-based generation that

can be dispatched at any time-step t. When a generator is activated, it is assumed to operate

at the output level Pgen
t that is ranging between the minimum stable generation Pgen and the

maximum capacity Pgen such that:

Pgen ≤ Pgen
t ≤ Pgen. (4.8)
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The fuel consumption Ft related to the operation of the generator at time t is a function of the

power output Pgen
t with parameters F1, F2 given by the manufacturer.

Ft =


F1 +F2 ·Pgen

t , if Pgen
t > 0,

0 ,otherwise.
. (4.9)

The fuel cost cfuel
t accounting for the fuel price πsteer is then given by:

cfuel
t = Ft ·π fuel. (4.10)

Non-steerable generators model

The level of non-steerable generation from renewable resources such as wind or solar is

denoted by Pres. Similar to the non-flexible load case it is assumed that Pres
t at time-step t is

sampled from a probability distribution PPres

t , given the h previous realizations, according to:

Pres
t ∼ PPres

t (Pres
t−1, ...,Pres

t−h). (4.11)

In this chapter, the renewable generation is represented by real data gathered from an off-grid

microgrid. Similar to the case of the non-flexible load, the distribution PPres

t is indexed by time

t to indicate that changes in the renewable production might occur over time. These changes

are mostly related to the progressive degradation of the equipment (solar panels).

Power balance

At each time-step t in the simulation horizon we compute the power balance between the

injections and the off-takes. The residual power resulting from the mismatch between produc-

tion and consumption is curtailed Pcurt
t if its positive and shed Pshed

t if it is negative. We can

formally define the power balance as:

Pres
t +Pgen

t +Pdis
t +Pshed

t (4.12)

= Pch
t +Pcurt

t +Ct ,



98
Chapter 4. Lifelong Control of Off-grid Microgrid with Model Based Reinforcement

Learning

with Pcurt
t ,Pshed

t ≥ 0. The costs arising from the curtailment of generation or the shedding of

non-flexible loads are given by:

ccurt
t = Pcurt

t ·πcurt (4.13)

cshed
t = Pshed

t ·πshed (4.14)

4.3.2 Characterizing changes in the environment

Oftentimes in real-life applications the concept of interest depends on some underlying context

that is not fully observable. Changes in this underlying concept might induce more or less

radical changes in the concept of interest, which is formally known as concept drift [127]. For

instance, in the off-grid microgrid under study the connection of new users and their habits

have strong influence on distribution PC
t . However, it is not possible to know exactly and to

quantify the effect on the consumption a priori.

In this chapter, we deal with the following two distinct set of changes: 1) gradual changes

that affect the non-controllable dynamics; and 2) sudden changes that affect the deterministic

dynamics. As described in Section 4.5, one can decouple the two components of the state

space. Gradual changes occurs in the stochastic component of the state space (4.29) while

sudden changes occurs in the deterministic system dynamics (4.28).

Gradual changes

These are cases in which a slow concept drift occurs. The extent of the drift is bounded so that

any learner can follow these changes successfully. A formal bound on the maximal rate of

drift that is acceptable by a batch-based learner is given by Kuh, Petsche, and Rivest [128]. In

this chapter, we assume that changes related to the consumption and renewable production

profiles as well as degradation of the equipment (storage) belong to this category.

Sudden or abrupt changes

In our setting, sudden or abrupt changes are adversarial changes that affect the system

dynamics, and for which the learner needs to find the best response. Robust MDPs [129]

describe optimal control under such changes and recent work [130] shows that incorporating

learning in such contexts can deliver policies as good as the minimax policy. Gajane, Ortner,

and Auer [131] also propose an algorithm for detecting abrupt changes in MDPs. In the

concept of an off-grid micro-grid this type of change would typically occur during equipment

failure. In the case study presented in Section 4.8.6, we consider a sudden failure of the
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storage system. This event leads to a sudden change in the optimal control policy where the

generator becomes the main source of power when the RES are not producing sufficiently.

Another example of an abrupt change could be the sudden connection of a large industrial

consumer to the microgrid. This would have a significant and direct impact to the control

policy as well.

4.4 Reinforcement Learning Background

In this section, we provide the theoretical background used for the developed framework and

the proposed methodology. We first introduce the Markov Decision Process that is the main

framework on which we rely on for modeling the decision making process of an off-grid

microgrid operator. We proceed by describing Dyna and Proximal Policy Optimization (PPO),

which are the foundations of the proposed novel algorithm.

4.4.1 Markov Decision Process

We consider an infinite horizon discounted Markov Decision Process (MDP), defined by

the tuple 〈S,A,r,{Pt}t ,γ〉 where S is the state space, A the action space, r : S×A→ R is

the Markovian cost function, Pt : S×A→ ∆(S), t ≥ 0, is the transition kernel at time t and

γ ∈ (0,1) is the discount factor. Here, ∆(S) is the probability simplex on S, i.e. the set of all

probability distributions over S. At each time step t, the agent observes state st ∈ S, takes

an action at ∈ A, obtains reward rt with expected value E[rt ] = r(st ,at), and transitions to a

new state st+1 ∼ Pt(·|st ,at). We refer to (st ,at ,rt ,st+1) as a transition. Note that the transition

kernels may not be stationary.

Let π denote a stochastic policy π : S→ ∆(A) and η(π) its expected discounted cumula-

tive reward under some initial distribution d0 ∈ ∆(S) over states:

η(π) = Es∼d0 [V
π(s)], (4.15)

where τ = {(st ,at ,rt)}t≥0 is a trajectory, p(τ) is the probability distribution over trajectories,

p(τ) = d0(s0)
∞

∏
t=0

Pt(st+1|st ,at)π(at |st), (4.16)
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Algorithm 4 DYNA

1: Inputs: MDP M, integers T , B, N
2: initialize policy πθ , model Mψ

3: for t = 0 to T −1 do
4: s∼ d0
5: a∼ πθ (·|s)
6: s′,r ∼M(s,a)
7: πθ = UPDATEPOLICY(s,a,r,s′)
8: Mψ = UPDATEMODEL(s,a,r,s′)
9: if t ≥ B then

10: for n = 0 to N−1 do
11: s∼ d0
12: a∼ πθ (·|s)
13: ŝ′, r̂ ∼Mψ(s,a)
14: πθ = UPDATEPOLICY(s,a, r̂, ŝ′)
15: end for
16: end if
17: end for

and the value function V π is defined for each state s ∈ S as

V π(s) = Ep(τ)

[
∞

∑
t=0

γ
trt(st ,at)

∣∣∣∣∣s0 = s

]
. (4.17)

The goal of the agent is to find a policy that maximizes the expected cumulative reward

η(π):

η
∗ = max

π
η(π), (4.18)

π
∗ = argmax

π
η(π). (4.19)

4.4.2 Dyna

DYNA [112] is a model-based reinforcement learning architecture that aims to integrate

learning and planning. It does so by performing online estimation of the transition kernel and

reward function. Let Mψ = 〈Pψ ,rψ〉 be a parametric model learned during training. Note that

we estimate a single transition kernel Pψ even though the true kernel may not be stationary.

Algorithm 4 outlines the DYNA algorithm in the parametric setting. For every transition

(s,a,r,s′) sampled from the environment M, we update the policy πθ and parametric model

Mψ via update functions described in Algorithms 5 and 6. We remark that the policy update

typically relies on a value function Vφ . Additionally, the value function Vφ and the components

of the parametric model Mψ are updated by minimizing a loss function.
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Algorithm 5 UPDATEPOLICY

1: Input: transition (s,a,r,s′)
2: Vφ = argminVϕ

LV (Vϕ)
3: πθ = argmaxπϕ

η(πϕ)

Algorithm 6 UPDATEMODEL

1: Input: transition (s,a,r,s′)
2: Pψ = argminPϕ

LP(Pϕ)
3: rψ = argminrϕ

Lr(rϕ)

After the update step, we use the learned model to perform N updates of the policy πθ ,

in the same way as one would using the true environment. At every step, we sample a state

s∼ d0, apply action a∼ πθ (·|s) and query the parametric model ŝ′, r̂ ∼Mψ(s,a).

Note that there are two main differences during the planning phase. First, the transition

(s,a, r̂, ŝ′) comes from the parametric model, and second, there is no structure in the sampling

process, therefore in such an update the agent can experience any possible one step transition,

even ones that are hard to gather under the current policy.

4.4.3 Proximal Policy Optimization

The Proximal Policy Optimization (PPO) algorithm [132] belongs to the family of policy

gradient methods and can be used with both discrete and continuous action spaces. In the

vanilla actor-critic method [133], a stochastic policy πθ with parameters θ is optimized

towards the following regularized objective:

η(πθ ) = Ep(τ)

{
πθ (at |st)

πo(at |st)
Âφ (st ,at)

}
− 1

β
D(πθ ||πo), (4.20)

where πo is the old policy, Âφ (st ,at) is an estimator of the advantage function, D is a regularizer

in the form of a Bregman divergence and β is a learning rate.

Since equation (4.20) is hard to optimize directly, the policy is repeatedly updated using

stochastic gradient descent. Concretely, a gradient step is used to update of the parameters θ

as

θnew = θ +α∇η̂(πθ ), (4.21)
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where α is a step size and the regularized objective for the individual transition (s,a,r,s′) is

estimated as

η̂(πθ ) =
πθ (a|s)
πo(a|s)

Âφ (s,a)− 1
β

∑
a′

πθ (a′|s) log
πθ (a′|s)
πo(a′|s)

. (4.22)

An unbiased estimator of the advantage function is given by

Âφ (s,a) = r+ γV̂φ (s′)−V̂φ (s), (4.23)

where the estimated value function V̂φ is obtained by minimizing the following loss:

LV (V̂φ ) =
1
2

Ep(τ)[Âφold (st ,at)
2]. (4.24)

In practice, rather than performing updates for individual transitions, the algorithm per-

forms multiple epochs of mini-batch updates of stochastic gradient descent of both the policy

and value function. Both the policy and the value function are updated during the UP-

DATEPOLICY step in Algorithm 4. The way in which these updates are performed is presented

in Algorithm 5.

4.4.4 Quantile Regression

The problem of estimating a model Mψ = 〈Pψ ,rψ〉 is commonly cast as supervised learning,

in which the components of Mψ are computed by minimizing loss functions. One of the

contributions of our proposed algorithm is to use distributional losses to estimate Mψ in the

parametric setting.

Distributional losses introduced by Bellemare, Dabney, and Munos [134] and expanded

by Dabney, Rowland, Bellemare, et al. [135] achieve state of the art performance in several

reinforcement learning benchmarks. Imani and White [136] discuss the importance of distri-

butional losses for regression problems, arguing that such losses have locally stable gradients

which improves generalization. Here we concisely describe the loss function that we use in our

setting. For a more detailed description the reader can consult Dabney, Rowland, Bellemare,

et al. [135].

Our goal is to learn the distribution of some random variable z ∼ F(z). To do so, it

is known that the value of the quantile function F−1
z (τ) is the minimizer of the quantile

regression loss. This quantile regression loss acts as an asymmetric squared loss in an interval

(−k,k) around zero and reverts to a standard quantile loss outside this interval. The Quantile
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Huber loss is defined as:

ρτ(u) = |τ−δ{u≤0}|L(u), (4.25)

where L(u) is given by

L(u) =


1
2 u2, if|u| ≤ k,

k(|u|− 1
2 k), otherwise.

(4.26)

In Section 4.6 we show how to adapt this loss to learn the estimated transition kernel Pψ and

reward rψ .

4.5 Problem Statement

The operation of the system described in Section 4.3 can be modelled as a Markov Decision

process as it is defined in Section 4.4. We consider that at each time-step t ∈ T the state

variable st ∈ S is composed of a deterministic and a stochastic part as st = (s
¯t , s̄t) ∈ S and

contains all the relevant information for the optimization of the system. The deterministic

part s
¯t = (SoCt) ∈ S

¯
corresponds to the evolution of the state of charge of the storage device

and can be fully determined by equations (4.2)-(4.7). The stochastic variable s̄t represents the

variable renewable production and consumption as s̄t =
(
(Ct , ...,Ct−h) ,

(
Pres

t , ...,Pres
t−h

))
∈ S̄ as

defined in equations (4.1) and (4.11).

The available control action at that can be applied at each time-step t is defined as:

at =
(
Pch

t ,Pdis
t ,Pgen

t
)
∈ A, (4.27)

and contains the charging/discharging decision for the storage system and the generation level

of the steerable generators.

At each time-step t the system performs a transition based on the dynamics described in

Section 4.3 according to

s
¯t+1 = ft (st ,at) , (4.28)

s̄t+1 ∼ P̄t (s̄t) , (4.29)

where ft is a deterministic function and P̄t is used to denote the joint probability distribution of

the stochastic variables C,Pres as defined in equations (4.1) and (4.11). Note that, the transition

function ft is indexed in time to account for the changes (e.g. degradation) that may occur to
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the equipment. Equations (4.28) and (4.29) can fully determine the transition kernel of the

MDP at each time step as Pt : S×A→ ∆(S).

Each transition generates a non-positive reward signal (i.e. cost) rt , that is composed of

the fuel cost cfuel
t , the cost of curtailment of RES generation ccurt

t and the cost of shedding of

non-flexible loads cshed
t . The reward function r(st ,at) ∈R, can be defined as:

rt = r(st ,at) = −(cfuel
t + ccurt

t + cshed
t ). (4.30)

The problem of lifelong control of an off-grid microgrid is equivalent to finding a policy π

that maximizes the total expected discounted cumulative reward η(π) as defined in equations

(4.15)-(4.19).

4.5.1 Microgrid Simulator

The described MDP for off-grid microgrid control is available as an open source simula-

tor1implemented in OpenAI gym [137]. The simulator contains a detailed modelling of the

microgrid components and allows for applying any control strategy. It receives as input the

microgrid configuration (components size and parameters, time series representing the exoge-

nous information, and simulation parameters) and simulates the operation for a predefined

simulation horizon T .

4.6 Methodology

Real world applications are non-stationary, partially observable and high dimensional. A

desirable algorithm should effectively deal with those challenges as well as provide basic

safety guarantees [138].

Model-based RL algorithms are appealing for real world applications because they are

sample efficient, they explicitly approximate the environment dynamics, and, when combined

with powerful function approximation, they can scale to the high dimensional setting [139].

The key issue with model-based RL is learning the model sufficiently well to be useful

for policy iteration. In real-world applications, this issue is exacerbated by the requirements

of generalisation and sample efficiency. To address those challenges we propose a practical

algorithm that builds upon the DYNA algorithm [112], as it is described in Section 4.4.2. We

use a variant of PPO [132] to perform policy iteration, and quantile losses to approximate the

model dynamics. A description of PPO can be found in Section 4.4.3. We have two quantile
1Available at https://github.com/bcornelusse/microgridRLsimulator.

https://github.com/bcornelusse/microgridRLsimulator
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losses, one for learning the transition kernel Pψ and one for the learning the reward function

rψ :

LP(s) = E[
q

∑
i=1

ρτi(s
′−Pψ(s,a)] (4.31)

Lr(r) = E[
q

∑
i=1

ρτi(r− rψ(s,a)] (4.32)

Model-free updates are performed in PPO by sampling a partial trajectory and directly

maximing (5). We use two seperate networks for the value Vφ and the policy πθ , and we

select the advantage estimator as in (4.23). Model-based updates are one-step simulated

transitions. As noted in previous work [140], updating simulated states helps to empirically

mitigate model error, constraining it to simulated states. Complementary work [141] shows

that simulating one-step transitions provides a strong baseline with respect to partial or

complete policy rollouts with a learned model, and PPO mantains its monotonic improvement

property (Theorem 1, Schulman, Levine, Moritz, et al., 2015).

In practice, in order to deal with the high dimensionality of the state and action space, we

represent the model Mψ as a neural network with shared parameters ψ ∈ Ψ and two heads

Pψ and rψ . Each head outputs a vector of size d×q where d is the output dimension and q is

the number of quantiles considered. The policy πθ and the value function Vφ are represented

using two different networks. Contrary to previous claims [132], sharing parameters does not

improve learning in our experiments. Finally, we introduce a hyperparameter B∈N that is the

minimum amount of optimisation performed with the model prior to allowing model-based

updates. Empirically we found this to reduce the detrimental effect of model error on policy

updates. We refer to the presented algorithm as D-DYNA.

4.7 Benchmark strategies

In this section, we introduce two control strategies used for comparison purposes. First, a

myopic rule-based strategy is used to provide a lower bound of the total rewards in the period

considered. The second strategy corresponds to a model-predictive control (MPC) with N-step

look-ahead. We use MPC to compute an upper bound on the total reward that can be obtained

by any policy, by considering a sufficiently large number of look-ahead steps and providing it

with perfect knowledge about the future realization of the stochastic variables. In a realistic

setting, no algorithm has access to perfect knowledge about the future, hence this upper bound

is not attainable in practice.
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4.7.1 Rule-based controller

The rule-based controller is a simple myopic controller that implements a set of decision rules

to determine the control actions that need to be taken at each time-step t. It requires only

data regarding the present condition of the microgrid. The logic that is implemented is the

following:

1. First, the residual generation ∆Pt is computed as the difference between the current

total renewable production and non-flexible demand as:

∆Pt = Pres
t −Ct

2. If ∆Pt is positive, the status of the battery is set to charge (“C”) and the decision yt is

formed as:

yt = “C”

3. If ∆Pt is negative, the status of the battery is set to discharge (“D”) and the decision yt

is formed as:

yt = “D”

4. When the decision yt is made, the residual generation is dispatched over devices as

presented in Algorithm 7, and the control action at =
(
Pch

t ,Pdis
t ,Pgen

t
)

containing to the

storage device (Pch
t , Pdis

t ) and the generator (Pgen
t ) is determined.

A detailed description of the rule-based controller is presented in the Appendix (Algorithm 7).

4.7.2 Model-predictive controller

The model-predictive controller (MPC) is used to define the control actions (Pdis
t , Pch

t , Pgen
t )

at each decision time-step t by solving an optimization problem with a look-ahead period

of N steps. This controller receives as input the microgrid parameters and a forecast of the

stochastic variables for the N following time steps. The forecast for the consumption, is

denoted by Ĉt , and is given by Ĉt = (Ĉt+k,∀k ∈ {0, ...,N−1}). Accordingly, the forecast of

the renewable production is denoted by P̂res
t , and is given by P̂res

t = (P̂res
t+k,∀k ∈ {0, ...,N−1}).

The optimization problem that is solved at each time-step is presented in Algorithm 8.

The objective function aims at minimizing the curtailment, load shedding and fuel cost subject

to the operational constraints defined by a mixed-integer linear model of the microgrid. The
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integer variables nt+k are used to ensure that when the generator is activated the generation

level lies between its minimum stable generation level and its capacity.

The output of this controller is an open loop policy aN
t = ((Pdis

t+k,Pch
t+k,Pgen

t+k),∀k∈{0, ...,N−
1}) for the subsequent N time-steps. At each control time-step t, only the first action from the

sequence of computed actions is applied to the system at =
(
Pch

t ,Pdis
t ,Pgen

t
)
. The quality of

this controller depends on the number of look-ahead steps N, the accuracy of the forecasts and

the quality of the model considered.

4.8 Case study

In this section, we evaluate the performance of the proposed algorithm on a real-life off-grid

microgrid. First, we define the microgrid specifications and the parameters used during our

simulations. Subsequently, we define a set of Meta-Actions that simplify the policy search.

The particular instances of the benchmarks (i.e. rule-based controller, MPC etc.) that are used

in this case study to compare the performance of our algorithm are described. We proceed by

defining three distinct experiments in order to evaluate the capability of the proposed algorithm

to i) generalize in out-of-sample data, ii) to be robust in the event of sudden changes and to iii)

transfer knowledge from one training session to another in order to accelerate learning.

4.8.1 System configuration

The evaluation of the developed methodology is performed using empirical data measured

by the off-grid micro-grid system of the village “El Espino" (-19.188, -63.560), in Bolivia,

installed in September 2015 and composed of photovoltaic (PV) panels, battery storage and a

diesel generator. The system serves a community of 128 households, a hospital and a school,

as well as the public lighting service. A comprehensive description of the system and of the

data is available in previous work [143].

Aggregated electrical load data is available as an indirect measurement, i.e. as the sum

of direct measurements retrieved from the PV arrays, the diesel generator and the battery by

means of smart meters. In this chapter, we use the available measured data for the consumption

and the PV production for the period January 2016 to July 2017, presented in Figures 4.2 and

4.3. We can observe the seasonality effects to both load and PV production as well as the

constant increase of the load due to the gradual connection of households to the microgrid.

In an off grid-microgrid setting, the optimal size of the components depends heavily on

the control policy applied. When the capacity of the installed components is large, a myopic
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FIGURE 4.2: PV production and its daily, weekly and monthly rolling aver-
age.

policy can be as good as a look-ahead policy. On the other hand, a good policy that is able to

anticipate changes and to act accordingly allows for the reduction of the components size and

subsequently the installation cost.

The search for a good policy becomes much more relevant when the size of the components

is constraining the operation of the microgrid. Therefore, in this chapter we consider a reduced

installation for which the applied control policy really impacts the cost of operation for the

microgrid. The parameters used for the microgrid configuration in this chapter are given in

Table 4.1.

Additionally, the effect of different policies depend on the seasonality of solar irradiation

and demand being observed. For instance, during the summer period (November through

March in the case of Bolivia) there are high solar irradiation levels that can be used to charge

fully the battery most of the days. During this period a myopic rule-based strategy has

very similar outcomes with a look-ahead strategy. However, during the winter period (April

to October), when solar irradiation is limited and the battery may not be fully charged, a

more elaborate strategy is necessary in order to guarantee low-cost security of supply in the

microgrid.
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FIGURE 4.3: Electrical load and its daily, weekly and monthly rolling aver-
age.

4.8.2 Partial Observability

As described in Section 4.3, the process under consideration is non-stationary. The stochastic

component of the transition kernel is known to be non-Markovian and the optimal decision

requires knowledge of the next l time steps. In supervised learning problems this issue is

commonly addressed by state-based networks [144]. However, in this chapter we take a

similar approach as the one considered in the optimization-based controller (Section 4.7.2).

We use the model Mψ as a 1-step forecaster. After a number of warm-up iterations B, we use

the model to produce a forecast of the state in the l following time-steps. This forecast is used

to augment the actual state which is used to train the controller. A critical assumption of our

approach is that the gradual changes to the system dynamics are sufficiently smooth for a

single model Mψ to successfully track these changes.

4.8.3 Action Space and Meta-Actions

Due to the continuous and high-dimensional nature of the state and the action spaces of the

problem, reinforcement learning methods cannot be applied in their exact form. However,
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TABLE 4.1: Input parameters.

S 120 kWh
P, P 100 kW
ηch, ηdis 752 %
π fuel 1 C/kWh
πcurt 1.5 C/kWh
πshed 10 C/kWh
∆t 1 h
Pres 120 kW
Pgen 9 kW
Pgen 0 kW

recent developments in the field of reinforcement learning have made possible the design of

approximate optimal policies using function approximation.

In our setting, function approximation alone does not suffice. The action space visited by

the optimal controller from Section 4.7.2 is constrained to a subspace of R2. Therefore, we

elaborate on the design of a small and discrete set of actions A′ that maps to the original action

space A. This step is necessary for the use of policy-based algorithms, as the maximization

problem defined in (4.19) is hard to solve.

The meta-action a′t for each decision step t is defined as:

a′t ∈ A′ = {“C”,“D”,“G”} .

Meta-action “C” indicates the action to charge energy in the battery, when there is excessive

renewable production (∆Pt > 0). With meta-action “D” we select to prioritize the discharge

of the battery for covering the deficit of energy (∆Pt < 0) in the microgrid. In case the

battery does not suffice for covering this deficit, the generator will be activated. Alternatively,

meta-action “G” is used to prioritize the generator for supplying the deficit of energy and

the battery will be discharged only in the case that the maximum generating limit (Pgen) is

reached.

In particular, at each decision step t we provide as inputs to the dispatch Algorithm 7, the

observed residual generation ∆Pt and the meta-action yt = a′t . The residual generation ∆Pt is

computed after the realization of the stochastic variables (Pres
t , Ct) as ∆Pt = Pres

t −Ct .

Defining the action space in this way allows the use of the dispatch rule defined in

Algorithm 7 to obtain the control actions at = (Pch
t ,Pdis

t ,Pgen
t ). The discrete action space A′

simplifies the problem but restricts the class of possible policies, which sometimes harms

the performance of the reinforcement learning methods. We leave the problem of directly
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optimizing continuous actions as future work.

4.8.4 Comparison with the benchmarks

The algorithm is compared against the two benchmarks described in Section 4.3 and the

simple model-free version of PPO [132]. An optimization controller with perfect knowledge

and 1 period of look-ahead (“MPC-1") is considered in order to obtain a fair comparison to

the proposed algorithm. An optimization controller with 24 periods of look-ahead and perfect

knowledge (“MPC-24") is used to provide an upper bound on the performance of any control

strategy. Additionally, a myopic rule-based controller, indicated in the results as “heuristic",

is used to provide a lower bound. We use PPO to denote the baseline algorithm which only

performs model-free updates and D-DYNA to denote our method.

The label “training step" on the x-axis refers to the number of times a new set of trajectories

has been used for computing one or multiple gradient steps. For a fair comparison we fix

the total number of samples available for the agent and compute the number of samples per

training update accounting for the number of gradient step and the number of planning steps.

Finally, results are averaged for 10 random seeds in order to account for stochasticity.

4.8.5 Generalization

One of the challenges of real world applications is the occurrence of changes in the transition

dynamics. As described in Section 4.3, the dynamics of the microgrid are composed of a

deterministic part and a stochastic part. The stochastic part is not controllable and therefore

constitutes a source of progressive change.

In this section, we evaluate the ability of model-based algorithm to adapt to gradual

changes that occur in the state space. An algorithm that generalizes over unseen data distri-

butions can provide a good initialization for fine-tuning the new controller. The following

protocol was used for training and evaluation of the proposed algorithms. We split the original

dataset in a training set and a test set: the training set ranges from January 2016 to December

2016, while the test set ranges from January 2017 to July 2017.

Figure 4.4 presents the cumulative returns (costs) collected in the test set by the compared

algorithms as a function of the training progress (i.e. training steps). In other words, at each

training step performed by the RL algorithms we perform an evaluation of all considered

algorithms in the test set. We observe that the reinforcement learning methods approximately

yield a 25% cost reduction in comparison to the rule-based controller and the model-based

method is comparable to the upper bound set by MPC-24. As illustrated in Figure 4.4,
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FIGURE 4.4: Cumulative returns (cost) on the test set as a function of the
training progress of the RL algorithms.

introducing a model benefits generalization and both the baseline and the proposed algorithm

are able to outperform the heuristic. We conjecture that using artificially generated states

accelerates the learning process and provides a wider coverage of the state (exploration) and

action space manifold, resulting in better generalization properties.

Additionally, we observe that the proposed model-based method is able to outperform the

“MPC-1" benchmark. We can argue that the obtained policy manages to resemble a look-ahead

policy that takes optimal actions with respect to several steps ahead. This outcome is rather

valuable because by using such a policy we can reduce the investment cost for equipment

(e.g. battery capacity or diesel generators), without jeopardising the security of supply in

the microgrid. Additionally, the cost reduction achieved by the proposed algorithm mainly

implies a reduction in the use of the diesel generator and the higher utilization of RES. This

effect subsequently results in an overall reduction of CO2 emissions and promotes sustainable

energy utilization in the context of rural electrification.

4.8.6 Robustness

In this section, we evaluate the performance of the proposed model-based algorithm in sudden

changes as defined in Section 4.3. An example of such a change is the abrupt failure of the

storage system, where the battery capacity is suddenly unavailable.

We simulate this change in the following way. Let xt be the random discrete variable

taking at each time-step the value 0 if the battery has failed and the value 1 if the battery

is still operational. We assume that xt follows a Bernoulli probability distribution where

Pr(xt = 1) = pt , with pt following a linear decay in time and p0 = 0.99. If the battery fails,

then the maximum storage capacity is considered to be reduced to zero (S = 0 kWh). After a
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FIGURE 4.5: Cumulative returns (costs) when the battery is excluded as a
function of the training progress of the RL algorithms.

failure, it is assumed that the battery equipment is fixed and the storage capacity is restored

to its initial value in a period of N = 370 hours. Failures can occur during both training and

testing.

For this experiment, we have increased the size of the generator at a level that covers the

entire demand. In this way, we want to evaluate the capability of the proposed model-based

method to switch from a regime where, the battery is mainly used when it is available, to only

using the generator in the event of a battery failure.

Under this scenario, we evaluate the benchmark controllers, the model-free method as well

as the model-based method. As we can see in Figure 4.5, all benchmarks perform poorly while

the proposed algorithm is able to quickly adapt to the new drastically changing dynamics.

The poor performance of the benchmark controllers is justified by the fact that there is no

special equipment for the detection of the failure. The superiority of the proposed model-based

algorithm stems from its ability to detect the change since the model has been exposed to

similar incidents during training.

4.8.7 Transfer

In Reinforcement Learning, transfer learning is the ability of speeding up learning on new

MDPs by reusing past experiences between similar MDPs. For real world applications, it

would be desirable to obtain an algorithm that has the ability to learn off-line and adapt as the

task changes.

A natural instance of such feature is to consider each month as a separate MDP and

evaluate the ability to transfer knowledge across months. Note that each month has a different

distribution of the stochastic component of the transition kernel.
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We set up the following experimental protocol. We use January 2016 to pre-train the

algorithms. Then we initiate the training process for February and August 2016 using the

pre-trained model. Intuitively transfer should be easier if the data distributions are close in

time, and harder otherwise.

The results of the described protocol are presented in Figures 4.6 and 4.7. As we can see,

transferring the model and the control allows for better performance than learning from scratch.

As illustrated, the model-based method can substantially speed up the learning process. The

proposed method is shown to slightly outperform the “heuristic" as well as the “MPC-1h"

benchmarks. However, in August the results are much better in that the model-based method

is approaching the performance of the “MPC-24h" policy, while the rest of the benchmarks

are falling behind.

As discussed in Section 4.8.1, the effect of different policies depends on the period of the

year. We can observe that the results in February are substantially different in comparison

to August. There is a small discrepancy between the returns from the myopic and the

optimization-based controller with perfect knowledge during February. On the other hand,

during August the two policies show an increased difference in returns.

4.9 Conclusions

In this chapter, a novel model-based reinforcement learning algorithm is proposed for the

lifelong control of a microgrid. First, an open-source reinforcement framework for the

modeling of an off-grid microgrid for rural electrification is presented. The control problem of

an isolated microgrid is casted as a Markov Decision Process (MDP). The proposed algorithm

learns a model online using the collected experiences. This model is used to sample states

during the evaluation step of the proximal policy optimization (PPO) algorithm.

We compare the proposed algorithm to the standard benchmarks in the literature. Firstly, a

rule-based control that takes decisions in a myopic manner based only on current information

and secondly an optimization-based controller with look-ahead are considered for comparison

purposes.

We evaluate the generalization capabilities of the proposed algorithm by comparing its

performance in out-of-sample data to the benchmarks. It is found that the use of the model to

create artificial states leads to improved exploration and superior performance compared to

the myopic rule-based controller and the MPC with one step look-ahead.
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FIGURE 4.6: Cumulative returns (cost) during February as a function of the
training progress of the RL algorithms.

FIGURE 4.7: Cumulative returns (cost) during August as a function of the
training progress of the RL algorithms.
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We evaluate the robustness of the proposed algorithm when being subject to sudden

changes in the transition dynamics, such as equipment failure. The results indicate that the

model-based method has the ability to adapt rapidly to severe changes in contrast to the

benchmarks that are unable to detect changes and perform poorly to the subjected task.

Finally, we evaluate the ability to transfer knowledge from one training session to the next.

The results show large gains in computational time when initiating training on a new dataset

with a pre-trained model.

One important conclusion is that the proposed model-based reinforcement learning method

is able to adapt to changes, both gradual and abrupt. Overall, the proposed method succeeds

in tackling the key challenges encountered in the lifelong control of an off-grid microgrid

for rural electrification. Future work should be directed to the design of a low dimensional

continuous action space in order to be able to obtain results similar to the optimization-based

controller.

In future work, we plan to perform experiments directly with continuous actions. As

explained in the chapter, discretizing the actions makes reinforcement learning and exploration

much faster, but introduces approximation errors that may account for the slightly worse

performance of reinforcement learning in some settings. Since actions are concentrated to

restricted areas of the joint action space, we believe that it is necessary to impose constraints

on the continuous actions during learning. Additionally, future work could be directed towards

incorporating the effect of efficiency improvement on the microgrid components. For instance,

improvements in the efficiency of consumer appliances are expected to progressively decrease

the average demand profile. On the other hand, improvements in the efficiency of solar PV or

in storage systems due to technological improvements are expected to have an impact on the

control policy.

4.10 Appendix

4.10.1 Algorithms
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Algorithm 7 Power dispatch.

1: Inputs: ∆Pt , yt , P, P, Pgen

2: Initialize:Pdis
t ← 0,Pch

t ← 0, Pgen
t ← 0

3: if ∆Pt ≥ 0 then
4: if yt = “C” then
5: Pch

t = min(PRES,P)
6: end if
7: ∆Pt ← ∆Pt −Pch

t
8: else
9: if yt = “D” then

10: Pdis
t = min(−PRES,P)

11: ∆Pt ← ∆Pt +Pdis
t

12: Pgen
t = min(−PRES,Pgen)

13: end if
14: if yt = “G” then
15: Pgen

t = min(−PRES,Pgen)
16: ∆Pt ← ∆Pt +Pgen

t
17: Pdis

t = min(−PRES,P)
18: end if
19: end if
20: Output: at

4.10.2 Notation

Sets and indices

• t, decision time step

• k, look-ahead step

• A , action space

• A ′, meta-action space

• S , state space

Parameters

• F1, F2, fuel consumption parameters

• N, number of look-ahead periods

• Ĉ, load forecast (kW)

• P, P, maximum charge and discharge rate (kW)

• Pres, non steerable generation (kW)
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Algorithm 8 Model-predictive controller.

1: Inputs: N, πcurt , πshed, π fuel,F1, F2, ηch, ηdis,
P, P, S, Pgen , Pgen, Ĉt ,P̂res

t
2: Solve:

min
N

∑
k=0

∆t
(
cfuel

t + ccurt
t + cshed

t
)

s.t.P̂res
t+k +Pgen

t+k +Pdis
t+k +Pshed

t+k =

Pch
t+k +Pcurt

t+k + Ĉt+k ,∀k ∈ {0, ...,N−1}
ccurt

t+k = Pcurt
t+k ·πcurt ,∀k ∈ {0, ...,N−1}

cshed
t+k = Pshed

t+k ·πshed ,∀k ∈ {0, ...,N−1}
cfuel

t+k = Ft+k ·π fuel ,∀k ∈ {0, ...,N−1}
Ft+k = F1 +F2 ·Pgen

t+k ,∀k ∈ {0, ...,N−1}
SoCt+k+1 = SoCt+k +∆t · (ηchPch

t+k−
Pdis

t+k

ηdis ) ,∀k ∈ {0, ...,N−1}

SoCt+k,Pch
t+k,Pdis

t+k ≥ 0 ,∀k ∈ {0, ...,N−1}
Pch

t+k ≤ P ,∀k ∈ {0, ...,N−1}
Pdis

t+k ≤ P ,∀k ∈ {0, ...,N−1}
SoCt+k ≤ S ,∀k ∈ {0, ...,N−1}
Pgen

t+k ≤ Pgen ·nt+k ,∀k ∈ {0, ...,N−1}
Pgen

t+k ≥ Pgen ·nt+k ,∀k ∈ {0, ...,N−1}
nt+k ∈ {0,1} ,∀k ∈ {0, ...,N−1}

3: Output: aN
t

• Pgen, steerable generator capacity (kW)

• Pgen, minimum steerable generation (kW)

• S, S, maximum and minimum battery capacity (kWh)

• P̂res, renewable generation forecast (kW)

• ∆t , simulation and control period duration (h)

• ηch, ηdis, charge and discharge efficiency (%)

• πcurt, curtailment price (C/kWh)

• π fuel, fuel price (C/kWh)

• πshed, load shedding price (C/kWh)
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Variables

• a, control actions vector

• a′, meta-actions vector

• C, non-flexible load (kW)

• cfuel, fuel cost (C)

• ccurt, curtailment cost (C)

• cshed, lost load cost (C)

• Ft , fuel consumption (l)

• k, binary variable

• nt , number of cycles of the battery

• Pch, Pdis, charging and discharging power (kW)

• Pshed, load shed (kW)

• Pcurt, generation curtailed (kW)

• Pgen, generation activated (kW)

• Pres, renewable generation (kW)

• Pch, charged energy of battery (kWh)

• Pdis, discharged energy of battery (kWh)

• SoC, state of charge of battery (kWh)

• s, control state vector

• s̄, stochastic state vector

• s
¯
, deterministic state vector

• yt , discrete decision about the use of the equipment

• ∆Pt , residual generation level (kW)
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Functions

• PC
t (·), load probability distribution

• PPres

t (·), renewable generation probability distribution

• s(·), storage capacity as a function of the number of cycles
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Chapter 5

Learning optimal environments using

projected stochastic gradient ascent

In the previous chapter, we argue that in the context of an off grid-microgrid, the optimal size

of the components (i.e. the capacity of pv panels, storage) depends heavily on the control

policy that is applied. When the capacity of the installed components is large, a myopic

policy can be as good as a look-ahead policy. On the other hand, a good policy that is able to

anticipate changes and to act accordingly allows for the reduction of the components size and

subsequently the investment cost. Generally speaking, the size of a system and the control that

is applied to it are highly interdependent. In this chapter, we propose a methodology for jointly

sizing a dynamical system and designing its control law. First, the problem is formalized by

considering parametrized reinforcement learning environments and parametrized policies. The

objective of the optimization problem is to jointly find a control policy and an environment over

the joint hypothesis space of parameters such that the sum of rewards gathered by the policy

in this environment is maximal. The optimization problem is then addressed by generalizing

the direct policy search algorithms to an algorithm we call Direct Environment Search with

(projected stochastic) Gradient Ascent (DESGA). We illustrate the performance of DESGA

on two benchmarks. First, we consider a parametrized space of Mass-Spring-Damper (MSD)

environments and control policies. Then, we use our algorithm for optimizing the size of

the components and the operation of a small-scale autonomous energy system, i.e. a solar

off-grid microgrid, composed of photovoltaic panels, batteries. On both benchmarks, we

compare the results of the execution of DESGA with a theoretical upper-bound on the expected

return. Furthermore, the performance of DESGA is compared to an alternative algorithm.

The latter performs a grid discretization of the environment’s hypothesis space and applies

the REINFORCE algorithm [66] to identify pairs of environments and policies resulting in a

high expected return. The choice of this algorithm is also discussed and motivated. On both
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benchmarks, we show that DESGA and the alternative algorithm result in a set of parameters

for which the expected return is nearly equal to its theoretical upper-bound. Nevertheless, the

execution of DESGA is much less computationally costly.

5.1 Introduction

Problems where one has to design a system that has to be controlled afterwards are ubiquitous

in the field of engineering. Common examples include the combined design and control of

a robotic arm for achieving a specific goal [145], [146] or the sizing and the operation of

a microgrid to minimize electricity costs [147]. System performance depends on both the

system parameters and the method by which it is operated, and the interplay between the two

should be properly accounted for when designing them [148].

This type of joint design and control problems can often be cast as multi-step optimization

problems under uncertainty [149]. Roughly speaking, in this framework, an agent must take

a decision at every step of a discretised time horizon in order to optimize a pre-specified

criterion. Information about the underlying system is typically available in the form of a

state-space representation, whose transition dynamics may be constrained and/or stochastic.

Uncertainty is represented by stochastic processes, the outcomes of which may be conditioned

on both states and decisions and usually become known immediately after decisions have been

taken at every step of the time horizon. A reward (resp. cost) is associated with each pair of

realizations and decisions, and solving the problem essentially consists in selecting a sequence

of decisions maximizing (resp. minimizing) some function of the sum of rewards (resp. costs)

collected at every step (e.g., its expectation). In our design and control problem, the first

stages consist of the decisions regarding the design of the system and the following stages

are concerned with its control over its lifetime. A variety of methods have been deployed to

tackle such problems, as discussed next.

Firstly, multi-stage stochastic programming, which forms a subset of mathematical pro-

gramming, has been widely used in the literature [150]. In this context, a mathematical model

of the system is assumed to be available, in which the design and operational decisions as

well as the system states are represented as optimization variables. Some model parameters

are assumed to be uncertain and are represented as realizations of a stochastic process whose

probability distribution is assumed to be known [151]. Moreover, the latter is usually assumed

to be independent of decision variables, in which case the uncertainty is said to be exoge-

nous. Conversely, the uncertainty may be endogenous, which implies that decisions have an
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influence on its probability distribution. In addition to constraints representing the dynamics

and control of the system, non-anticipativity constraints are added to define the temporal

structure of the uncertainty and specify how it is revealed over time. The main computational

approach to solving multi-stage stochastic programming problems consists in approximating

the uncertainty by a discrete stochastic process exhibiting a tree structure (resulting in a so-

called scenario tree), and solving all scenarios at once via a large-scale mathematical program

[152]. Clearly, the number of scenarios increases with the number of stages and the number of

realizations required at each stage to properly approximate the original probability distribution.

This can quickly lead to intractable problems and scenario tree reduction techniques are often

used in practice [152]. Furthermore, considering nonlinear transition dynamics and control

laws usually results in nonconvex optimization problems, which are notoriously difficult

to solve to optimality [153]. Taking endogenous uncertainty into account usually involves

additional nonconvexities [154], which further complicate matters. Hence, in practice, system

design problems are often approximated using two-stage stochastic programs (possibly with

recourse) [150], [155], [156]. In this setup, the first stage typically represents the design stage,

while the second stage models system operation over its lifetime (or a representative truncated

time horizon). This approach therefore reduces to having a star-shaped scenario tree, which

limits the ability of these methods to properly represent short-term uncertainty and its impact

on system operation. Once a system design has been identified, real-time operation is usually

conducted using receding horizon control strategies such as model predictive control (MPC)

[157]. In MPC, an optimization model representing short-term system operation is initialised

with the current system state and solved online in order to identify a sequence of optimal

(open-loop) control actions. A subset of these actions is then applied to the system before

recovering the system state, and repeating the procedure. In other words, in such approaches,

the original design and control problem is split into two separate sub-problems that are solved

virtually independently.

A different approach proposed in the literature consists in specifying a control law a

priori, selecting the system configuration and simulating system behaviour under this control

law. During simulation, the system configuration is typically specified by a model whose

parameters remain fixed. In addition, in order to perform these simulations, the uncertainty

may be specified via its probability distribution or may be revealed through an oracle, which

are sampled or queried online. Different system configurations can be tested in such fashion,

and the configuration yielding the most desirable outcome is selected. To this end, derivative-

free optimization methods and evolutionary algorithms are typically employed to this end.



124 Chapter 5. Learning optimal environments using projected stochastic gradient ascent

Such methods have been applied to the design of electrical microgrids [158]–[160], where a

rule-based controller is used and the system parameters are selected to minimize the expected

cost over different operational scenarios. In some cases, the pre-specified control law may be

defined implicitly by solving an optimization problem online, similarly to traditional MPC. In

particular, an application to the design of smart buildings is given in [161]. Compared with

applied multi-stage stochastic programming approaches, such methods are capable of better

representing the uncertainty and its impact on system operation, since no a priori approximate

representation of the uncertainty (in the form of a reduced scenario tree) is required in practice.

However, the derivative-free strategies used to explore the space of system configurations

can be ineffective and time consuming, especially in high dimensional spaces [162]. In

addition, the fact that control laws are selected a priori may limit the ability of such methods

to effectively capture the interplay between system configuration and control, and eventually

result in system designs with lower performance. This crucial insight was made clear in [148],

where a first attempt to address the issue was made by defining a parametric policy (e.g., in

the form of a neural network) whose parameters were then jointly optimized with system

parameters. This method was then applied to electrical energy storage system design and

control. A genetic algorithm was used for the optimization, which suffers from the same

drawbacks as the derivative-free methods discussed above [163] and has therefore commonly

been substituted by derivative-based methods in machine learning applications [164].

On the other hand, reinforcement learning (RL) provides effective tools to design complex

control policies adaptively while properly accounting for uncertainty, both endogenous and

exogenous. In this setup, an active decision-making agent attempts to learn a policy in order to

maximize its so-called value function through interaction with its environment [165]. During

this interaction, the agent gathers experience that is used to improve its performance over time.

The goal of the agent is defined by the reward signal collected after each interaction with the

environment, and the value function is typically taken as the expected sum of rewards collected

over the entire time horizon. In recent years, the subclass of solution methods known as direct

policy search techniques have met with considerable success. These techniques essentially

parametrize the policy and navigate in the space of candidate policies towards a (locally)

optimal one by processing the information contained in trajectories generated throughout

the optimization process. Typically, two main classes of direct policy search techniques

can be distinguished, namely gradient-free and gradient-based methods. The first class uses

derivative-free optimization techniques, e.g. the covariance matrix adaptation (CMA) [166]

and the cross-entropy method (CEM) [167], [168]. The latter class of methods moves from
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one point to the next, in the space of candidate policies, through the reconstruction of a

gradient of the objective from information contained in trajectories. Derivative-free methods

are known to scale unfavourably with the number of policy parameters and do not perform

well on large-scale problems [169]. On the other hand, gradient descent (or ascent) methods

have been very successful at learning function approximators for supervised learning tasks

with a large number of parameters [164], [170]. Gradient-based direct policy search methods

extend these ideas to reinforcement learning and allow for efficient training of complex and

powerful policies [171].

In the standard reinforcement learning setup, the environment is fixed and the agent merely

seeks to learn an optimal control policy. From a modelling perspective, in order to extend

reinforcement learning methods to joint design and control problems, the configuration of

the system that an agent seeks to control may be encapsulated in the environment it faces. In

this paper, we explore this idea and extend the standard deep RL framework by considering

that, in addition to the policy, the environment (transition dynamics and reward signal) can

be parametrized. The objective of our approach is to jointly optimize the environment and

policy parameters in order to maximize the total expected cumulative rewards received. Our

algorithm works as follows. Given an initial set of parameters, we compute the gradient of

the expected cumulative rewards and perform a projected gradient ascent step in the space of

environment and policy parameters. This procedure is then repeated a fixed number of times.

We call this algorithm Direct Environment Search with (projected stochastic) Gradient Ascent

(DESGA). Compared with methods previously introduced for solving joint design and control

problems, this approach has several key advantages. It accurately represents uncertainty and

its impact on system operation, allows for the definition of complex policies, and naturally

accounts for the interplay between system configuration and control. Furthermore, it exploits

gradients to explore the joint design and control hypothesis space, which have been shown to

be very efficient on complex machine learning tasks [164].

The DESGA algorithm can be interpreted as an extension of gradient-based direct policy

search techniques and more particularly the REINFORCE algorithm [66]. Our method

also shares some similarities with model-based reinforcement learning algorithms [172].

In this sub-field of RL, a parametric model of a physical environment is learned from the

trajectories collected from this environment. The models used range from parametrized

stochastic processes to neural networks and parametrized dynamical systems. It is then

possible to infer a control policy from the learned model. The latter class of methods has been

successively applied on diverse problems [173]–[175]. However, in the DESGA algorithm,
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the environment parameters are learned to maximize the rewards collected by an optimal

policy in this environment.

The rest of the paper is organized as follows. In Section 5.2, we present the theoretical

background and the problem statement of optimizing over the joint environment and policy

parameter space. In Section 5.3, the proposed methodology as well as the algorithmic

implementation for direct environment search with gradient ascent (DESGA) are described.

The experimental protocol for the evaluation of the proposed algorithm is introduced and the

results are demonstrated in Section 5.4. Finally, the conclusions and certain considerations for

future work are discussed in Section 5.5.

5.2 Theoretical background and problem statement

In this section, we provide a generic formulation for the optimal control problem of a

discrete-time dynamical system with a finite-time optimization horizon. Then, we intro-

duce a parametrization of both the dynamical system and the policy spaces. Subsequently, we

formulate the problem of jointly optimizing the vector of parameters of the dynamical system

and the policy with the goal to maximize the total expected rewards.

5.2.1 Discrete-time dynamical systems

Let us consider a discrete-time and time-invariant dynamical system defined as follows [40].

Let T ∈N be the optimization horizon referring to the number of decisions to be taken

in the control process. The system is defined by a state space S , an action space A , a

disturbance space Ξ, a transition function f : S ×A ×Ξ→S , a bounded reward function

ρ : S ×A ×Ξ→ R ( R and a conditional probability distribution Pξ giving the probability

P(ξt |st ,at) of drawing a disturbance ξt ∈ Ξ when taking an action at ∈A while being in a

state st ∈ S. A probability measure P0 yields the probability P0(s0) of each state s0 ∈S to

be the initial state. At time t ∈ {0,1, . . . ,T −1}, the system moves from state st ∈S to state

st+1 ∈S under the effect of an action at ∈A and a random disturbance ξt ∈ Ξ, drawn with

probability Pξ (ξt |st ,at), according the transition function f :

st+1 = f (st ,at ,ξt) . (5.1)
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After each transition, a reward signal rt is collected from the reward function according to

rt = ρ(st ,at ,ξt) with |rt | ≤ rmax. The different elements of this optimal control problem are

gathered in a tuple (S ,A ,Ξ,P0, f ,ρ ,Pξ ,T ) referred to as the environment.1

We define a closed-loop policy π ∈Π as a function associating a probability distribution

with support A to current state st of the system at a decision stage t = 0, . . . ,T −1. Applying

the policy to the dynamical system consists in sampling an action at with probability π(at |st , t)

at each time t. A trajectory τ = (s0,a0,ξ0,a1,ξ1, . . .aT−1,ξT−1) contains the information

collected from executing policy π over the horizon T . The cumulative reward R(τ) over

trajectory τ can be computed as:

R(τ) =
T−1

∑
t=0

ρ(st ,at ,ξt) , (5.4)

where st+1 = f (st ,at ,ξt). The expected cumulative reward associated to a policy π , and to a

state st ∈S at time t, is called the return of the policy and is given by:

V π(st , t) =
T−1

∑
t ′=t

E
at′∼π(·|st′ ,t ′)
ξt′ ∼P

ξ
(·|st′ ,at′ )

{ρ(st ′ ,at ′ ,ξt ′)} . (5.5)

Optimal policies are defined by the principle of optimality [40]. This principle states that a

policy π∗(·|st , t) ∈ΠA , where ΠA is the set of probability distribution functions with support

A , is optimal in a state st at a time t if it maximizes the expected reward-to-go from that state

at that time. An optimal policy π∗ ∈Π is thus such that ∀st ∈S ,∀t = 0, . . . ,T −1:

π
∗ ∈ argmax

π∈Π
{V π(st , t)} . (5.6)

5.2.2 Problem statement: optimizing over a set of environments

We consider the environment (S ,A ,Ξ,P0, fψ ,ρψ ,Pξ ,T ), as defined in Section 5.2.1, with

continuous state space S ( RdS , action space A ( RdA , disturbance space Ξ ( RdΞ ,

distribution P0 over the initial states and horizon T ; where dS ,dA ,dΞ ∈N. The state, action

and disturbance spaces are assumed to be compact. The transition and reward functions are

1Let us note that from the environment (S ,A ,Ξ,P0, f ,ρ ,Pξ ,T ), we can define an equivalent Markov Decision
Process (MDP) with horizon T , state space S , action space A , initial probability distribution P0, reward probability
distribution r and transition probability distribution p such that:

r(rt |st ,at) = E
ξt∼Pξ (·|st ,at )

{δρ(st ,at ,ξt )(rt)} ,∀st ,∈S ,at ∈A ,rt ∈ R (5.2)

p(st+1|st ,at) = E
ξt∼Pξ (·|st ,at )

{δ f (st ,at ,ξt )(st+1)} ,∀st ,st+1 ∈S ,at ∈A , (5.3)

where δy(x) is a function returning one if and only if x equals y and zero otherwise.
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two parametric functions fψ and ρψ , parametrized by the vector ψ defined over the compact

Ψ ( RdΨ , with dΨ ∈N. Both functions are assumed continuously differentiable with respect

to their parameters and to the state space for every action in A and every disturbance in Ξ.

Additionally, we consider the parametric function πθ to be a policy parametrized by the real

vector θ in the compact Θ ( RdΘ , with dΘ ∈N, and continuously differentiable with respect

to its parameters Θ and to its domain S for every action in A and for every time t. We want

to identify a pair of parameter vectors (ψ ,θ ) such that the policy πθ maximizes the expected

return, on expectation over the initial states, in the environment (S ,A ,Ξ,P0, fψ ,ρψ ,Pξ ,T ).

We thus want to solve the following optimization problem:

ψ
∗,θ ∗ ∈ argmax

ψ∈Ψ,θ∈Θ
V (ψ ,θ ) (5.7)

V (ψ ,θ ) = E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{
T−1

∑
t=0

rt} (5.8)

st+1 = fψ(st ,at ,ξt) (5.9)

rt = ρψ(st ,at ,ξt) . (5.10)

5.3 Direct environment search with gradient ascent

In this section, we address the problem defined in Section 5.2.2. First, we show in Section

5.3.1 that the expected cumulative reward is differentiable with respect to the parameters of

the system and the policy if the different parametric functions and the disturbance probability

function are continuously differentiable. In such a context, we derive an analytical expression

of the gradient. The results are also extended for discrete action and disturbance spaces. We

also derive the expression of an unbiased estimator of the gradient from the differentiation of

a loss function built from Monte-Carlo simulations. In Section 5.3.2, we present our Direct

Environment Search with (projected stochastic) Gradient Ascent (DESGA) algorithm that uses

a projected stochastic gradient ascent for optimizing both the parameters of the environment

and the policy.

5.3.1 Gradient for learning optimal environments

In Theorem 1, we first prove the differentiability of the expected cumulative reward with

respect to the policy and the environment parameters, assuming the functions composing the

environment and the policy are continuously differentiable. We then extend these results in a
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straightforward way to the case where A and/or Ξ are discrete in Corollary 1. Corollaries 2

and 3 finally give the expressions of the gradients.

Theorem 1. Let (S ,A ,Ξ,P0, fψ ,ρψ ,Pξ ,T ) and πθ be an environment and a policy as

defined in Section 5.2.2. Additionally, let the functions fψ , ρψ and Pξ be continuously

differentiable over their domain of definition. Let V (ψ ,θ ) be the expected cumulative reward

of policy πθ , averaged over the initial states, for all (ψ ,θ ) ∈ Ψ×Θ, as defined in Eqn. (5.8).

Then, the function V exists, is bounded, and is continuously differentiable in the interior

of Ψ×Θ.

Corollary 1. The function V , as defined in Theorem 1, exists, is bounded, and is continu-

ously differentiable in the interior of Ψ×Θ if A and/or Ξ are discrete.

Corollary 2. The gradient of the function V defined in Eqn. (5.8) with respect to the

parameter vector ψ is such that:

∇ψV (ψ ,θ ) = E
s0∼P0(·)

at∼πθ (·|s,t)
ξt∼P

ξ
(·|st ,at )

{(T−1

∑
t=0

(
∇s logπθ (at |s, t)|s=st +∇s logPξ (ξt |s,at)|s=st

)
·∇ψst

)

×
(T−1

∑
t=0

rt

)
+
(T−1

∑
t=0

∇ψρψ(s,at ,ξt)|s=st +∇sρψ(s,at ,ξt)|s=st ·∇ψst

}
, (5.11)

where:

∇ψst = (∇s fψ)(s,at−1,ξt−1)|s=st−1 ·∇ψst−1 +(∇ψ fψ)(s,at−1,ξt−1)|s=st−1 , (5.12)

with ∇ψs0 = 0.

Corollary 3. The gradient of the function V , defined in Eqn. (5.8), with respect to the

parameter vector θ is given by:

∇θV (ψ ,θ ) = E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{(
T−1

∑
t=0

∇θ logπθ (at |st , t))(
T−1

∑
t=0

rt)} . (5.13)

Definition 1. Let (S ,A ,Ξ,P0, f ,ρ ,Pξ ,T ) and π be an environment and a policy, respec-

tively, as defined in Section 5.2. We call a history h of the policy in the environment, the
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sequence:

h = (s0,a0,ξ0,r0,a1,ξ1,r1, . . .aT−1,ξT−1,rT−1) , (5.14)

where s0 is an initial state sampled from P0, and where, at time t, ξt is a disturbance sampled

from Pξ , at is an action sampled from π , and rt is the reward observed.

For computing the gradients, our DESGA algorithm will exploit the following theorem that

shows that an unbiased estimate of the gradients can be obtained by evaluating the gradients

of a loss function computed from a set of histories. Automatic differentiation will later be

used for computing these gradients in our simulations.

Theorem 2. Let (S ,A ,Ξ,P0, fψ ,ρψ ,Pξ ,T ) and πθ be an environment and a policy, respec-

tively, as defined in Section 5.2.2. Let V (ψ ,θ ) be the expected cumulative reward of policy

πθ averaged over the initial states, as defined in Eqn. (5.8). Let D = {hm|m = 0, . . . ,M−1}
be a set of M histories sampled independently and identically from the policy πθ in the

environment. Let L be a loss function such that, ∀(ψ ,θ ) ∈ Ψ×Θ:

L (ψ ,θ ) = − 1
M

M−1

∑
m=0

(T−1

∑
t=0

logπθ (am
t |sm

t , t)+ logPξ (ξ
m
t |sm

t ,am
t )
)

×
(
(

T−1

∑
t=0

rm
t )−B

)
+
(T−1

∑
t=0

ρψ(sm
t ,am

t ,ξ m
t )
))

, (5.15)

where B is a constant value called the baseline.

The gradients with respect to ψ and θ of the loss function are unbiased estimators of the

gradients of the function V as defined in Eqn. (5.8) with opposite directions, i.e. they are such

that:

E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{∇ψL (ψ ,θ )}= −∇ψV (ψ ,θ ) (5.16)

E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{∇θ L (ψ ,θ )}= −∇θV (ψ ,θ ) . (5.17)

Corollary 4. The gradient of the loss function, defined in Eqn. 5.15, with respect to θ

corresponds to the opposite of the update direction computed with the REINFORCE algorithm

[66] averaged over M simulations.
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The proofs for the theorems and corollaries presented in this section are given in Appendix

5.6.

5.3.2 Parameter optimization with projected stochastic gradient ascent

In the previous section, we have developed an analytical expression for the computation

of the gradients of the expected cumulative reward with respect to the parameters of the

environment and of the policy. In order to allow for the event where these parameters belong

to a constrained set, our DESGA algorithm will use the projected gradient ascent method

[176].

Gradient ascent is an optimization technique where the optimized variables are updated at

each iteration step k, by a fixed-size step that is proportional to the gradient of the objective

function with respect to these variables. The size of the update can be controlled by parameter

α , called the learning rate. In the problem defined by Eqn. (5.7), we aim to find a parameter

vector x = (ψ ,θ ) ∈ X = Ψ×Θ ( RdΨ+dΘ that maximizes the expected cumulative reward.

Gradient ascent updates the parameter vector xk at time k as:

xk+1← xk +α ·∇xV (xk) . (5.18)

The new point xk+1 computed by simple gradient ascent according to Eqn. (5.18), may

not belong to the constraint set X . In projected gradient ascent, we choose the point nearest to

xk+1, according to the Euclidean distance, that is located in the set X i.e., the projection of

xk+1 onto the set X . The projection ΠX of a point y onto a set X is defined as:

ΠX (y) = argmin
x∈X

1
2
‖ x− y ‖2

2 . (5.19)

Using projected gradient ascent, we first compute the update:

yk+1 = xk +α ·∇xV (xk) , (5.20)

and then we project the new point yk+1 into the feasible set X , according to:

xk+1 ∈ΠX (yk+1) . (5.21)

The projected gradient descent (or ascent) shares the same convergence rate and guarantees

as the unconstrained case, under specific conditions on the smoothness and the convexity of
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the objective function [176]. However, the computational cost of the projection operation

depends on the characteristics of the constrained space X . Let us also remark that, in practice,

we assume the gradients to exist on the boundary of Ψ×Θ. If this assumption does not hold,

we can consider a compact subset K of the interior of Ψ×Θ such that Theorem 1 ensures the

existence of the gradients on K.

The DESGA algorithm will update the vector of parameters ψ and θ according to Eqns.

(5.20) and (5.21). In practice, the gradients are approximated using Theorem 2, such that

projected stochastic gradient ascent is performed. Furthermore, we choose as the baseline the

expected cumulative reward approximated by averaging the observed cumulative reward over

the M histories hm used for computing the loss function:

B =
1
M

M−1

∑
m=0

T−1

∑
t=0

rm
t . (5.22)

The execution of projected stochastic gradient ascent algorithm for optimizing the objective in

Eqn. (5.7) is fully detailed in Algorithm 9 in Appendix 5.7.

5.4 Experiments

In this section, we first introduce the methodology used for assessing the performance of

DESGA. Afterwards, we test the DESGA algorithm on two benchmarks, the Mass-Spring-

Damper (MSD) environment and one related to the design of a solar off-grid microgrid. Both

environments are fully described in Appendices 5.8 and 5.9. 2

5.4.1 Methodology

When running the DESGA algorithm on a test problem, we will report the following results.

First, at every iteration k of the algorithm we will compute the expected return of the policy

on the environment for the current pair of parameter vectors (θk,ψk), that is V (ψk,θk). This

value is computed by running 100 Monte-Carlo simulations. Since the DESGA algorithm is

stochastic, we will actually report the average of this value obtained over 20 runs (random

seeds) of the algorithm. The standard deviation over the 20 runs of the algorithm will also be

reported.

2The implementation of our algorithm and of the different benchmarks are provided in the following github
repository:
https://github.com/adrienBolland/Direct-Environment-Search-with-Gradient-Ascent

https://github.com/adrienBolland/Direct-Environment-Search-with-Gradient-Ascent
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For every problem we will also compare the performance of DESGA with an algorithm

based on a discretization Ψd of the environment’s hypothesis space Ψ. This algorithm will

run the REINFORCE algorithm for every value of ψd ∈ Ψd and compute the expected return

of the policy obtained using 100 Monte-Carlo simulations. The process will be repeated five

times to estimate the average expected return that could be obtained by a policy learned by the

REINFORCE algorithm for each ψd .

5.4.2 Mass-Spring-Damper environment

We consider here the MSD environment (S ,A ,Ξ,P0, fψ ,ρψ ,Pξ ,T ) described in detail in

Appendix 5.8.

Hypothesis spaces. The environment is parametrized by the real vector ψ = (ω ,ζ ,φ0,φ1,φ2)∈
Ψ = [0.1, 1.5]× [0.1, 1.5]× [−2, 2]× [−2, 2]× [−2, 2] ( R5. We will constrain the hypoth-

esis space for the policies to time-invariant policies, meaning πθ (a|s, t) = πθ (a|s, t ′), ∀a ∈
A ,∀s ∈S ,∀t, t ′ ∈ {0, . . . ,T −1}. Any of these policies is a multi-layer perceptron (MLP)

with two inputs (one for each value of the state vector s), and with one hidden layer of 128

neurons with hyperbolic tangent activation functions. The MLP has five output neurons

(|A | = 5) from which a probability distribution over A will be inferred using a softmax

function. All the possible values for the parameters of the MLP define the policy’s hypothesis

space Θ.

Parameters of the DESGA algorithm. The gradients are evaluated applying automatic

differentiation on the loss function defined in Eqn. (5.15). Furthermore, the Adam algorithm

is used for updating (ψ ,θ ). It is a variant on the vanilla stochastic gradient ascent given in

Algorithm 9 which has proven to perform well on highly non-convex problems [170]. The

gradients are estimated on batches of M = 64 trajectories and the stepsize α of the Adam

algorithm is chosen equal to 0.005. We keep the default values for the other parameters of the

Adam algorithm. Furthermore, the states are z-normalized by an average vector corresponding

to the equilibrium position (xeq,0) targeted by an optimal policy, as explained in Appendix

5.8. The standard deviation of the scaling is chosen equal to (0.005,0.02), an approximation

of the standard deviation vector of the states collected over high-performing trajectories.

Performance of the DESGA algorithm. Figure 5.1a shows the evolution of the expected

return, estimated with 100 Monte-Carlo samples, averaged over 20 runs of the DESGA

algorithm. The standard deviation between the different runs is illustrated by the shaded area
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around the mean. As we can see, the DESGA algorithm converges towards a maximal expected

return almost equal to 100. We note that 100 is an upper-bound on the return that can only be

reached if at each time-step t, the position of the mass is at its equilibrium xeq. The standard

deviation also strongly decreases as the iterations go on. We discovered that by using time-

variant policies, better results could not be obtained for this problem. Furthermore, Fig 5.1b

shows the average expected return of 5 policies computed by the REINFORCE algorithm for

each ψd ∈Ψd = Ωd×Zd×{c0}×{c1}×{c2} where Ωd = Zd = {0.1+ k ·∆|k = 1, . . . ,15}
with ∆ = 0.082. We note that, c0, c1 and c2 correspond to an optimal triplet of values for φ1,

φ2 and φ3, respectively, as described in Appendix 5.8. The highest average expected return of

the policies occurs for (ω ,ζ ) = (0.5,0.5). Finally, the average expected return of the policies

identified by the REINFORCE algorithm, for this value of ψ = (0.5,0.5,c0,c1,c2), was almost

identical to the expected returns obtained by the policies computed with the DESGA algorithm.

We also note that the DESGA algorithm converged at every run towards a ψ whose ω and ζ

components were both equal to 0.5 and whose triplet (φ0,φ1,φ2) was always optimal, but not

necessarily equal to (c0,c1,c2).
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FIGURE 5.1: Assessment of DESGA. Left: the average value of V (θk,ψk)
and its standard deviation over 20 executions of the DESGA algorithm as a
function of the number of iterations k of the algorithm. Right: the average
expected return of five policies identified with the REINFORCE algorithm

for every element ψd ∈ Ψd .

5.4.3 Sizing and operation of a solar off-grid microgrid

In this section, we consider the solar off-grid microgrid environment (S ,A ,Ξ,P0, fψ ,ρψ ,Pξ ,T )

presented in Appendix 5.9.
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Hypothesis spaces. The environment is parametrized by the real vector ψ = (SoC,PPV ) ∈
Ψ = [0,200]× [0,300]. We will constrain the hypothesis space for the policies to time-

invariant Gaussian policies, i.e. policies such that πθ (a|s, t) = N (a|µθ (s),σθ (s)), ∀a ∈
A ,∀s ∈S ,∀t ∈ {0, . . . ,T −1} where µθ (s) and σθ (s) are the expectation and the standard

deviation of the normal distribution N in function of the state s and of the parameter vector

θ , respectively. A MLP with four inputs (one for each value of the state vector s), and with

one hidden layer of 128 neurons with hyperbolic tangent activation functions, outputs the two

values µθ (s) and σθ (s). All the possible values for the parameters of the MLP define the

policy’s hypothesis space Θ.

Parameters of the DESGA algorithm. The parameters related to the optimization process

are the same as those used for the MSD environment in Section 5.4.2. The states are z-

normalized by the average vector (100,12,6.31,6.48) and by the standard deviation vector

(50,6,8.9,2). These values represent the mean and the standard deviation of the state vector

for a microgrid configuration where ψ = (200,300). The rewards collected are scaled linearly

from the interval [−5000,0] to the interval [0,1]. Moreover, the vector ψ is scaled from

[0,200]× [0,300] to [0,1]× [0,1] in the interest of keeping the optimization variables in a

small range.

Performance of the DESGA algorithm. Similar to Section 5.4.2, Figure 5.2a presents the

evolution of the average expected (scaled) return collected in the solar off-grid microgrid

environment, averaged over 20 runs of the DESGA algorithm. As we can see, the DESGA

algorithm converges towards a maximal expected return that stands around a value of 100. We

note that 120 is an upper bound on the expected return that can only be reached if, during the

entire horizon (T = 120), the instantaneous reward takes the value one. The standard deviation

also strongly decreases as the iterations go on. Furthermore, Fig 5.2b shows the average

expected return of five policies computed with the REINFORCE algorithm at each point

ψd ∈ Ψd = {0,2, ...,200}×{0,3, ...,300}, where Ψd is a discrete subset of the hypothesis

space Ψ that forms a mesh 100×100. We also note that the DESGA algorithm is converging

at every run towards a value of ψ = (SoC,PPV ) = (114,165), which is very close to the value

of ψd = (114,166) that leads to the highest average expected return of policies computed

with the REINFORCE algorithm.
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FIGURE 5.2: Assessment of DESGA on the solar off-grid microgrid environ-
ment. Left: the average value of V (θk,ψk) and its standard deviation over
20 executions of the DESGA algorithm as a function of the number of itera-
tions k of the algorithm. Right: the average expected return of five policies
identified with the REINFORCE algorithm for every element ψd ∈ Ψd . A
magnified area of the original graph is presented, where the maximum values

are located.

5.4.4 Discussion on the alternative to the DESGA algorithm

In order to compare the DESGA algorithm, we have decided to discretize the hypothesis space

of environments Ψ and to apply the REINFORCE algorithm on each environment ψd of the

discretized set Ψd . In the following, we will describe some implications of this choice and

justify this procedure. First, we used the REINFORCE algorithm instead of any other policy

gradient method. This choice is motivated by Corollary 4 stating that for a fixed environment,

the DESGA algorithm is equivalent to the REINFORCE algorithm. The Figures 5.1b and

5.2b thus provide the best possible average performance of the DESGA algorithm assuming

the discrete set Ψd is precise enough. Also, since this method enabled us to approach the

theoretical (tight) upper bounds on the return of any policies in the environments for both

benchmarks, it was not necessary to use any other policy gradient algorithm to provide a clear

view on the maximal performance one could achieve without the DESGA algorithm. This

method based on a discretization has as only drawback that it is computationally inefficient

and not scalable to larger problems.

5.5 Conclusions and Future Work

In this paper, we propose an algorithm that can jointly optimize an RL environment and

a policy with maximal expected return over a joint hypothesis space of environments and

policies. This algorithm is suited to cases in which the design of the environment and the

applied policy are interdependent. We demonstrate the performance of DESGA on the design
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of an MSD environment and on the sizing of an autonomous energy system. The results show

that the DESGA algorithm outputs a solution which is equivalent in terms of performance to

the one obtained by the REINFORCE algorithm run for every element of a finely discretized

environment’s hypothesis space.

In this paper, the DESGA algorithm was designed in the context of jointly optimizing the

design of a discrete-time dynamical system and its policy. This algorithm could be extended to

the case where the environment is a finite-time Markov Decision Process (MDP) performing

a similar development as the one presented in Section 5.3.1. The approach could also be

extended to environments with infinite-time horizons.

Future work could also be directed on an approximation of the gradients. With the com-

putational complexity of the automatic differentiation being proportional to the optimization

horizon, the problem may become intractable for long horizons. An analytical bound on the

error when performing this approximation would be valuable for striking a trade-off between

computational efficiency and the quality of the solution.

Additionally, as future work, the proposed method could also be combined with recent

research in gradient-based direct policy search. The use of actor-critic methods, proximal

policy optimization, etc., that are shown to result in stable learning and efficient exploration,

could lead to better performance. This would come at the expense of involving the additional

approximation architecture (set of parameters) of a value function.

Finally, in this paper we assumed that we have direct access to the parametrized dynamics

of the system, the reward function, and the disturbance function. In the event these assumptions

do not hold, we propose constructing an approximation of these functions by a differentiable

function approximator as future work. This would introduce an additional learning step, in

order to obtain a good approximation architecture from observations, which would then be

used in the proposed algorithm.

Appendices

5.6 Analytical derivation of the gradient for learning optimal en-

vironments

Theorem 1. Let (S ,A ,Ξ,P0, fψ ,ρψ ,Pξ ,T ) and πθ be an environment and a policy as

defined in Section 5.2.2. Additionally, let the functions fψ , ρψ and Pξ be continuously
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differentiable over their domain of definition. Let V (ψ ,θ ) be the expected cumulative reward

of policy πθ , averaged over the initial states, for all (ψ ,θ ) ∈ Ψ×Θ as defined in Eqn. (5.8).

Then, the function V exists, is bounded, and is continuously differentiable in the interior

of Ψ×Θ.

Proof. Let us first define the random variable associating the cumulative reward to a real-

ization of a trajectory sampled from a policy in the environment for fixed parameter vectors

(ψ ,θ ) ∈ Ψ×Θ. We prove its expectation exists and is bounded for all (ψ ,θ ) ∈ Ψ×Θ.

Furthermore, V (ψ ,θ ) is defined by a parametric integral which we prove to be continuously

differentiable for all (ψ ,θ ) ∈ Ψ×Θ.

Let Rψ ,θ be the real random variable that associates to the realization of a trajectory given

ψ ∈ Ψ and θ ∈ Θ its cumulative reward . Given a trajectory τ , the random variable Rψ ,θ

takes as values Rψ ,θ (τ) as defined in Eqn. (5.4). Let PRψ ,θ be the induced probability of this

random variable. We can write:

PRψ ,θ = Pψ ,θ (s0,a0,ξ0,a1,ξ1, . . . ,aT−1,ξT−1) (5.23)

= P0(s0)
T−1

∏
t=0

πθ (at |st , t)Pξ (ξt |st ,at) , (5.24)

where st+1 = fψ(st ,at ,ξt). The expected cumulative reward given in Eqn. (5.8) is the

expectation of the random variables Rψ ,θ . If the expectation exists, it can therefore be written

as:

V (ψ ,θ ) =
∫ (

P0(s0)
T−1

∏
t=0

πθ (at |st , t)Pξ (ξt |st ,at)
)

(T−1

∑
t=0

ρψ(st ,at ,ξt)
)

ds0da0 . . .daT−1dξ0 . . .dξT−1 , (5.25)

or, more simply, as:

V (ψ ,θ ) =
∫

PRψ ,θ (τ)Rψ ,θ (τ)dτ . (5.26)

The integration theory has shown that a measurable function upper-bounded in norm

almost-everywhere by an integrable function on a domain is itself integrable on this domain.

Moreover, a random variable is measurable by definition and the cumulative reward is such



5.6. Analytical derivation of the gradient for learning optimal environments 139

that:

∫
|PRψ ,θ Rψ ,θ (τ)|dτ ≤

∫
PRψ ,θ T rmaxdτ ≤ T rmax . (5.27)

The integral defined by Eqn. (5.26) thus exists and the function V is bounded for all (ψ ,θ ) ∈
Ψ×Θ.

As a corollary to the Leibniz integral rule, a function defined as in Eqn. (5.26) is con-

tinuously differentiable on the interior of the set Ψ×Θ if PRψ ,θ Rψ ,θ (τ) is continuously

differentiable on the compact Ψ×Θ×X where X = S × (A ×Ξ)T is the set of all trajecto-

ries. The latter is true by hypothesis. Furthermore, it implies that the partial derivative of the

integral equals the integral of the partial derivative of the integrand.

�

Corollary 1. The function V , as defined in Theorem 1, exists, is bounded and is continuously

differentiable on the interior of Ψ×Θ if A and/or Ξ are discrete.

Proof. Let us write the expression of the expectation (5.8) in the three cases depending on

whether A and/or Ξ are discrete and show that the different results of Theorem 1 are still

valid.

1. If A is discrete:

V (ψ ,θ ) =
∫

∑
(a0,...aT−1)∈A T

(
P0(s0)

T−1

∏
t=0

πθ (at |st , t)Pξ (ξt |st ,at)
)

(T−1

∑
t=0

ρψ(st ,at ,ξt)
)

ds0dξ0 . . .dξT−1 . (5.28)

2. If Ξ is discrete:

V (ψ ,θ ) =
∫

∑
(ξ0,...ξT−1)∈ΞT

(
P0(s0)

T−1

∏
t=0

πθ (at |st , t)Pξ (ξt |st ,at)
)

(T−1

∑
t=0

ρψ(st ,at ,ξt)
)

ds0da0 . . .daT−1 . (5.29)
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3. If A and Ξ are discrete:

V (ψ ,θ ) =
∫

∑
(a0,...aT−1)∈A T

∑
(ξ0,...ξT−1)∈ΞT

(
P0(s0)

T−1

∏
t=0

πθ (at |st , t)Pξ (ξt |st ,at)
)

(T−1

∑
t=0

ρψ(st ,at ,ξt)
)

ds0 . (5.30)

In the three cases, we can still bound the integral as in Eqn. (5.27) and apply the corollary of

the Leibniz integral rule if the integrand is continuously differentiable for all discrete values.

Finally, by linearity of the differential operator, the operator can be distributed on the terms of

the different sums when computing the derivative of the function V .

�

Corollary 2. The gradient of the function V defined in Eqn. (5.8) with respect to the

parameter vector ψ is such that:

∇ψV (ψ ,θ ) = E
s0∼P0(·)

at∼πθ (·|s,t)
ξt∼P

ξ
(·|st ,at )

{(T−1

∑
t=0

(
∇s logπθ (at |s, t)|s=st +∇s logPξ (ξt |s,at)|s=st

)
·∇ψst

)

×
(T−1

∑
t=0

rt

)
+
(T−1

∑
t=0

∇ψρψ(s,at ,ξt)|s=st +∇sρψ(s,at ,ξt)|s=st ·∇ψst

}
, (5.31)

where:

∇ψst = (∇s fψ)(s,at−1,ξt−1)|s=st−1 ·∇ψst−1 +(∇ψ fψ)(s,at−1,ξt−1)|s=st−1 , (5.32)

with ∇ψs0 = 0.

Proof. To compute this gradient, we first apply the product rule for gradients to Eqn.

(5.8). Afterwards, we exploit the equality ∇ f = f ∇ log f that holds if f is a continuously

differentiable function.

∇ψV (ψ ,θ ) =
∫
(∇ψPRψ ,θ (τ))Rψ ,θ (τ)dτ +

∫
PRψ ,θ (τ)(∇ψRψ ,θ (τ))dτ (5.33)

=
∫

PRψ ,θ (τ)(∇ψ logPRψ ,θ (τ))Rψ ,θ (τ)dτ +
∫

PRψ ,θ (τ)(∇ψRψ ,θ (τ))dτ

(5.34)

= E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{(∇ψ logPRψ ,θ (τ))Rψ ,θ (τ)+ (∇ψRψ ,θ (τ))} . (5.35)
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By applying the logarithmic operator to both sides of Eqn. (5.24), we have:

logPRψ ,θ (τ) = logP0(s0)+
T−1

∑
t=0

logπθ (at |st , t)+
T−1

∑
t=0

logPξ (ξt |st ,at) . (5.36)

Let · denote the dot product operator. Using the chain rule formula together with Eqn.

(5.4), we can write:

∇ψ logπθ (at |st , t) = ∇s logπθ (at |s, t)|s=st ·∇ψst (5.37)

∇ψ logPξ (ξt |st ,at) = ∇s logPξ (ξt |s,at)|s=st ·∇ψst (5.38)

∇ψρψ(st ,at ,ξt) = ∇ψρψ(s,at ,ξt)|s=st +∇sρψ(s,at ,ξt)|s=st ·∇ψst , (5.39)

where:

∇ψst = (∇s fψ)(s,at−1,ξt−1)|s=st−1 ·∇ψst−1 +(∇ψ fψ)(s,at−1,ξt−1)|s=st−1 , (5.40)

with ∇ψs0 = 0.

Finally, combining the previous results with Eqns. (5.35) and (5.36), we have:

∇ψV (ψ ,θ ) = E
s0∼P0(·)

at∼πθ (·|s,t)
ξt∼P

ξ
(·|st ,at )

{(T−1

∑
t=0

(
∇s logπθ (at |s, t)|s=st +∇s logPξ (ξt |s,at)|s=st

)
·∇ψst

)

×
(T−1

∑
t=0

rt

)
+
(T−1

∑
t=0

∇ψρψ(st ,at ,ξt)
)}

. (5.41)

�

Corollary 3. The gradient of the function V defined in Eqn. (5.8) with respect to the

parameter vector θ is given by:

∇θV (ψ ,θ ) = E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{(
T−1

∑
t=0

∇θ logπθ (at |st , t))(
T−1

∑
t=0

rt)} . (5.42)
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Proof. Using similar derivations as for the Corollary 1, we have for the gradient with respect

to θ :

∇θV (ψ ,θ ) = E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{(∇θ logPRψ ,θ (τ))Rψ ,θ (τ)} (5.43)

= E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{(
T−1

∑
t=0

∇θ logπθ (at |st , t))(
T−1

∑
t=0

rt)} . (5.44)

�

Theorem 2. Let (S ,A ,Ξ,P0, fψ ,ρψ ,Pξ ,T ) and πθ be an environment and a policy as

defined in Section 5.2.2. Let V (ψ ,θ ) be the expected cumulative reward of policy πθ averaged

over the initial states as defined in Eqn. (5.8). Let D = {hm|m = 0, . . . ,M−1} be a set of M

histories sampled independently and identically from the policy πθ in the environment. Let

L be a loss function such that, ∀(ψ ,θ ) ∈ Ψ×Θ:

L (ψ ,θ ) = − 1
M

M−1

∑
m=0

(T−1

∑
t=0

logπθ (am
t |sm

t , t)+ logPξ (ξ
m
t |sm

t ,am
t )
)

×
(
(

T−1

∑
t=0

rm
t )−B

)
+
(T−1

∑
t=0

ρψ(sm
t ,am

t ,ξ m
t )
))

, (5.45)

where B is a constant value called the baseline.

The gradients with respect to ψ and θ of the loss function are unbiased estimators of the

gradients of the function V as defined in Eqn. (5.8), with opposite directions, i.e. such that:

E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{∇ψL (ψ ,θ )}= −∇ψV (ψ ,θ ) (5.46)

E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{∇θ L (ψ ,θ )}= −∇θV (ψ ,θ ) . (5.47)

Proof. Let us first rewrite the loss function using the notations of Theorem 1. We have:

L (ψ ,θ ) = − 1
M

M−1

∑
m=0

(logPRψ ,θ (τ
m)− logP0(sm

0 ))
(
(

T−1

∑
t=0

rm
t )−B

)
+(Rψ ,θ (τ

m)) . (5.48)
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The expectation of the gradient with respect to ψ is given by:

E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{∇ψL (ψ ,θ )}= E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{− 1
M

M−1

∑
m=0

∇ψ(logPRψ ,θ (τ
m)− logP0(sm

0 ))

×
(
(

T−1

∑
t=0

rm
t )−B

)
+∇ψ(Rψ ,θ (τ

m))} . (5.49)

Observing that every term in the sum has the same expectation and that ∇ψ logP0(sm
0 ) = 0,

we can write:

E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{∇ψL (ψ ,θ )}= − E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{∇ψ(logPRψ ,θ (τ))×
(
(

T−1

∑
t=0

rt)−B
)
+∇ψ(Rψ ,θ (τ))} .

(5.50)

Moreover:

E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{∇ψ(logPRψ ,θ (τ))B}= ∇ψ E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{B}= 0 , (5.51)

such that:

E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{∇ψL (ψ ,θ )}= −∇ψV (ψ ,θ ) . (5.52)

Equivalently, the expectation of the gradient with respect to θ is given by:

E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{∇θ L (ψ ,θ )}= − E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{∇θ (logPRψ ,θ (τ))

×
(
(

T−1

∑
t=0

rt)−B
)
+∇θ (Rψ ,θ (τ))} . (5.53)

The expectation of the term relative to the baseline is zero:

E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{∇θ (logPRψ ,θ (τ))B}= ∇θ E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{B}= 0 . (5.54)
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Furthermore, the gradient of the reward function with respect to θ is zero:

E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{∇θ (Rψ ,θ (τ))}= E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{(
T−1

∑
t=0

∇θ ρψ(st ,at ,ξt)}= 0 . (5.55)

We thus have that:

E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{∇θ L (ψ ,θ )}= − E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{∇θ (logPRψ ,θ (τ))×
(T−1

∑
t=0

rt
)
} (5.56)

= − E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{∇θ (
T−1

∑
t=0

logπθ (at |st , t))×
(T−1

∑
t=0

rt
)
} . (5.57)

Finally, we have that:

E
s0∼P0(·)

at∼πθ (·|st ,t)
ξt∼P

ξ
(·|st ,at )

{∇θ L (ψ ,θ )}= −∇θV (ψ ,θ ) . (5.58)

�

Corollary 4. The gradient of the loss function, defined in Eqn. 5.15, with respect to θ

corresponds to the opposite of the update direction computed with the REINFORCE algorithm

[66] averaged over M simulations.

Proof. The gradient of the loss function with respect to θ is given by:

∇θ L (ψ ,θ ) = −
M−1

∑
m=0

(
∇θ (logPRψ ,θ (τ

m))×
(
Rψ ,θ (τ

m)−B
))

. (5.59)

The gradient is the opposite of the average over M trajectories of the update direction of

the REINFORCE algorithm [66].

�
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5.7 Direct environment search with (projected stochastic) gradi-

ent ascent

Algorithm 9 DESGA

function Optimize((S ,A ,Ξ,P0, fψ ,ρψ ,Pξ ,T ), πθ , ΠΨ, ΠΘ)

Parameter Number of gradient steps N

Parameter Batch size M

Parameter Learning rate α

for n ∈ {0, . . . ,N−1} do

for m ∈ {0, . . . ,M−1} do

h = GenerateHistory((S ,A ,Ξ,P0, fψ ,ρψ ,Pξ ,T ), πθ )

Add h to the set D

end for

Compute the baseline using the histories B = 1
m ∑

M−1
m=0 ∑

T−1
t=0 rt

Differentiate Eqn. (5.15) for estimating the gradients Eqns. (5.11) and (5.13) using D

(ψ ,θ ) = VanillaGradientAscent(ψ , θ , α , ∇̂ψV (ψ ,θ ), ∇̂θV (ψ ,θ ))

ψ ←ΠΨ(ψ)

θ ←ΠΘ(θ )

end for

Output: (ψ ,θ )

function GenerateHistory((S ,A ,Ξ,P0, fψ ,ρψ ,Pξ ,T ), πθ )

Sample an initial state: s0 ∼ P0(·)
for t ∈ {0, . . . ,T −1} do

at ∼ πθ (·|st , t)

ξt ∼ Pξ (·|st ,at)

st+1 = fψ(st ,at ,ξt)

rt = ρψ(st ,at ,ξt)

end for

h = (s0,a0,ξ0,r0,a1,ξ1, . . . ,aT−1,ξT−1,rT−1)

Output: h

function VanillaGradientAscent(ψ , θ , α , ∇̂ψV (ψ ,θ ), ∇̂θV (ψ ,θ ))

ψ ← ψ +α · ∇̂ψV (ψ ,θ )

θ ← θ +α · ∇̂θV (ψ ,θ )

Output: (ψ ,θ )
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5.8 Mass-Spring-Damper environment

FIGURE 5.3: Mass-Spring-Damper system.

Let us consider a Mass-Spring-Damper (MSD) system defined as follows. A point mass m

is attached to a spring and a damper. The spring has a Hooke constant k and the damping

is proportional to the speed through the damping constant b. The damping force acts in the

direction opposite to the motion. Furthermore, the system is subject to an external force u.

Let x denote the position of the mass. The continuous-time system dynamics is described by

Newton’s second law as:

mẍ = −kx−bẋ+ u , (5.60)

which can equivalently be written as:

ẍ+ 2ζ ω ẋ+ω
2x = a , (5.61)

where:

ω =

√
k
m

(5.62)

ζ =
b

2mω
(5.63)

a =
u
m

. (5.64)

The evolution of the position x of the mass is thus described by the position itself and the

speed v as:

 ẋ = v

v̇ = a−2ζ ωv−ω2x .
(5.65)

Optimization horizon. The optimization horizon T refers to the number of actions to be

taken in the discrete process.
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State space. The state is described at every time t by two variables: the position xt and the

speed vt . The state space of the system is:

S = R2 . (5.66)

Initial state distribution. The initial states x0 and v0 are uniformly drawn from the intervals

[x0,min,x0,max] and [v0,min,v0,max].

Action space. In its most general setting, the system can be submitted to any external

acceleration a. However, we will only consider a discrete action space defined as follows:

A = {−0.3,−0.1,0,0.1,0.3} . (5.67)

Disturbance space. We will consider a stochastic version of the problem where a real

disturbance ξt is added to the action at such that an acceleration at + ξt is applied to the

system. In such a context, we have:

ξt ∈ Ξ = R . (5.68)

Disturbance distribution. The disturbance is sampled at time t from a Normal distribution

centred at the current position xt , and whose standard deviation is a linear combination of the

magnitude of the action at and of the speed vt :

Pξ (ξt |st ,at) = N (ξt
∣∣xt ,0.1×|at |+ |st |+ ε) , (5.69)

where ε is a constant equal to 10−6.

Discrete dynamics. The discrete-time process comes from a discretization of the continuous

process defined by Eqn. (5.65) with a discretization time-step ∆ = 50ms. The discrete

dynamics f is the function computing the position and speed after a period ∆ during which the

constant acceleration at +ξt is applied. The position xt+1 and the speed vt+1 can be computed

from xt and vt using these analytical expressions:

xt+1 = g(xt ,vt ,at + ξt ,∆), (5.70)

vt+1 =
∂g
∂ t

(xt ,vt ,at + ξt , t)|t=∆ , (5.71)
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where:

g(xt ,vt ,a, t) =
a

ω2 + exp(−ζ ωt)×
(xt − a

ω2 )cosh(
√

ζ 2−1ωt)+
vt
ω
+ζ (xt− a

ω2 )√
ζ 2−1

sinh(
√

ζ 2−1ωt) , if ζ > 1

(xt − a
ω2 )+

(
vt +ω(xt − a

ω2 )
)
t , if ζ = 1

(xt − a
ω2 )cos(

√
1−ζ 2ωt)+

vt
ω
+ζ (xt− a

ω2 )√
1−ζ 2

sin(
√

1−ζ 2ωt) , if 0 < ζ < 1 .

(5.72)

Reward function. The reward function is defined as:

ρ(at ,st ,ξt) = exp
(
−|xt − xeq|− (ω− cω)

2− (ζ − cζ )
2−

K

∏
k=1

(φk− ck)
2
)

, (5.73)

where ω , ζ and φk are parameters of the system that need to be optimized. Furthermore xeq,

cω , cζ , K and ck are constant values. Let us also remark that the reward function does not

depend on the disturbance.

The first term of the exponential will be minimized if the mass is stabilized at the position

xeq. The second and third terms are minimized if the parameters ω and ζ are equal to cω and

cζ , respectively. The last term is a strictly positive function minimized if, at least one of the

parameters φk equals the value ck. Minimizing these terms results in maximizing the reward.

Furthermore, since the the reward function is the exponential of a negative value, the reward

is bounded by rmax = 1.

Parametrized MSD environment. A parametrized MSD environment is an environment

(S ,A ,Ξ,P0, fψ ,ρψ ,Pξ ,T ) parametrized by the real vector ψ = (ω ,ζ ,φ0,φ1,φ2) ∈R5.

Numerical values. In this work, we will consider the values given in Table 5.1 for the

constant parameters.
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TABLE 5.1: Parameters for the MSD.

Symbol Value

x0,min 0.198

x0,max 0.202

v0,min −0.010

v0,max 0.010

xeq 0.200

cω 0.500

cζ 0.500

K 3.000

c0 0.500

c1 −0.300

c2 0.200

T 100

5.9 Optimal design of a solar off-grid microgrid

FIGURE 5.4: Microgrid configuration

A solar off-grid microgrid is a small-scale electrical grid composed of photovoltaic (PV)

panels (converting solar energy into electricity) and a battery for ensuring the supply of an

electrical load. A schematic of the considered configuration is presented in Fig 5.4. The total

cost of the microgrid is the sum of the investment costs and the penalties obtained for shedding

the load if there is insufficient electricity available. In this section, we are interested in sizing

the microgrid components, i.e. identifying the optimal investment in equipment that leads to
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the least total cost over the investment lifetime, assuming that the microgrid is operated in an

optimal way.

This problem is therefore related to the one addressed in this paper, by noticing that

finding the optimal investment (i.e., the size of the PV panels and the battery) is equivalent to

optimizing both the "solar off-grid microgrid" environment and the policy at the same time.

We note that the actions that can be taken by the policy are related to the charging/discharging

power of the battery. An optimal policy should, in principle, charge the battery when there

is an excess of solar power generated by the PV panels, and discharge that power from the

battery when the electrical demand cannot be fully covered by the PV panels.

We will now provide, hereafter, a formalization of this problem that exactly fits the generic

problem tackled in this paper. We note that more generic formalizations may exist, as for

example those where the load consumption and the PV production cannot be considered as

variables fully conditioned on the hour of the day, as will be assumed here. Those stand beyond

the scope of this paper, even if they could lead to other interesting problem statements. Before

carefully defining this benchmark problem, let us emphasize that we will use the notation [·]
to indicate the corresponding unit of the symbol preceding it. In this section, [W ] denotes

instantaneous power production in Watts, [Wp] denotes nameplate (manufacturer) power

capacity, [Wh] denotes energy in Watt-hours and [Whp] denotes nameplate (manufacturer)

energy capacity. We now define the different elements of this learning optimal environment

type of problem.

Optimization horizon. The optimization horizon is denoted by the value T .

State space. The state of the system can be fully described by st = (SoCt ,ht , P̄C,h
t , P̄PV ,h

t ) ∈
S =

[
0,SoC

]
×{0, ...,23}×R+×R+, where, at time t:

• SoCt [Wh] ∈
[
0,SoC

]
denotes the state of charge of the battery. The installed capacity

of the battery is denoted by SoC [Whp] ∈R+.

• ht [h] ∈ {0, ...,23} denotes the hour of the day.

• P̄C,h
t [W ] ∈R+ denotes the expected value of the electrical consumption level during

hour h that is considered to be known.

• P̄PV ,h
t [W ] ∈R+ denotes the expected value of the PV power generation during hour

h = ht that is also considered to be known.
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Initial state distribution. The initial state of charge SoC0 is drawn uniformly from the

interval
[
0,SoC

]
and the initial hour h0 takes the value zero with probability one. The

initial value for P̄C,h
0 is given by the first line of Table 5.3 in the corresponding column. Let

PPV [Wp] ∈R+ denote the capacity of PV panels installed, the column p̄PV ,h in Table 5.3 gives

the average PV production per installed capacity (%). Subsequently, the initial value for P̄PV ,h
0

is given by the product of PPV and the first element of column p̄PV ,h in Table 5.3.

Action space. As previously described, the available actions correspond to defining the

charging/discharging power of the storage system. The charging power is denoted by PB ∈[
−PB,PB

]
, which will be positive during charging and negative during discharging. The

charging/discharging limit PB ∈R+ is assumed to be a proportion p (%) of the battery capacity

as PB = p ·SoC.

We therefore consider the continuous action space:

A =
[
−PB,PB

]
. (5.74)

Disturbance space. We consider as disturbance the variable ξt = EC,h
t ∈ Ξ⊆R, the stochas-

tic deviation from the expected consumption for hour ht .

Disturbance distribution. The disturbance is sampled at time t from a Normal distribution

centred at zero with standard deviation σC,h depending on the hour h = ht :

Pξ (ξt |st ,at) = N (ξt |0,σC,h) . (5.75)

The values of the standard deviations σC,h are given in Table 5.3 for every hour h of the day.

Transition function. We use a discretization time-step ∆t of one hour for defining the

discrete-time dynamics. For the state variable h we have therefore:

ht+1 = (ht + 1) mod 24 . (5.76)

The state of charge of the battery is updated using a linear water tank model [67]. With

this tank model, the value of SoCt+1 at time t +1, if there were no limits on it, would be equal
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to At+1 defined as follows:

At+1 = SoCt +∆t ·


ηch ·PB

t , if PB
t ≥ 0

PB
t /ηdis , if PB

t < 0 ,
(5.77)

where ηch ∈ [0,1], ηdis ∈ [0,1] represent the charging and discharging efficiencies of the

storage system. Given the fact that the state of charge of the battery lies within predefined

limits, its state of charge at time t + 1 is therefore defined as:

SoCt+1 =


0 , if At+1 < 0

SoC , if At+1 ≥ SoC

At+1 otherwise .

(5.78)

The variable P̄C,h
t+1 takes the value reported in Table 5.3 at the line corresponding to the hour

h = ht+1. Finally, the variable P̄PV ,h
t+1 is updated as:

P̄PV ,h
t+1 = p̄PV ,h ·PPV , (5.79)

where p̄PV ,h take the values reported in Table 5.3 at the line corresponding to the hour h = ht+1.

Reward function. The reward signal is, in this case, a cost function composed of two parts,

namely the investment cost and the operational cost. The reward signal is given by:

rt = ρ(st ,at ,ξt) = −(c f ix
t + cshed

t ) , (5.80)

where c f ix
t [$] ∈R+ represents a fixed hourly payment for settling the initial investment cost

and cshed
t [$] ∈R+ corresponds to the cost of shedding load at each time-step t.

In order to compute the fixed cost term c f ix
t we proceed as follows. Let cPV [$/Wp] ∈R+

denote the cost per unit of PV capacity installed. The total installation cost for PV IPV [$]∈R+

is defined as:

IPV = cPV ·PPV . (5.81)
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Let cB [$/Whp] ∈ R+ denote the cost per unit of storage capacity installed. The total

installation cost for battery storage IB [$] ∈R+ is defined as:

IB = cB ·SoC . (5.82)

The investment cost I is the sum of the investment costs for each component of the

microgrid defined as:

I = IB + IPV . (5.83)

This payment occurs once in the beginning of the investment. In this case, we assume

this investment to be a loan in its entirety. A fixed yearly payment P over the lifetime of the

investment for settling the initial loan, is given by the following amortization formula:

P = I
r(1+ r)n

(1+ r)n−1
, (5.84)

where n is the number of years considered for the lifetime of the investment and r(%) is the

interest rate considered. By noting that a common (non-leap) year has 8760 hours, we define

the fixed hourly cost as:

c f ix
t =

P
8760

. (5.85)

In order to compute the shedding cost term cshed
t we proceed as follows. The realization of

the consumption PC,h
t [W ] ∈R+, after an action is taken at each time-step t ∈ T , corresponds

to the actual consumption level in the interval ]t, t + 1], i.e. for hour ht . This variable takes the

value:

PC,h
t = P̄C,h

t +EC,h
t , (5.86)

where h = ht is the hour of the day at time t.

We denote by P̃B
t the actual charging power that can be applied to the battery considering

its limited capacity. Given an action to charge PB
t , the actual charge P̃B

t is constrained by the

battery capacity limit for charging the available energy stored in the battery for discharging,
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according to:

P̃B
t =


(SoC−SoCt)/ηch , if PB

t > (SoC−SoCt)/ηch

−(SoCt) ·ηdis , if PB
t <−(SoCt) ·ηdis

PB
t otherwise .

(5.87)

At each time-step t in the simulation horizon, there exists a power balance between

the injections and the off-takes. The residual power resulting from the mismatch between

production and consumption is curtailed Pcurtail
t [W ] ∈R+. Formally the power balance is

given by:

Pcurtail
t = P̄PV ,h

t −PC,h
t − P̃B

t . (5.88)

If Pcurtail
t is positive, the excess of generation is simply lost (curtailed). If Pcurtail

t is

negative, there is a lack of generation and a part of the load has to the shed. This is associated

with a cost of shedding load cshed
t [$] ∈R+ equal to:

cshed
t = −min(0,Pcurtail

t ) ·πshed , (5.89)

where πshed [$/W ] ∈R+ corresponds to the penalty per unit of power shed.

Parametrized environment. The off-grid microgrid environment (S ,A ,Ξ,P0, fψ ,ρψ ,Pξ ,T )

will be parametrized by the vector ψ = (SoC,PPV ) ∈R+2.

Numerical values. Table 5.2 summarises the parameter values used in the experiments

presented in this paper.
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TABLE 5.2: Parameters for the solar off-grid microgrid.

Symbol Value Unit

ηch, ηdis 75 %

σC,σPV 0.01 Wh

p 100 %

∆t 1 hour

cPV 1 $/Wp

cB 1 $/Wp

r 7 %

n 2 years

πshed 10 $/Wh

T 120 hour
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TABLE 5.3: Electrical load consumption and PV production power factor
data.

Hour P̄C,h σ2
C,h p̄PV ,h

0 6.9 0.55 0.

1 6.4 0.50 0.

2 6.1 0.43 0.

3 5.9 0.39 0.

4 5.7 0.39 0.

5 5.4 0.37 0.

6 4.8 0.37 0.

7 4.5 0.36 0.

8 4.6 0.40 0.

9 4.6 0.43 0.04

10 4.7 0.44 0.08

11 4.9 0.47 0.12

12 5.1 0.42 0.14

13 5.3 0.40 0.15

14 5.4 0.42 0.14

15 5.4 0.47 0.12

16 5.4 0.43 0.08

17 5.8 0.44 0.04

18 8.4 0.81 0.

19 10.6 0.60 0.

20 11.0 0.55 0.

21 10.5 0.57 0.

22 9.2 0.60 0.

23 7.8 0.59 0.
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Chapter 6

Concluding remarks and future work

In this chapter, we firstly provide a summary of the contributions of this thesis. Subsequently,

we provide a list of potential future research directions that derive as natural continuation of

the work presented.

6.1 Conclusions

The main goal of this thesis has been to investigate the potential of deep reinforcement learning

(DRL) in solving complex problems related to the control of storage devices in modern energy

systems aiming at maximizing the value they can provide by performing arbitrage.

In Chapter 2 of this thesis, we address the energy arbitrage problem of a storage unit

that participates in the European Continuous Intraday (CID) market. To that end, we de-

velop a novel modeling framework where exchanges (energy and financial) occur through

a process similar to the stock market. A detailed description of the CID market mechanism

and the storage management process is provided. We formulate this problem as a Markov

Decision Process MDP, detailing the assumptions that allow for this type of formulation in

this particular problem. Furthermore, a set of necessary simplifications that constitute the

problem tractable are described. The resulting problem is solved using a state-of-the-art

DRL algorithm. The results suggest that the obtained policy is a low-risk policy that is able

to outperform, on average, the state-of-the-art for the industry benchmark strategy (rolling

intrinsic). In particular, we observe improvements of up to 2.2% on unseen data using our

algorithm with respect to the rolling intrinsic. In this way, the proposed DRL method is shown

to increase the arbitrage value for storage units participating in the CID market. The proposed

method can serve as a wrapper around the current industrial practices that provides decision

support to energy trading activities with low risk. However, the insufficient amount of relevant

information contained in the state variable, as well as the limited state space exploration, are

identified as key limitations for the performance of the proposed method.
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In Chapter 3 of this thesis, we address these limitations related to the state space explo-

ration. We introduce a set of modifications to the described CID market participation problem

that lead to a significant increase in the general performance of the proposed strategy. First,

we motivate the use of a more compact state space representation and we propose the use

of day-ahead prices in order to stationarize the states observed. To that end, we proceed by

normalizing the trading rewards in each day, by dividing them with the total profits obtained

by the benchmark strategy. The results show that the proposed method yields significant

improvements. More precisely, these improvements amount to approximately 19% with

respect to the rolling intrinsic benchmark. In addition, the proposed modifications allow for

better generalization of the fitted Q method in out-of-sample (unseen) data. In addition, the

results illustrate that the obtained policy is low-risk, and can outperform on average the state

of the art for the industrial rolling intrinsic benchmark strategy. In conclusion, it is shown that

using the proposed DRL method we were able to obtain a control strategy that can significantly

improve the value of storage when performing price arbitrage in the European CID market.

In Chapter 4 of this thesis, we address the energy arbitrage problem faced by an off-grid

microgrid operator in the context of rural electrification. In particular, we deal with the

lifelong control problem of an isolated microgrid. The main challenges for an effective control

policy stem from the various changes that take place over the life span of the microgrid.

These changes can be categorized in progressive and abrupt changes. In this work, we

propose a novel model-based DRL algorithm that is able to address both types of changes.

The algorithm demonstrates generalization properties, transfer capabilities and robustness in

case of fast-changing system dynamics. The proposed algorithm is compared against two

benchmarks, namely a rule-based and an model predictive controller (MPC). The results

show that the trained agent yields approximately a 25% cost reduction in comparison to the

rule-based controller, and that its performance is comparable to the upper bound set by an

MPC controller. Moreover, the results indicate that, the proposed model-based reinforcement

learning method is able to adapt to changes, both gradual and abrupt. Overall, the proposed

DRL method succeeds in tackling the key challenges encountered in the lifelong control of an

off-grid microgrid for rural electrification. Additionally, the cost reduction achieved by the

proposed algorithm mainly implies a reduction in the use of the diesel generator and a higher

utilization of RES. This effect subsequently results in an overall reduction of CO2 emissions

and promotes sustainable energy utilization in the context of rural electrification. It can be

thus concluded that, DRL is proven to be a highly effective method for maximizing the value

of energy arbitrage in an off-grid microgrid context.
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Finally in Chapter 5, we propose a new DRL methodology for jointly sizing a dynam-

ical system and designing its control law. First, the problem is formalized by considering

parametrized reinforcement learning environments and parametrized policies. The objective

of the optimization problem is to jointly find a control policy and an environment over the

joint hypothesis space of parameters such that the sum of rewards gathered by the policy in

this environment is maximal. The optimization problem is then addressed by generalizing the

direct policy search algorithms to an algorithm we call Direct Environment Search with (pro-

jected stochastic) Gradient Ascent (DESGA). We illustrate the performance of DESGA on two

benchmarks. First, we consider a parametrized space of Mass-Spring-Damper environments

and control policies. Then, we use our algorithm for optimizing the size of the components

and the operation of a small-scale autonomous energy system, i.e. a solar off-grid microgrid,

composed of photovoltaic panels, batteries. Also, on both benchmarks, we compare the results

of the execution of DESGA with a theoretical upper-bound on the expected return. On both

benchmarks, we show that DESGA results in a set of parameters for which the expected return

is nearly equal to its theoretical upper-bound.

6.2 Future work

In this thesis, we have proposed detailed modeling frameworks for two important energy

management problems in the context of the Energy Transition. Subsequently, we have solved

the developed problems using DRL techniques. However, to obtain a tractable solution, we

have performed an intermediate step, that is, we have reduced the problem complexity by

decreasing the dimensionality of the action spaces. A key challenge from the practitioner’s

perspective is to strike the right balance between problem complexity and optimality. In that

respect, future work should be directed toward the design of low dimensional continuous

action spaces that are not restrictive, i.e. contain the optimal solution of the original problem.

Many of the state-of-the-art reinforcement learning algorithms have demonstrated large

success in solving problems that are stationary (such as Atari games). In Chapter 4, we

have highlighted the increasing importance and the motivation for addressing problems in

which changes occur over time. In order to address these changes, in this thesis, we have

proposed a model based algorithm that has demonstrated generalization, robustness and

transfer capabilities. Future work should be directed toward creating a more adaptive version

of this algorithm, one that is able to track occurring changes and can be automatically re-

trained. Each new training step should rely on more recent data that better represent the
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underlying processes without forgetting critical knowledge about the considered system. In

this way, we could eventually be able to address the problem of lifelong control in the context

of energy management.

Finally, the DESGA algorithm presented in Chapter 5 has demonstrated the potential to

jointly optimize a system and its corresponding policy for the case of an isolated microgrid.

Future work should be directed toward using this algorithm for optimizing more complex

systems. For instance, including in the existing case study other controllable or variable

components such as diesel generators or wind turbines would result in a more complex joint

environment and policy hypothesis space. Increasing the complexity of the investigated

problems is expected to bring new challenges and high potential for improvements for the

DESGA algorithm.
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