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This talk is inspired and adapted from previous talks given by my wonderful co-
authors Kyle Cranmer and Johann Brehmer. Thanks to them!
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Simulation-based inference
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θ, z,x ∼ p(θ, z,x)
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θ, z ∼ p(θ, z∣x)
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The case of particle physics
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SM with
parameters 

Simulated observables Real observations 

 

θ
x xobs
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p(x∣θ) = p(z ∣θ)p(z ∣z )p(z ∣z )p(x∣z )dz dz dz

yikes!

∭ p s p d s d p s d
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Inference
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a) estimate  

(e.g., MLE)

b) construct con�dence
sets

c) estimate the posterior 

(or sample from it)

Problem statement(s)
Start with

a simulator that lets you generate  samples  (for parameters

 of our choice),

observed data ,

a prior .

Then,

N x ∼ p(x ∣θ )i i i

θi

x ∼ p(x ∣θ )obs obs true

p(θ)

θtrue
p(θ∣x )obs
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Inference algorithms
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Approximate Bayesian
Computation (ABC)

Issues

How to choose ? ? ?

No tractable posterior.

Need to run new simulations for new data or new prior.

x′ ϵ ∣∣ ⋅ ∣∣

―
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Amortizing Bayes
The Bayes rule can be rewritten as

where  is the likelihood-to-evidence ratio.

The ratio can be learned with machine learning, even neither the likelihood nor
the evidence can be evaluated!

p(θ∣x) = = r(x∣θ)p(θ) ≈ (x∣θ)p(θ),
p(x)

p(x∣θ)p(θ)
r̂

r(x∣θ) =
p(x)
p(x∣θ)
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The likelihood ratio trick

x, θ ∼ p(x, θ)

x, θ ∼ p(x)p(θ)
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The solution  found after training approximates the optimal classi�er

Therefore,

d

d(x, θ) ≈ d (x, θ) = .∗

p(x, θ) + p(x)p(θ)
p(x, θ)

r(x∣θ) = = ≈ = (x∣θ).
p(x)
p(x∣θ)

p(x)p(θ)
p(x, θ)

1 − d(x, θ)
d(x, θ)

r̂
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Inference
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Likelihood-free MCMC

MCMC samplers require the evaluation of the posterior ratios, which can be
obtained by evaluating the ratio of ratios:

p(θ ∣x)t−1

p(θ ∣x)new =
p(x∣θ )p(θ )/p(x)t−1 t−1

p(x∣θ )p(θ )/p(x)new new

= .
r(x∣θ )t−1

r(x∣θ )new

p(θ )t−1

p(θ )new

―
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https://blog.stata.com/2016/11/15/introduction-to-bayesian-statistics-part-2-mcmc-and-the-metropolis-hastings-algorithm/


How to assess that the
approximate posterior is
not wrong?

Diagnostics
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Coverage

For every  in a validation set, compute the  credible

interval based on .

The fraction of samples for which  is contained within the interval

corresponds to the empirical coverage probability.

If the empirical coverage is larger that the nominal coverage probability 

, then the ratio estimator  passes the diagnostic.

x, θ ∼ p(x, θ) 1 − α

(θ∣x) = (x∣θ)p(θ)p̂ r̂

θ

1 − α r̂
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Convergence towards the nominal value 

If the approximation  is correct, then the posterior

should concentrate around  as the number of observations

for , increases.

θ∗

r̂

(θ∣X ) =p̂
p(X )

p(θ)p(X ∣θ)
= p(θ) p(θ ) dθ[∫ ′

x∈X

∏
p(x∣θ)
p(x∣θ )′ ′]

−1

≈ p(θ) p(θ ) dθ[∫ ′

x∈X

∏
(x∣θ)r̂

(x∣θ )r̂ ′
′]

−1

θ∗

X = {x , ...,x },1 n

x ∼ p(x∣θ )i
∗
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ROC AUC score

The ratio estimator  is only exact when samples  from the reweighted

marginal model  cannot be distinguished from samples  from a

speci�c likelihood .

Therefore, the predictive ROC AUC performance of a classi�er should be close to 

 if the ratio is correct.

(x∣θ)r̂ x

p(x) (x∣θ)r̂ x

p(x∣θ)

0.5
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Showtime!
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Case 1: Hunting new physics at particle colliders
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With enough training data, the ML algorithms get the likelihood function right.

Using more information from the simulator improves sample ef�ciency
substantially.
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Case 2: Dark matter substructure from gravitational lensing
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Interaction of Pal 5 with two Interaction of Pal 5 with two ……

Case 3: Constraining dark matter with stellar streams

.]

―
Image credits: C. Bickel/Science; D. Erkal. 26 / 32

https://www.youtube.com/watch?v=uQVv_Sfxx5E
https://www.youtube.com/channel/UCnGt3T--gflcoOttV3kqTYg
https://t.co/U6KPgLBdpz?amp=1


Coverage    Convergence to       ROC AUC scoreθ∗
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Preliminary results for GD-1 suggest a preference for CDM over WDM.
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The frontier
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In summary
Much of modern science is based on simulators making precise predictions,
but in which inference is challenging.

Machine learning enables powerful inference methods.

They work in problems from the smallest to the largest scales.

Further advances in machine learning will translate into scienti�c progress.
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Thanks!
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The end.

32 / 32


