Sustainable Dairy Farming- A Case Study of Holsteins in a Developed and Emerging Country

Hammami H.¹, B. Rekik², J. Stoll³, J. Bormann⁴ and N. Gengler¹,⁵

¹ Gembloux Agricultural University, Animal Science Unit, Belgium
² ESAM, Département des Productions Animales, Tunisia
³ CONVIS Service élevage et génétique, R&D, Luxembourg
⁴ Administration des Services Techniques de l’Agriculture, Luxembourg
⁵ National Fund for Scientific Research, Belgium
Context

- Drivers of change in animal production:
 - Purchasing power
 - Urbanization
 - Consumer preference

- Exchange / acceleration of gene flow

- Efficiency and sustainability depends:
 - genotype response
 - Breeders capacity

- Genotype by environment interaction (GxE)
GxE: Ability to alter phenotype to environmental changes

Diff = genetic value (E2) – genetic value (E1)

Scaling effect

Re-ranking
General objective

Quantify the effectiveness of genetic response from indirect selection of Holsteins using two countries as model:

Luxembourg (high input system) and Tunisia (low- to medium-input system)
Luxembourg

- Holsteins: predominant (90% milk recording)
- EU enlargement, CAP reform, and WTO
- Decoupling and prices cuts → production systems diversification is necessary
- Transition from one system to another
 - Adaptability and reaction of genotypes
 - Avoid harmful environmental effects
Tunisia

- Dairy milk production enhancement:
 - importation of Holsteins since 1960
 - Heifers (3000 h/year)
 - Semen (250 000 s/year)
 - factories and cooperatives for milk collect and marketing

- Some satisfactory performances but sensible to integrated livestock-farming

- Selection should consider local production circumstances and environmental sensitivity
Materials & Methods

- Data set

 - Luxembourg
 - Tunisia
 - Test-day: 661,453
 - Cows: 77,814
 - Herds: 525

- 231 common sires

- Genetic similarity: 0.19

- Average additive relationships (>2.2%)

 - 14,421 daughters (LUX): 19%
 - 6,358 daughters (TUN): 18%

Hammami et al., 2007
Materials & Methods

- **Analysis**
 - **Country-side approach** (Hammami et al., 2008)
 - Whole country = character state
 - **Specific-environment (SPE) approach**
 - Herd management level
 - 3 different environment / country = 3 traits / country (Hammami et al., 2009)
Materials & Methods

- **Country-side approach**
 - Bivariate analysis (sire and animal RRM)
 - Variance component estimation (Gibbs sampling)
 - heritability
 - Genetic correlation (r_g)
 - Genetic evaluation:
 - rank correlation between EBVs of all common sires (r_b)
 - Curve of EBV for the top 5 bulls

- **Traits studied:**
 - Daily milk yield (DMY)
 - 305-d milk yield (305-d MY)
 - Persistency ($\text{EBV}_{280-EBV}_{80}$)
Materials & Methods

- **SPE approach**
 - Identification of SPE:
 - Herd management level = solutions “herd-testdate” + “herd-year”
 - Clustering method (3 SPE retained per country)
 - HI: high MI: Medium and LO: low level
 - Multi-trait random regression model
 - r_g and r_b between pairs of contrasted SPE
 - Differential selection
 - Identification of TOP20 from national evaluation
 - Identification of TOP20 from each SPE evaluation
 - Comparison between rankings of the national and SPE evaluation
Materials & Methods

Models:

Fixed effects:
- Herd x test-date
- Class of 25 DIM nested in age by season of calving
- Class of 5 DIM

Random effects:
- Herd x year of calving (HY)
- Permanent environment (PE)
- Additive genetic (AG)

Fourth order Legendre Polynomials

Residuals
Results

Country-side approach
Production descriptive parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LUX</th>
<th>TUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMY (kg)</td>
<td>21.8</td>
<td>18.0</td>
</tr>
<tr>
<td>Peak yield (kg)</td>
<td>27.5</td>
<td>23.9</td>
</tr>
<tr>
<td>Days to peak (day)</td>
<td>73</td>
<td>65</td>
</tr>
<tr>
<td>Age at calving (month)</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>305-d MY (kg)</td>
<td>7,946</td>
<td>6,220</td>
</tr>
<tr>
<td>Calving interval (day)</td>
<td>401</td>
<td>444</td>
</tr>
</tbody>
</table>

Milk production level differ significantly between the 2 countries
Variances

✓ Reduced AG → difficulty for expressing genetic potential
✓ largest EP → additional variation due poor management practices and feeding fluctuations
Genetic parameters

<table>
<thead>
<tr>
<th>Trait</th>
<th>heritability</th>
<th>Country</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LUX</td>
<td>TUN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>305-d MY</td>
<td></td>
<td>0.42</td>
<td>0.19</td>
<td>0.60</td>
<td>0.41</td>
</tr>
<tr>
<td>Persistency</td>
<td></td>
<td>0.12</td>
<td>0.08</td>
<td>0.36</td>
<td>0.26</td>
</tr>
</tbody>
</table>

- Differences in h^2 for MY may be caused by differences in production levels
- Low h^2 for persistency \rightarrow suppressing expression of genetic variation
- Low r_g (<0.80) \rightarrow significant GxE and a re-ranking of sires
EBVs of common sires

305-d MY

Considerable re-ranking of common sires (with + 30 daughters)
EBVs of common sires

Persistency

animals with (+) EBV for MY in best environment may have lower MY but greater persistency in (-) favorable environment
Difference in genetic expression throughout the lactation
Re-ranking of common sires was important across the lactation
Results

SPE approach
Descriptive parameters

<table>
<thead>
<tr>
<th></th>
<th>LUX</th>
<th>TUN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HI</td>
<td>MI</td>
</tr>
<tr>
<td>HM (kg)</td>
<td>9.6</td>
<td>6.8</td>
</tr>
<tr>
<td>DMY (kg)</td>
<td>25.5</td>
<td>22.4</td>
</tr>
<tr>
<td>305-d MY</td>
<td>7,917</td>
<td>7,017</td>
</tr>
<tr>
<td>Age (mo)</td>
<td>29</td>
<td>31</td>
</tr>
</tbody>
</table>

- MY levels decrease from HI to LO levels
- TUN HI have similar MY levels as MI and LO LUX herds
- HM level varie with milk production level
AG and PE variances decreased from HI to LO HM level in both countries.
Genetic parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LUX</th>
<th>TUN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HI</td>
<td>MI</td>
</tr>
<tr>
<td>LUX</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.41</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>MI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.82</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>LO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.76</td>
<td>0.83</td>
</tr>
<tr>
<td>TUN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.41</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>MI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.38</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>LO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.26</td>
<td>0.39</td>
</tr>
<tr>
<td>Parameter</td>
<td>HI</td>
<td>LUX</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HI</td>
<td>0,41</td>
</tr>
<tr>
<td></td>
<td>MI</td>
<td>0,82</td>
</tr>
<tr>
<td></td>
<td>LO</td>
<td>0,76</td>
</tr>
<tr>
<td>LUX</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HI</td>
<td>0,41</td>
</tr>
<tr>
<td></td>
<td>MI</td>
<td>0,38</td>
</tr>
<tr>
<td></td>
<td>LO</td>
<td>0,26</td>
</tr>
<tr>
<td>TUN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- h^2 vary with the HM level in both countries
- h^2 were larger in the 3 LUX SPE
- Large h^2 in HM level reflect the high AG compared to LO levels
Genetic parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LUX</th>
<th>TUN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HI</td>
<td>MI</td>
</tr>
<tr>
<td>LUX</td>
<td>0.41</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>0.82</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>0.76</td>
<td>0.83</td>
</tr>
<tr>
<td>TUN</td>
<td>0.41</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>0.38</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>0.26</td>
<td>0.39</td>
</tr>
</tbody>
</table>

- LUX: \(r_g > 0.96 \) suggest that sires rank similarly in the different SPE
- Differences in variances \(\rightarrow \) scaling effect
- TUN: \(r_g < 0.80 \) associated with low \(r_b \) \(\rightarrow \) high potential of re-ranking
Sustainable Dairy Farming: A Case Study of Holsteins in a Developed and Emerging Country
H. Hammami¹, B. Rekik², J. Stoll³, J. Bormann⁴, and N. Gengler¹,⁵
¹ Gembloux Agricultural University, Animal Science Unit, Belgium
² Ecole Supérieure d’Agriculture de Mateur, Tunisia
³ CONVIS Herdbuch Service élevage et génétique, R&D, Luxembourg
⁴ Administration des Services Techniques de l’Agriculture, Luxembourg
⁵ National Fund for Scientific Research, Belgium

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HI</th>
<th>LUX</th>
<th>TUN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HI</td>
<td>LO</td>
<td>HI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HI</td>
</tr>
<tr>
<td>HI</td>
<td>0,41</td>
<td>0,98</td>
<td>0,61</td>
</tr>
<tr>
<td>MI</td>
<td>0,82</td>
<td>0,37</td>
<td>0,79</td>
</tr>
<tr>
<td>LO</td>
<td>0,76</td>
<td>0,83</td>
<td>0,77</td>
</tr>
</tbody>
</table>

Lowest r_g were observed between HI LUX and the 3 TUN SPE
MI and LO LUX well correlated to HI TUN herds
Daughters (MI and LO LUX) good predictors to their half-sisters (HI TUN)
The best national 20 sires were also almost the same best sires in HI (18/20) and LO (12/20) SPE

So, breeders may use sires in various HM levels without great risks
Sustainable Dairy Farming: A Case Study of Holsteins in a Developed and Emerging Country

H. Hammami1, B. Rekik2, J. Stoll3, J. Bormann4, and N. Gengler1,5. 1 Gembloux Agricultural University, Animal Science Unit, Belgium 2 Ecole Supérieure d’Agriculture de Mateur, Tunisia 3 CONVIS Herdbuch Service élevage et génétique, R&D, Luxembourg 4 Administration des Services Techniques de l’Agriculture, Luxembourg 5 National Fund for Scientific Research, Belgium

EBV TOP20: TUN

<table>
<thead>
<tr>
<th>National</th>
<th>HI</th>
<th>LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>S1</td>
<td>S16</td>
</tr>
<tr>
<td>S2</td>
<td>S2</td>
<td>S18</td>
</tr>
<tr>
<td>S3</td>
<td>S4</td>
<td>S26</td>
</tr>
<tr>
<td>S4</td>
<td>S5</td>
<td>S24</td>
</tr>
<tr>
<td>S5</td>
<td>S3</td>
<td>S25</td>
</tr>
<tr>
<td>S6</td>
<td>S11</td>
<td>S29</td>
</tr>
<tr>
<td>S7</td>
<td>S8</td>
<td>S27</td>
</tr>
<tr>
<td>S8</td>
<td>S10</td>
<td>S38</td>
</tr>
<tr>
<td>S9</td>
<td>S9</td>
<td>S37</td>
</tr>
<tr>
<td>S10</td>
<td>S13</td>
<td>S41</td>
</tr>
<tr>
<td>S11</td>
<td>S16</td>
<td>S23</td>
</tr>
<tr>
<td>S12</td>
<td>S12</td>
<td>S31</td>
</tr>
<tr>
<td>S13</td>
<td>S6</td>
<td>S33</td>
</tr>
<tr>
<td>S14</td>
<td>S7</td>
<td>S22</td>
</tr>
<tr>
<td>S15</td>
<td>S15</td>
<td>S28</td>
</tr>
<tr>
<td>S16</td>
<td>S14</td>
<td>S42</td>
</tr>
<tr>
<td>S17</td>
<td>S21</td>
<td>S36</td>
</tr>
<tr>
<td>S18</td>
<td>S28</td>
<td>S49</td>
</tr>
<tr>
<td>S19</td>
<td>S26</td>
<td>S30</td>
</tr>
<tr>
<td>S20</td>
<td>S24</td>
<td>S40</td>
</tr>
</tbody>
</table>

- Ranking of sires changed between national and SPE. (16/20) in HI but only (2/10) for LO
- Semen exchange between the different SPE should be done with great caution.
Magnitude of GxE

- **Country-side approach**
 - AG variances: 60% reduced in Tunisia
 - h^2 305-d MY: 73 to 78%
 - r_g 305-d MY (0.60); Persistency (0.43)
 - high re-ranking

- **SPE approach**
 - LUX: Only scaling effects ($r_g > 0.96$)
 - TUN: re-ranking (low r_g and r_b)
 - r_g (LO LUX vs HI TUN) ≈ 0.80

genetic expression depend highly on the input levels
Implications

Breeding programs sustainability
High-input systems

- Production levels = proportionate to HM levels → direct selection
- Only one national list of EBV but have to absorb the scaling effect
- Fertility and functional traits: only scaling effect
- Correction and use average economic → only one national composite index
- No need to select a specific genotype for SPE
- Challenge in production systems require new selection criterion
High-input systems

- Factors affecting sustainability:
 - Deterioration of fertility (Liu et al., 2008)
 - Limitation of the net profit (Conter, 2008)
 - Shortage in farm land
 - High quota prices
 - High level of fixed costs
 - Energy consumption + CO₂ emissions (30 t/a per head) (Stoll, 2008)
 - Over-consumption of animal based diets (300 kg animal products = x2 much as needs) (Stoll, 2008)
High-input systems

- Consumption reduction of animal products
- Economic profitability:
 - increasing farm sizes
 - decreasing direct costs
 - moving to semi-intensive and extensive systems
- Reducing herd sizes (greenhouse gaz)
- By means of pastureland based feeding:
 - healthier fine component
 - organic manner
 - less competitor for human food
Low- to medium-input systems

- \(r_g < 0.60 \) + hampered genetic expression \(\rightarrow \) limited response to indirect selection
- Equitably balance between gene importation and local progeny testing:
 - HI: straight-breeding to improve exotic breeds
 - LO: cross-breeding more efficient
- Breeding goals, resources requirements and organizations should be discussed
- Extension of milk recording and ID registration
- genetic evaluation model appropriate to SPE conditions
Low- to medium-input systems

- Factors affecting sustainability:
 - Limited genetic expression for major traits
 - Extensive to even ‘a road side’ system
 - out-land purchased products
 - Disproportional: herd sizes / arable areas
 - Poor nutrition, management skills and forages availability → Low yields, fertility, and survival
 - Lack of farmer associations
 - Integrated intensive systems
 - Large-scale farms with high fixed costs (machinery, fuel, concentrates)
 - Threat to environment and human health
 - Require expensive costs to enhance heat stress and management practices (cooling, management surveys)
Low- to medium-input systems

- Smallholder production:
 - Efficiency of dairy cows is to be redefined with respect to:
 - Valorization of scarce sources
 - Adaptation to stressful local conditions
 - Survival under use of limited capital, labor, and health services
 - Valorization of non-marked benefits
 - Local and cross breed cows may replace Holsteins under the harsh edapho-climatic conditions
Low- to medium-input systems

- Integrated intensive systems:
 - Dress a good relation between animal requirements and farm system potentialities
 - Forage production intensification and diversification
 - Redesign farm units and production levels
 - Maintain an even-year production for at least 4 lactations
 - Increase the capacity for organizing and monitoring the breeding sector
 - Improvement of the degree of involvement of key operators
 - Breeding objectives should focused on maintaining a cost effective production levels under local conditions
 - Implantation of genetic evaluation system integrating major traits and favoring adaptation to local conditions
Conclusions

- Scaling effect (high-input) vs re-ranking (low-input)
- Selection under less intensive systems (ruminants preferences, welfare and environment preservation)
- Low input: selection for adaptive traits under specific conditions
- Improvement of management conditions and husbandry practices for exotic breeds
- Use diverse genetic resources with potentials for production, adaptation, and resistance to heat stress and diseases
Thank you for your attention

Acknowledgments

Ministère de la Culture, De l'Enseignement Supérieur et de la Recherche
Grand-Duché de Luxembourg

Email: hammami.h@fsagx.ac.be