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» By developing an ensemble of 54 model scenarios;omstrain firn thickness change
uncertainty in East Antarctica over 1992-2017.

* In 9 of 16 basins, modelled firn thickness andhatry trends agree; elsewhere
uncertainty is underestimated or ice flow imbalaexists.

* Model uncertainty reaches 1 cmtywith snowfall, firn compaction and snow density
having spatially variable contributions to uncenrtgi
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Abstract

Mass balance assessments of the East Antarctihest (EAIS) are highly sensitive to changes
in firn thickness, causing substantial disagreenreastimates of its contribution to sea-level. To
better constrain the uncertainty in recent firckhiess changes, we develop an ensemble of 54
model scenarios of firn evolution between 1992-2@1sing statistical emulation of firn-
densification models, we quantify the impact ofifiompaction formulation, differing climatic
forcing, and surface snow density on firn thicknegslution. At basin scales, the ensemble
uncertainty in firn thickness change ranges betv@e2nal1.0 cm yt (15-300% relative
uncertainty), with the choice of climate forcingvireg the largest influence on the spread. Our
results show the regions of the ice sheet whergplamed discrepancies exist between observed
elevation changes and an extensive set of modilfethickness changes estimates, marking an
important step towards more accurately constrailiagheet mass balance.

Plain Language Summary

Firn is the transition stage between snow andTibe.total thickness of the firn layer varies in
time and space. In East Antarctica, uncertaintyuabios variability has a large impact on
satellite-based estimates of ice sheet mass ch#¥geombine statistical surrogates of firn-
densification models with different climate modei&r the entire East Antarctic ice sheet. Our
ensemble of model combinations demonstrates titmatiHfickness estimates are poorly
constrained. Accounting for their respective uraiattes, modelled firn thickness change and
satellite measurements of elevation change arastensover most of East Antarctica. However,
we identify several areas of mismatch between mesl@hates and elevation change
observations, which likely indicates that furth@provements are required either in models or in
measurement techniques. Alternatively, these désagents can hint at possible imbalances in
the flow of ice, below the firn layer. We quanthpw much different sources of uncertainty
contribute to the total uncertainty in modelleadhfihickness change. The amount of snowfall
estimated by climate models mostly dominates tleerxainty, but modelled firn compaction
rates and uncertainty in surface snow density lsds@ major contributions in certain areas.

1 Introduction

The Antarctic ice sheet (AlS) is the largest iceyon Earth, holding a total potential
contribution to sea-level rise of ~57.2 m (Rignbak, 2019). The AIS is divided into three
entities: the Antarctic Peninsula (AP) and the st East Antarctic ice sheets (WAIS and
EAIS, respectively). The EAIS has shown less dyranstabilities than the WAIS and AP over
the past four decades, but it holds ~90% of the #IS ice mass and is the area with highest
uncertainty concerning recent mass trends (Shepeld, 2018; Rignot et al., 2019). A layer of
firn, the intermediary stage between snow anddoeers ~99% of the AIS (Winther et al.,
2001). The firn layer thickness, defined here asdipth from the surface until the firn-ice
transition, varies from 0 to more than 100 m (van Broeke, 2008). Firn thickness also
fluctuates in time due to changes in firn comparct&tes and climatic conditions, primarily net
snow accumulation. These fluctuations affect iaesimass balance assessments derived from
satellite-based altimetry. Measured surface elemathanges are converted into mass changes,
but the conversion requires precise knowledge néladity in firn thickness and mass.
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Atmospheric reanalysis products, Regional Climatalbls (RCMs) and Firn Densification
Models (FDMs) are therefore used to simulate chawo§dirn properties and, ultimately, to
evaluate ice sheet mass changes with precisioan@.iZwally, 2011; Kuipers Munneke et al.,
2015; McMillan et al., 2016; Shepherd et al., 20381ith et al., 2020).

By simulating mass fluxes (snowfall, sublimatiorelth) RCMs estimate the surface mass
balance (SMB) of ice sheets, which partly determitie evolution of the firn layer. These

fluxes and modelled surface temperatures also serugput forcing for FDMs that explicitly
simulate firn compaction rates. Such coupling eaeed to reproduce seasonal and multi-annual
fluctuations in compaction rates (Arthern et ab1@). Uncertainty in SMB estimates across
Antarctica are typically assessed by comparingustfrom different RCMs. While SMB is key
to firn thickness evolution because it determimesamount of snow removed and added at the
surface, it does not capture the effects of flutigefirn compaction that must be estimated with
FDMs. Differences between FDMs can lead to subistiesyiread in modelled firn thickness and
air content (Lundin et al., 2017), especially iéksd up to ice sheet extent.

Compared to the AP and the WAIS, observed elevatiamges across the EAIS over the past 25
years have been generally smaller, and largelyedrby snowfall and compaction variability
(Davis et al., 2005; Shepherd et al., 2018; Shepéeal., 2019). Altimetry-derived mass balance
assessments of the EAIS are very sensitive to asof firn thickness fluctuations because
these are of the same order of magnitude as mebslaeneation changes. This sensitivity
complicates the interpretation of altimetry meamsts in this area, and it is unclear whether to
attribute elevation changes to ice dynamical imbegeor firn thickness change (Zwally et al.,
2015; Scambos and Shuman, 2016; Shepherd et &8).Zlhese conflicting assessments
motivate precise uncertainty analyses of coupleMREDM systems over the EAIS. Previously,
such analyses have been computationally limiteghing multiple FDMs for many years at the
spatial resolution of RCM grids over the EAIS regaimany thousands of simulations. The
extent to which estimates of firn thickness chaveys by combining different FDMs with
different RCMs remains an open question.

To overcome computational limitations and thus iowerevaluation of uncertainty in the
evolution of firn thickness, we build statisticahelators of nine FDMs. An emulator is a fast
and statistically-driven approximation of a morengbex physical model (Sacks et al., 1989;
O'Hagan 2006). By combining the FDM emulators wiimatic output from three state-of-the-
art polar RCMs, we develop an ensemble of 54 saenaf EAIS firn thickness change. We
exploit these scenarios to constrain uncertaingfyses of firn thickness fluctuations on the
EAIS and to quantify the contributions of variowsisces of uncertainty to the spread of
modelled results.
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2 Methods

2.1 Ensemble configuration

To generate our ensemble, we first calibrate eatheonine FDM emulators to its corresponding
FDM (Table 1) in a representative range of EAlI$nelie conditions, and then we use it to
emulate compaction rates across the entire EAI&n@ds in SMB as well as climatic forcing for
the emulators are computed from three RCMs: RACM@2R and HIRHAM (Tablel). Our
modelled scenarios of firn thickness change sparl®92-2017 period. This period is chosen to
match the long-term altimetry record of Shepheral e{2019), hence facilitating
intercomparison of observed elevation changes avdehed firn thickness change experiments
of this study. We limit our analysis to the EAISchase surface melt there is minor compared to
the AP and WAIS, and FDM fidelity remains questibleafor simulating wet firn compaction,
water percolation and refreezing (Steger et all,/2¥erjans et al., 2019; Vandecrux et al.,
2020).

References
FDM
Armap Arthern et al. (2010); Verjans et al. (2020)
GSFC-FDMVO Smith et al. (2020)
Cr Vionnet et al. (2012); van Kampenhout et al.1(20
HL Herron and Langway (1980)
HLmap Herron and Langway (1980); Verjans et al2(20
Lig Ligtenberg et al. (2011)
LZ15 Li and Zwally (2015)
LZmap Li and Zwally (2011); Verjans et al. (2020)
Morris Morris and Wingham (2014)
RCM
RACMO2.3p2 (27 km)| van Wessem et al. (2018)
MARvV3.11 (35 km) Agosta et al. (2019); Kittel et al. (2020)
HIRHAMS (12.5 km) | Christensen et al. (2007)
Pa
L11 Ligtenberg et al. (2011)
fixed-350 Smith et al. (2020)

Table 1. The nine firn densification models (FDM), thregional climatic models (RCM) and two surface dignsi
parameterisationg() used in this study. The horizontal resolutionshef RCM grids are given in brackets. All
RCMs were forced by the ERA-Interim reanalysish&irt boundaries (Dee et al., 2011). See Supplementa
Information for details on the FDMs.

2.2 Firn thickness change calculations

Observed ice sheet elevation changes, once calrextglacial isostatic adjustment, are
composed of two different signals: one relateccéodynamical imbalance and one to firn
thickness change. In this study, we focus on ttierlaThe change in firn thickness at time step
dh(t), is given by:

dhf(t) = dhacc(t) — dhy @ — dhc(t) — dhyc(t) 1)
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with all components expressed in metres and coresideositive, and set to a daily time step in
this study. The subscripf refers to surface firn removal by melting and refers to net snow
accumulation. Botldh,.. anddh,, depend on the RCM-computed mass fluxes and ovétlne
assumed for surface snow density, but they areperttent of FDM calculations. The
componentlh, is the emulated firn compaction term (Section.Zl8e last componenth; .,
guantifies changes in the flux through the loweurmtary of the firn column and thus captures
changes in the rate of conversion from firn to i€banges inlh;., act on much longer
timescales than the other components (Zwally an@202; Kuipers Munneke et al., 2015). As
such,dh;., can be set constant and equal to the averagefrateversion from firn to ice over a
reference period (we use 1979-2009, following Ligperg et al., 2011}jh;.,. By assuming firn
thickness in steady state, thus without trend, twereference periodh]., balances the
reference period averages of the other components:

dh;ﬁce = thCC - dh}\ﬁ/I - dh? (2)

Substitutingdh;,, for dh;., in Eq. (1) yields Eqg. (3). This is equivalent tdaulating firn
thickness change by computing anomalies in eatheafcc, M andc components with respect
to their average value in the reference periodafid Zwally, 2015).

dhp(6) = dhgee(t) — dhyy (6) — dhe(t) — dhl, 3

In this study, we are interested in the cumulati982-2017 firn thickness changes. We thus
integrate Eq. (3) over this time period to compautetal firn thickness changﬁl}"t.

2.3 Emulation of firn compaction

The nine FDM emulators are first calibrated at &sson the EAIS and over the entire time span
(1979-2017) covered by the output of RCMs (Supplaary Information for details). The goal

of the emulation is to capture both long- and skemin sensitivity otdh, to climatic forcing.

The long-term (1979-2017) mean and trend i are estimated by linear regressions on the
long-term means and trends of temperature, acctiowland melt. These linear regressions are
specific to each FDM and show good performancepiwring the FDM-computed means and
trends at the calibration sites?®.99 and R>0.97 respectively). Gaussian Process regression
complements the linear regression by capturingtdbom fluctuations from the long-term trends
as a function of detrended values of temperatudeaanumulation. We evaluate the emulation
capabilities in a leave-one-out cross-validati@nfework; the nine FDM emulators reproduce
the FDM output well, both for the total 1979-20d7, (R>>0.99, RMSE=0.49 m, corresponding
to 3.5% of the mean totdlh,) and for daily values (®0.99, RMSE=0.15x1®m)
(Supplementary Information for details).

2.4 Uncertainty contributions

In order to evaluate uncertainty on the time sesfesumulativedh,(t) and ondht’t, we

construct a model ensemble; the spread arising &tange number of simulations provides an
estimate of uncertainty (e.g. Déqué et al, 20017). &€semble includes all combinations of the
nine FDM emulators and the three RCMs (Table ljthfeumore, surface snow densipy,
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contributes to uncertainty in all componentsiaf (e.g. Ligtenberg et al., 2011; Agosta et al.,
2019). As such, we use two different possibilif@sthe value op,: the climate-dependent
parameterisation of Ligtenberg et al. (2011) ardahproach of Smith et al. (2020), which takes
a constant value of 350 kghiB. Medley, personal communication, 2020) (TableThe
different combinations of RCM, FDM ang provide 54 different firn thickness change
scenarios across the EAIS. We refer to the spre#itkimodel ensemble results as the total
ensemble uncertainty to distinguish it from thestancertainty, which may not be captured by
the ensemble. We then use the analysis of varigkfid®VA) theory to partition the total
ensemble uncertainty among the three factors RG] Bnd p, (von Storch and Zwiers, 1999;
Déqué et al., 2007; Yip et al., 2011). This apphoaltows us to decompose the variance in
model results into the contribution of each faetod of each interaction between these factors

(Eq. (4)).
0% = Niem + Nipu + 77;2)0 + Nacv—rom + 771226M—p0 + 771%"1)M—p0 + nIZQCM—FDM—pO (4)

wherecs? is the variance in the ensemble resultd) @nd then? terms are the contributions from
each factor and interaction between factors%olnteraction effects stem from a non-linear
behaviour of the three uncertainty sources. Coutiiobs are calculated by computing the sum of
squares associated with eaghterm.

(1 = 3 Zity G = x.)?

1 : N 2
J niz—j = _Ziv=l1 Zjil(xij- — X X5+ X) (%)

N; N]'
2 _ 1 Ny ¢V Nk _ _ _ _ 2
Lm’—j—k = NN, Nk Yis1 ijl Zkzl(xijk Xij, — Xig — Xjg T X, +Xj +Xp x)

whereN denotes the number of possible levels for a fg@&dor RCMs, 9 for FDMs, 2 fop,),

x denotes the value of the variable of interd@}‘(t) and a dot represents the arithmetic mean
with respect to the index it is substituted forcBease the sums of squares in Eq. (5) are averaged
departures from a mean, these terms are biasedagssi of the variance (Déqué et al., 2007). An
unbiased estimate should be divided\oy 1, but dividing byN results inp? terms fulfilling

Eq. (4). As such, any rati? /a2 is only interpreted as a percentage of contriloutiothe total
ensemble uncertainty. We group togethenalterms capturing an interaction effect to quantify
the non-linear behaviour of the model experimerita vespect to the three factorg,,.).
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3 Reaults

3.1 Ensemble scenarios
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Figure 1. Ensemble mean 1992-2017 firn thickness chadgﬁ’t) in each EAIS basin. Simulation results are
interpolated by nearest-neighbour to a common &2 grid. The map uses a 3x3 median filter. EachtisRows

the basin-averaged modelled time series of albthenodel scenarios. Red, yellow and blue curvesessmt
scenarios forced with RACMO2, HIRHAM and MAR respeely. Each curve represents a particular RCM-FDM-
po combination. The thick black curve representsetiemble mean. Basin numbers are displayed whkiinsets.
Frame colours show Whethéh}"t is significantly positive (blue), negative (red)rmt significantly different from
zero (black) (at 2o). Basin limits follow Zwally et al. (2015).

The model ensemble shows a stable firn thickness 1892-2017 for most of the EAIS, but
strong regional changes are evident in severdleofi6 basins (Figure 1). The large interior
basins (2, 3, 10, 17) show no significant thickngsange; th& e uncertainty ranges of the
ensemble results encompass zero. In contrastnerdle shows a significant and pronounced
(>0.49 m) firn thickening in Dronning Maud Land iras 5-8), driven by high snowfall rates
since 2009 (Boening et al., 2012; Medley et al1&0Conversely, decreases in snowfall rates
cause firn thinning (>0.25 m) in the areas of Sketok ice shelf and Totten glacier (basins 12-
13), which coincide with localised zones of higa ftow velocities (Rignot et al., 2019). Low
accumulation since 2005 also induced thinning ict&ia Land (basin 14) (Velicogna et al.,
2014). In such cases of accumulation anomaliedjrtheompaction signal must be accounted
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for as it partially mitigates the overall changdiin thickness; increased accumulation provides
more pore space and thus higher compaction ratele decreased accumulation has the
opposite effect. In other basins, the ensembleestgghickening (e.g. basins 3-4) or thinning
(e.g. basins 9 and 15) but high variability amoraggel scenarios precludes any firm conclusion.

Basin| dh* | of | trenddhy | o't dhy | o"any | Alimetry | nRey/o? | nEpu/0? | M5,/0% | Nier/0?
[em] | [cm] | [emyr'] | [emyrY] | [erenddns] trend [%] [%] [%] [%]
[%] [cm yr]

2 | 91| 65 -0.3 +0.3 100 0.3+2.3 92.1 6.2 02 51
3 | 7.3 | 88 0.5 +0.4 80 0.7 £0.1 97.6 1.4 0. 1.
4 [ 267] 213 2 +0.8 40 33+04F 973 1.0 0.4 1.3
5 | 709 12.6 2.2 +0.6 27 4.4+06F 494 325 153 2.8
6 | 541| 6.9 2 +0.3 15 1.8+0.3 28.5 42.6 2601 2.8
7 | 490] 638 1.9 +0.3 16 1.6 +0.3 18.9 46.0 282 9 6.
8 | 68.9| 16.0 3.6 +1.0 28 4.1%0.4 71.4 11.8 1216 .7 3
9 | -131] 91 0.8 +0.7 88 3.0£0.7F 695 23.9 03 6.3
10 | -10.2] 55 -0.1 +0.3 300 0.0+0.2 925 6.4 0L 13
11 | 63| 22 0.5 +0.2 40 0.4 £ 0.4 84.9 6.0 5.6 35
12 | -44.8| 12.0 -0.8 +0.4 50 1.8+04* 514 408 93| 43
13 | -255] 9.0 1.2 +0.5 42 -0.7+0.4  60.8 32.8 34 31
14 | 17.3] 79 2.3 +0.4 17 -1.5+0.2*  74.6 211 31| 31
15 | -18.4]| 9.4 2.7 +0.9 33 6.2+1.5* 721 21.6 21| 52
16 | 22| 50 -0.2 +0.4 200 -0.1+0.3 954 1.4 00 13
17 | 33| 25 -0.3 +0.2 67 03+0.1F 705 21.6 01 7.9

Table 2: For each EAIS basin, ensemble meahy{‘) and standard deviation/(*) of firn thickness change. Mean
(trend dhy) and standard deviation{*"?dh,) of the linear trends fitted to the ensemble sdesaand their ratio

gtrend 4 hf

(W). Altimetry trends are from Shepherd et al. (20B)perscript * denotes non-overlapping uncertainty

ranges from altimetry and from the model ensemifiga? ratios show contributions of the sources of uraisty
to the ensemble spread.

Model uncertainties in basin-averaged rates oftfirtkness change range between 0.2-1.0 cm
yr-i, translating into relative uncertainties betwe&r300% (Table 2). Despite low absolute
uncertainties, the interior basins (2, 3, 10, I8,show the largest relative values because their
trends indh; are close to zero (<0.4 cnmjr Basins with trends exceeding 1 crrt yrave lower
relative uncertainties. Yet, some of these stiliibi relative uncertainties higher than 25% (4, 5,
8, 13, 15). The relative importance of the RCM, FRMilp, factors on the model spread varies
between basins. An area-weighted averaging denatestthe general predominance of the
RCM factor (72%) followed by the FDM (20%9, (4%) and interaction (4%) factors. The high
influence of RCM choice is mostly due to the laagel direct impact of SMB on firn thickness.
In addition, there is an indirect impact of RCM it as forcing for FDMs and for the climate-
dependent L11 parameterisationogf

Cold basins with low snowfall rates (e.g. 2-3, 10-&re characterised by particularly high
contributions ofy3.,, (>90% ofa?). In such dry conditions, small discrepancies leetwRCM-
modelled snowfall anomalies translate into lardatiee differences in firn thickness change.
FDM contribution to the total ensemble uncertaintyreases in basins with higher temperature
and accumulation (e.g. 5-7, 12-13), with,,, explaining approximately 30 to 45% of the
spread. These climatic settings drastically inardagth the sensitivity of FDMs to temperature
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fluctuations and the absolute compaction ratess€qurently, small relative differences in
compaction rates between the FDMs result in labgelate differences in firn thickness change.
Moreover, high total snowfall amounts mitigate timpact of small differences between RCM
estimates of accumulation, thus reducig,,. Another aspect that favours highy,, /o>

values is spatial variability of climatic condit®mithin basins; within basins spanning many
climatic zones, there is more likely to be a regiowhich the FDMs disagree on compaction
rates. Contribution af3 is highest in basins with large and positive sratbenomalies (basins
5-8). In such basins, it accounts for up to 28%hefmodel spread because the thickening caused
by the anomaly is sensitive to the snow densitampaterisation. Basins 16 and 17 illustrate the
role of interaction effects. In these basins, MARdates substantially higher temperatures and
accumulation rates, causing larger disagreemehigeba FDMs forced by MAR than between
FDMs forced by RACMOZ2 or HIRHAM. This nonconstanafyvariance across FDMs for
different RCMs leads to a significant interactiemn?,,,.. Because interaction effects account
for a non-negligible part of the model spread Irbakins (1 to 8% of 2), our results

demonstrate the importance of combining RCMs, FRNIdp, within different model
experiments to assess firn thickness change undgrta

3.2 Comparison with altimetry

—_— Ensemble trend in
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Figure 2: Comparison of 1992-2017 altimetry-based elevatiends and firn thickness trends of the ensemiité,

their respective & uncertainty ranges. Map shows the absolute enseattiinetry differences, crosses highlight
basins with non-overlapping uncertainty ranges.

We compare our estimates of basin-wide trendgintfiickness with elevation trends reported
by Shepherd et al. (2019) (Table 2, Figure 2). Hrokness change is only a single component
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of the ice sheet elevation change signal, which edgtures ice dynamical imbalance. Thus,
accurate estimations of firn thickness change eacompared to measured elevation changes to
identify areas of dynamical imbalance (Li and Zwa#011; Kuipers Munneke et al., 2015;
Hawley et al., 2020). For 9 of the 16 basins, tloelehensemble uncertainty ranges and the
altimetry uncertainty ranges overlap. In these gaser results provide no evidence to support
the existence of net ice flow imbalance. Howevaesitr-wide averaging may conceal localised
dynamic changes. On Totten glacier (within basipféBexample, ice dynamical imbalance
close to the grounding line makes a substantidiritution to recent mass loss and thus to local
elevation decrease (Li et al., 2016). On the oflaexd, the uncertainty ranges do not overlap for
several basins, highlighting the need to betteetstdnd the source of the discrepancies in these
regions. In such cases, three possibilities, orteoations thereof, should be considered: (1) the
model ensemble may fail to represent the truetfirtckness change over the 1992-2017 period,
(2) the I uncertainty range associated with the altimetrasneements may not adequately
capture the true signal or (3) a component of teeation changes may be related to ice
dynamical imbalance.

At this stage, identifying the exact cause of tisem@pancy remains speculative. The long
response time of ice flow makes any dynamical irbed challenging to evaluate because long-
term trends may still outweigh recent changes (Bwetlal., 2015). Moreover, disagreements
persist between simulated SMB and field observatiorcertain regions (Wang et al., 2016),
which can lead to substantial differences in madarize partitioning (Martin-Espariol et al.,
2017; Mohajerani et al., 2019). Similarly, diffetesources of altimetry data, inter-satellite bias
correction, and other processing steps induce taingr in altimetry signals (Shepherd et al.,
2019). We use several basins where ensemble- amet/-based trends disagree to illustrate
these factors. In basins 4 and 5, Medley et all§2@emonstrated that global climate models
underestimate recent increases in snowfall. A aimihderestimation from the RCMs used here
would explain the lower ensemble trend comparatieémbserved elevation trend. In basin 12,
significant changes in ice discharge may hint@yraamic imbalance causing the disagreement
(Rignot et al., 2019). However, this area also showajor discrepancies in SMB anomalies from
different model estimates (Wang et al., 2016) anthfprobabilistic inversion techniques
(Martin-Espafiol et al., 2017), suggesting that nlodeSMB in this region is challenging.

Basin 15 is characterised by sparse satellite sagput also shows a large spread in our model
ensemble and is thus poorly constrained. The velgthigh model- and altimetry-uncertainties
may both be related to the complex topography isflibisin. Finally, a robust evaluation of
FDM-reliability in all possible EAIS areas and chtic conditions does not exist and models
may fail to predict true compaction rates. The otiye of comparing ensemble firn thickness
trends and altimetry trends is not to draw hastyctusions about dynamical imbalance, but
rather to highlight areas which deserve greatenatin because recent measurements and
current state-of-the-art model scenarios do notimat

In critically evaluating our work, it is importatda highlight sources of uncertainty that are not
accounted for in the ensemble. We use three RCMsddy ERA-Interim at their boundaries.
Different atmospheric reanalyses could, in thebeyused to force the RCMs or could be
directly taken over the EAIS domain itself. Botle thl1 and fixed-350 parameterisationgpgf
assume a time-invariant surface density becausalpp@seasonal and interannual variabilities
are unknown. The ensemble is limited by the deteistic RCM, FDM andp, combinations
considered here. In the future, the work could>dereded to consider stochastic perturbations
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and parametric uncertainties in climate input, FCavidp,, thereby providing a larger range of
results. In principle, the process of emulationimigad to localised discrepancies between the
emulator and a corresponding FDM, although evadnatsupplementary Information) shows
that this is unlikely when averaged over large igbateas, as is done here. One critical
assumption is the reference climatic period of 19@09. Different ice core analyses and model-
based studies disagree on the existence of aitmefatarctic SMB over the last decades and
centuries, but several agree on existing regioealis (Monaghan et al., 2006; Frezzotti et al.,
2013; Previdi and Polvani, 2016; Medley and Thor2@49). The year 1979 coincides with the
start of satellite data assimilation into atmosphproducts, and thus with the earliest RCM
output, motivating this choice of reference pefiodpractical reasons (e.g. Ligtenberg et al.,
2011; Rignot et al., 2019). However, we cannotalist that substantially lower/higher past
accumulation rates would result in under/over-esting recent firn thickness change, thus
providing a possible cause of disagreement withatlen change measurements. Nevertheless,
because all model scenarios use the same refgpenod, it has a minor impact on both the total
ensemble uncertainty and the uncertainty partitignising another reference period could shift
the estimates of each scenario but would affeérmdihces between the estimates only
marginally.

4 Conclusions

Our model ensemble experiment provides a rangeodkited scenarios of 1992-2017 firn
thickness change on the EAIS that encompass cistaetof-the-art modelling capabilities.
Using statistical emulation of firn model outpu wompute a total of 54 scenarios to assess
variability associated with different RCMs, FDMsdasurface snow density parameterisations.
The ensemble agrees that firn thickness changée imterior are minor, but there are
pronounced thickening and thinning patterns in tdaseas. At basin-level, the uncertainty on
the model estimates ranges between 0.2-1.0 ¢rangt is generally dominated by differences
between RCMs due to the strong and direct effe@\B on firn thickness. However, in basins
with high snowfall and with large spatial variatyilof climatic conditions, FDM-related
variability increases up to 46% of the total enslemimcertainty. The surface snow density
factor has a large impact on uncertainty in bawiitis recent increases in snowfall rates,
reaching a maximum contribution of 28%. FinallynAimear interactions between the three
sources of uncertainty are substantial across #i8.EOur results demonstrate that refining
SMB estimates in RCMs is the priority for constragfuture assessments of firn thickness
change. However, as snowfall and temperaturesxgexted to increase in Antarctica
(Ligtenberg et al., 2013; Lenaerts et al., 2019MS and snow density will increasingly
contribute to model uncertainty and should not églected. By comparing the ensemble
scenarios with satellite measurements of elevati@mmges over the same 1992-2017 period, we
find that these estimates are consistent over arityapf basins. Nonetheless, we identify
several basins where model estimates do not méitotfery measurements. While ice
dynamical imbalance could be the source of thergjmncies in these regions, so too could be
inadequacies in the respective uncertainty chaiaat®mns. As such, our analysis serves to
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highlight specific areas where further focus oreptiall sources of errors in model and altimetry
results is needed in order to better constrain rhaksce assessments in East Antarctica.

Acknowledgments

We thank Andrew Shepherd for constructive discussabout our results. AL acknowledges
support from EPSR@\ Data Science for the Natural Environment (EP/R01860X/1). MM was
supported by the UK Natural Environment ResearchnCib Centre for Polar Observation and
Modelling (grant number cpom300001). MvdB acknowlesi support from the Netherlands
Earth System Science Centre (NESSC). We thankrdd@thieu Morlighem, reviewer Eric
Keenan and one anonymous reviewer for providingyimigil comments and for their handling
of the review process.

All the modelled annually-averaged firn thicknebarge time series of this study are available
at: https://doi.org/10.5281/zenodo.4515142. All altenetry data shown in Table 2 and Figure 2
are from Table 1 in Shepherd et al. (2019).

References

Agosta, C., Amory, C., Kittel, C., Orsi, A., Favjéf., Gallée, H., et al. (2019). Estimation of thetarctic Surface
Mass Balance Using the Regional Climate Model MAB79-2015) and Identification of Dominant
Processesthe Cryosphere, 13(1), 281-296. https://doi.org/ 10.5194/tc-13-281-20

Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mahey, R., & Thomas, E. R. (2010). In situ measuremef
Antarctic snow compaction compared with predictiohsnodels.Journal of Geophysical Research, 115,
F03011. https://doi.org/10.1029/2009JF001306

Boening, C., Lebsock, M., Landerer, F., & Steph&hs(2012). Snowfalt driven mass change on the East
Antarctic ice sheetGeophysical Research Letters, 39, L21501. https://doi.org/10.1029/2012GL053316

Christensen, O. B., Drews, M., Christensen, JDdthloff, K., Ketelsen, K., Hebestadt, I., & Rink&, (2006). The
HIRHAM regional climate model, version 5 (Techni&port No. 06 17). Danish Meteorological
Institute, Copenhagen, Denmark

Davis, C. H., Li, Y., McConnell, J. R., Frey, M. M& Hanna, E. (2005). Snowfall-driven growth in EAsitarctic
Ice Sheet mitigates recent sea-level r&ence, 308, 1898-1901. doi:10.1126/science.1110662

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisf®., Poli, P., Kobayashi, S., et al. (2011). ERA- Interim
reanalysis: Configuration and performance of tha dasimilation systenQuarterly Journal of the Royal
Meteorological Society, 137(656), 553-597. https://doi.org/ 10.1002/qj.828

Déqué, M., Rowell, D. P., Luthi, D., Giorgi, F., @&tensen, J. H., Rockel, B., et al. (2007). Arinbmparison of
regional climate simulations for Europe: Assessingertainties in model projectior@limatic Change,
81(S1), 53-70. https://doi.org/10.1007/s10584 006 9228

Frezzotti, M., Scarchilli, C., Becagli, S., ProgosiM., & Urbini, S. (2013). A synthesis of the Anttic surface
mass balance during the last 800Tyre Cryosphere, 7(1), 303-319. https://doi.org/10.5194/tc-7-303-2013

Hawley, R. L., Neumann T. A,, Stevens, C. M., BritM., & Sutterley T. C. (2020). Greenland Icee8h
Elevation Change: Direct Observation of ProcessAsdtribution at SummitGeophysical Research
Letters. https://doi.org/10.1029/2020GL088864

Herron, M. M., & Langway, C. C. (1980). Firn demsétion: An empirical modelournal of Glaciology, 25(93),
373-385. https://doi.org/ 10.3189/S0022143000015239

Kittel, C., Amory, C., Agosta, C., Jourdain, N. Bgfer, S., Delhasse, A., et al. (2020). Divergiatyre surface
mass balance between the Antarctic ice shelvegrmuhded ice sheethe Cryosphere Discussion,
https://doi.org/10.5194/tc-2020-291

Kuipers Munneke, P., Ligtenberg, S. R. M., No&IPBY., Howat, I. M., Box, J. E., Mosley Thompson, € al.
(2015). Elevation change of the Greenland Ice Stheetto surface mass balance and firn processé8;-19

This article is protected by copyright. All rights reserved.



2014.The Cryosphere, 9(6), 2009-2025. https://doi.org/ 10.5194/& 12009 12015

Lenaerts, J. T. M., Medley, B., van den Broecke RV.& Wouters, B. (2019). Observing and modelicg sheet
surface mass balandgeviews in Geophysics, 57, 376—420. https://doi.org/10.1029/2018RG000622

Li, J., & Zwally, H. J. (2011), Modeling of firn eopaction for estimating ice-sheet mass change tloserved ice-
sheet elevation changgnnals of Glaciology, 52(59), 1-7, doi:10.3189/172756411799096321

Li, J., & Zwally, H. J. (2015), Response timesa#-sheet surface heights to changes in the raAatafctic firn
compaction caused by accumulation and temperaariations.Journal of Glaciology, 61, 1037— 1047,
https://doi.org/10.3189/2015J0G14J182

Li, X., Rignot, E., Mouginot, J., & Scheuchl, B.O®6). Ice flow dynamics and mass loss of Tottecigta East
Antarctica, from 1989 to 201&eophysical Research Letters, 43, 6366—6373.
https://doi.org/10.1002/2016GL069173

Ligtenberg, S. R. M., M. M. Helsen, & M. R. van dBroeke (2011), An improved semi-empirical modeltfte
densification of Antarctic firnThe Cryosphere, 5(4), 809-819, doi:10.5194/tc-5-809-2011

Ligtenberg, S. R. M., van de Berg, W. J., van deveRe, M. R., Rae, J., & van Meijgaard, E. (20Rjture surface
mass balance of the Antarctic ice sheet and ilsénte on sea level change, simulated by a regional
atmospheric climate modéllimate Dynamics, 41(3-4), 867—884. https://doi.org/10.1007/s00382-013-
1749-1

Lundin, J. M. D., Stevens, C. M., Arthern, R., Bariz C., Orsi, A., Ligtenberg, S. R. M., et al. {20. Firn Model
Intercomparison Experiment (FirnMICE)purnal of Glaciology, 63, 401-422, doi:10.1017/jog.2016.114

Martin-Espafiol, A., Bamber, J. L., & Zammit-Mangjax (2017). Constraining the mass balance of East
Antarctica.Geophysical Research Letters, 44, 4168—4175. https://doi.org/10.1002/2017GL072937

McMillan, M., Leeson, A., Shepherd, A., Briggs, Krmitage, T. W. K., Hogg, A., et al. (2016). A higesolution
record of Greenland mass balan@eophysical Research Letters, 43, 7002—7010.
https://doi.org/10.1002/2016GL069666

Medley, B., McConnell, J., Neumann, T. A., Reijm@r,H., Chellman, N., Sigl, M., & Kipfstuhl, S. (28).
Temperature and snowfall in Western Queen Maud liacr@éasing faster than climate model projections.
Geophysical Research Letters, 45, 1472-1480. https://doi.org/10.1002/2017GL075992

Medley, B., & Thomas, E. R. (2019). Increased sratdivaiver the Antarctic Ice Sheet mitigated twemtieentury
sea-level riseNature Climate Change, 9, 34-39. https://doi.org/10.1038/s41558-018-0356-x

Mohajerani, Y., Velicogna, I., & Rignot, E. (201®valuation of regional climate models using regibnr
optimized GRACE Mascons in the Amery and Getz leghes basins, Antarctic&eophysical Research
Letters, 46, 13,883—-13,891. https://doi.org/10.1029/2019GL @46

Monaghan, A. J., Bromwich, D. H., Fogt, R. L., WaBgH., Mayewski, P. A., Dixon, D. A., et al. (20
Insignificant change in Antarctic snowfall since tinternational Geophysical Ye&cience, 313(5788),
827-831. https://doi.org/10.1126/science.1128243

Morris, E. M., & Wingham, D. (2014). Densificatiaf polar snow: Measurements, modeling, and impbcet for
altimetry.Journal of Geophysical Research-Earth Surface, 119, 349-365.
https://doi.org/10.1002/2013JF002898

O’Hagan, A. (2006). Bayesian analysis of compubetecoutputs: A tutoriaReliability Engineering and System
Safety, 91(10-11), 1290-1300. https://doi.org/10.1016/.12385.11.025

Previdi, M., & Polvani, L. M. (2016). Anthropogenimpact on Antarctic surface mass balance, cusrendisked
by natural variability, to emerge by mid-centuByvironmental Research Letters, 11(9), 94001,
https://doi.org/10.1088/1748-9326/11/9/094001

Rignot, E., Mouginot, J., Scheuchl, B., van dendbm M., van Wessem, M. J., & Morlighem, M. (2012yur
decades of Antarctic Ice Sheet mass balance fraf8-2D17 Proceedings of the National Academy of
Sciences, 116(4), 1095-1103. https://doi.org/10.1073/pnas.183288

Sacks, J., Welch W. J., Mitchell W. J., & H. P. WiyiH. P. (1989). Design and Analysis of Computerdgxpents.
Statistical Science, 4(4): 409-435. d0i:10.1214/ss/1177012413

Scambos, T., & Shumman, C. (2016), Comment on 'Mjagss of the Antarctic ice sheet exceed losse$1.by.
Zwally and othersjournal of Glaciology, 62(233), 599-603, doi:10.1017/jog.2016.59

Shepherd, A, lvins, E., Rignot, E., Smith, B., \iem Broeke, M., Velicogna, I., et al. (2018). Mbatance of the
Antarctic Ice Sheet from 1992 to 20Nature, 558(7709), 219-222. https://doi.org/10.1038/ s41586

This article is protected by copyright. All rights reserved.



01810179y

Shepherd, A., Gilbert, L., Muir, A. S., Konrad, Ncmillan, M., Slater, T., et al. (2019). TrendsAntarctic ice
sheet elevation and mas&ophysical Research Letters, 46, 8174—-8183.
https://doi.org/10.1029/2019GL082182

Smith, B., Fricker, H. A., Gardner, A. S., MedI®&y, Nilsson, J., Paolo, F. S., et al. (2020). Pemeaice sheet mass
loss reflects competing ocean and atmosphere mesSsience, 368, 1239-1242.
https://doi.org/10.1126/science.aaz5845

Steger, C. R., Reijmer, C. H., van den Broeke, MViRever, N., Forster, R. R., Koenig, L. S., e{(a017). Firn
meltwater retention on the Greenland Ice Sheetoflehcomparisor-rontiersin Earth Science, 5.
https://doi.org/10.3389/feart.2017.00003

van den Broeke, M. R. (2008). Depth and densithefAntarctic firn layer depth and density of thetdrctic firn
layer.Arctic, Antarctic, and Al pine Research, 40(2), 432—-438. https://doi.org/10.1657/1523-0430(07-
021)[BROEKE]2.0.CO;2

van Kampenhout, L., Lenaerts, J. T. M., Lipscomb,HV Sacks, W. J., Lawrence, D. M., Slater, A.&van den
Broeke, M. R. (2017). Improving the RepresentatibRolar Snow and Firn in the Community Earth
System ModelJournal of Advancesin Modelling Earth Systems, 9, 2583—-2600.
https://doi.org/10.1002/2017MS000988

van Wessem, J. M., van de Berg, W. J., Noél, B..Pvan Meijgaard, E., Birnbaum, G., Jakobs, Cet.al. (2017).
Modelling the climate and surface mass balancelzfrpce sheets using RACMOZ2, part 2: Antarctica
(1979-2016)The Cryosphere, 12, 1479-1498. https://doi.org/10.5194/tc-12-1479&01

Vandecrux, B., Mottram, R., Langen, P. L., FauRoS., Olesen, M.,Stevens, C. M., et al. (2020% fiim
meltwater Retention Model Intercomparison Proj&=#tMIP): Evaluation of nine firn models at four
weather station sites on the Greenland ice sfibetCryosphere, 14, 3785-3810.
https://doi.org/10.5194/tc-14-3785-2020

Velicogna, I., Sutterley, T., & Van den Broeke, (2014). Regional acceleration in ice mass loss f@meenland
and Antarctica using GRACE time-variable gravityad&eophysical Research Letters, 41(22), 8130—
8137. https://doi.org/https://doi.org/10.1002/2014061052

Verjans, V., Leeson, A. A., Stevens, C. M., Macker¥., Noél, B., & van den Broeke, M. R. (2019)e&lopment
of physically based liquid water schemes for Greenland fatansification modelsThe Cryosphere,
13(7), 1819-1842. https://doi.org/10.5194/tc-13-1209-9

Verjans, V., Leeson, A., Nemeth, C., Stevens, C.KWMipers Munneke, P., Noél, B. & van Wessem, J(2020).
Bayesian calibration of firn densification modélke Cryosphere, 14, 3017-3032.
https://doi.org/10.5194/tc-14-3017-2020

Vionnet, V., Brun, E., Morin, S., Boone, A., FaroiX, Le Moigne, P., et al. (2012). The detaileovgmack scheme
Crocus and its implementation in SURFEX v&G2oscientific Model Devel opment, 5(3), 773—-791.
https://doi.org/10.5194/gmd-5-773-2012

von Storch, H., & Zwiers, F. W. (199%}atistical analysisin climate research. Cambridge University Press,
Cambridge, U. K.

Wang, Y., Ding, M., Van Wessem, J., SchlosserAlinau, S., van den Broeke, M. R., et al. (2016)omparison
of Antarctic Ice Sheet surface mass balance franogpheric climate models and in situ observations,
Journal of Climate, 29(14), 5317-5337, doi:10.1175/JCLI-D-15-0642.1

Winther, J. G., Jespersen, M. N., & Liston, G.E0Q2), Blue-ice areas in Antarctica derived from NOAVHRR
satellite dataJournal of Glaciology, 47(157), 325—-334. doi:10.3189/172756501781832386

Yip, S., Ferro, C. A. T., Stephenson, D. B., & Hang E. (2011). A simple, coherent framework fortji@ning
uncertainty in climate predictiondournal of Climate, 24(17), 4634—-4643.
https://doi.org/10.1175/2011jcli4085.1

Zwally, H. J., & Li J. (2002), Seasonal and interaal variations of firn densification and ice-sheetface
elevation at the Greenland Sumndiurnal of Glaciology, 48(161), 199-207.
https://doi.org/10.3189/172756502781831403

Zwally, H. J., Li, J., Robbins, J. W., Saba, J.Xi,,D., & Brenner, A. C. (2015). Mass gains of #etarctic ice
sheet exceed losselmurnal of Glaciology, 61(230), 1019-1036. https://doi.org/10.3189/2015Ja1BT%

This article is protected by copyright. All rights reserved.



Refer ences from the Supplementary Information

Andiranakis, 1., & Challenor P.G. (2012). The effe€the nugget on Gaussian process emulatorsropater
models.Computational statistics and data analysis, 56, 4215-4228. doi:10.1016/j.csda.2012.04.020

Liu, H., Ong, Y. S., Shen, X., Cai, J. (2020). Witgaussian Process Meets Big Data: A Review of B=laPs.
|EEE Transactions on Neural Networks and Learning Systems. doi: 10.1109/TNNLS.2019.2957109

Quifionero-Candela, J., Rasmussen, C. E., & Willig«. I. (2007). Approximation methods for Gaassi
process regressioharge Scale Learning Machines, 203-223. MIT Press.

Rasmussen, C. E., & Williams C. K. I. (2006), Gaais$rocesses for Machine Learning. MIT Press, Calpé,
Mass.

Rios, G., & Tobar, F. (2018). Learning non-Gaussiare series using the box-cox Gaussian prod¢tsgeedings
of the International Joint Conference on Neural Networks 2018-July.

Seeger, M., Williams, C., & Lawrence, N. (2003)stfrward selection to speed up sparse Gaussiaess
regressionArtificial Intelligence and Satistics, 9, EPFL-CONF-161318.

Stevens, C. M., Verjans, V., Lundin, J. M. D., KahE. C., Horlings, A. N., Horlings, B. |., and Wiadgton, E. D.
(2020). The Community Firn Model (CFM) v1 Beoscientifc Model Development, 13, 4355-4377.
https://doi.org/10.5194/gmd-13-4355-2020

This article is protected by copyright. All rights reserved.



