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Key Points: 

• By developing an ensemble of 54 model scenarios, we constrain firn thickness change 
uncertainty in East Antarctica over 1992-2017. 

• In 9 of 16 basins, modelled firn thickness and altimetry trends agree; elsewhere 
uncertainty is underestimated or ice flow imbalance exists. 

• Model uncertainty reaches 1 cm yr-1 with snowfall, firn compaction and snow density 
having spatially variable contributions to uncertainty. 
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Abstract 

Mass balance assessments of the East Antarctic ice sheet (EAIS) are highly sensitive to changes 
in firn thickness, causing substantial disagreement in estimates of its contribution to sea-level. To 
better constrain the uncertainty in recent firn thickness changes, we develop an ensemble of 54 
model scenarios of firn evolution between 1992-2017. Using statistical emulation of firn-
densification models, we quantify the impact of firn compaction formulation, differing climatic 
forcing, and surface snow density on firn thickness evolution. At basin scales, the ensemble 
uncertainty in firn thickness change ranges between 0.2–1.0 cm yr-1 (15–300% relative 
uncertainty), with the choice of climate forcing having the largest influence on the spread. Our 
results show the regions of the ice sheet where unexplained discrepancies exist between observed 
elevation changes and an extensive set of modelled firn thickness changes estimates, marking an 
important step towards more accurately constraining ice sheet mass balance. 

 

Plain Language Summary 

Firn is the transition stage between snow and ice. The total thickness of the firn layer varies in 
time and space. In East Antarctica, uncertainty about this variability has a large impact on 
satellite-based estimates of ice sheet mass change. We combine statistical surrogates of firn-
densification models with different climate models over the entire East Antarctic ice sheet. Our 
ensemble of model combinations demonstrates that firn thickness estimates are poorly 
constrained. Accounting for their respective uncertainties, modelled firn thickness change and 
satellite measurements of elevation change are consistent over most of East Antarctica. However, 
we identify several areas of mismatch between model estimates and elevation change 
observations, which likely indicates that further improvements are required either in models or in 
measurement techniques. Alternatively, these disagreements can hint at possible imbalances in 
the flow of ice, below the firn layer. We quantify how much different sources of uncertainty 
contribute to the total uncertainty in modelled firn thickness change. The amount of snowfall 
estimated by climate models mostly dominates the uncertainty, but modelled firn compaction 
rates and uncertainty in surface snow density also have major contributions in certain areas. 

 

1 Introduction 

The Antarctic ice sheet (AIS) is the largest ice body on Earth, holding a total potential 
contribution to sea-level rise of ~57.2 m (Rignot et al., 2019). The AIS is divided into three 
entities: the Antarctic Peninsula (AP) and the West and East Antarctic ice sheets (WAIS and 
EAIS, respectively). The EAIS has shown less dynamic instabilities than the WAIS and AP over 
the past four decades, but it holds ~90% of the total AIS ice mass and is the area with highest 
uncertainty concerning recent mass trends (Shepherd et al., 2018; Rignot et al., 2019). A layer of 
firn, the intermediary stage between snow and ice, covers ~99% of the AIS (Winther et al., 
2001). The firn layer thickness, defined here as the depth from the surface until the firn-ice 
transition, varies from 0 to more than 100 m (van den Broeke, 2008). Firn thickness also 
fluctuates in time due to changes in firn compaction rates and climatic conditions, primarily net 
snow accumulation. These fluctuations affect ice sheet mass balance assessments derived from 
satellite-based altimetry. Measured surface elevation changes are converted into mass changes, 
but the conversion requires precise knowledge of variability in firn thickness and mass. 
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Atmospheric reanalysis products, Regional Climate Models (RCMs) and Firn Densification 
Models (FDMs) are therefore used to simulate changes of firn properties and, ultimately, to 
evaluate ice sheet mass changes with precision (Li and Zwally, 2011; Kuipers Munneke et al., 
2015; McMillan et al., 2016; Shepherd et al., 2019; Smith et al., 2020).   

 

By simulating mass fluxes (snowfall, sublimation, melt), RCMs estimate the surface mass 
balance (SMB) of ice sheets, which partly determines the evolution of the firn layer. These 
fluxes and modelled surface temperatures also serve as input forcing for FDMs that explicitly 
simulate firn compaction rates. Such coupling is required to reproduce seasonal and multi-annual 
fluctuations in compaction rates (Arthern et al., 2010). Uncertainty in SMB estimates across 
Antarctica are typically assessed by comparing outputs from different RCMs. While SMB is key 
to firn thickness evolution because it determines the amount of snow removed and added at the 
surface, it does not capture the effects of fluctuating firn compaction that must be estimated with 
FDMs. Differences between FDMs can lead to substantial spread in modelled firn thickness and 
air content (Lundin et al., 2017), especially if scaled up to ice sheet extent. 

 

Compared to the AP and the WAIS, observed elevation changes across the EAIS over the past 25 
years have been generally smaller, and largely driven by snowfall and compaction variability 
(Davis et al., 2005; Shepherd et al., 2018; Shepherd et al., 2019). Altimetry-derived mass balance 
assessments of the EAIS are very sensitive to estimates of firn thickness fluctuations because 
these are of the same order of magnitude as measured elevation changes. This sensitivity 
complicates the interpretation of altimetry measurements in this area, and it is unclear whether to 
attribute elevation changes to ice dynamical imbalance or firn thickness change (Zwally et al., 
2015; Scambos and Shuman, 2016; Shepherd et al., 2018). These conflicting assessments 
motivate precise uncertainty analyses of coupled RCM-FDM systems over the EAIS. Previously, 
such analyses have been computationally limited; running multiple FDMs for many years at the 
spatial resolution of RCM grids over the EAIS requires many thousands of simulations. The 
extent to which estimates of firn thickness change vary by combining different FDMs with 
different RCMs remains an open question. 

 

To overcome computational limitations and thus improve evaluation of uncertainty in the 
evolution of firn thickness, we build statistical emulators of nine FDMs. An emulator is a fast 
and statistically-driven approximation of a more complex physical model (Sacks et al., 1989; 
O'Hagan 2006). By combining the FDM emulators with climatic output from three state-of-the-
art polar RCMs, we develop an ensemble of 54 scenarios of EAIS firn thickness change. We 
exploit these scenarios to constrain uncertainty analyses of firn thickness fluctuations on the 
EAIS and to quantify the contributions of various sources of uncertainty to the spread of 
modelled results. 
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2 Methods 

2.1 Ensemble configuration 

To generate our ensemble, we first calibrate each of the nine FDM emulators to its corresponding 
FDM (Table 1) in a representative range of EAIS climate conditions, and then we use it to 
emulate compaction rates across the entire EAIS. Changes in SMB as well as climatic forcing for 
the emulators are computed from three RCMs: RACMO2, MAR and HIRHAM (Table1). Our 
modelled scenarios of firn thickness change span the 1992-2017 period. This period is chosen to 
match the long-term altimetry record of Shepherd et al. (2019), hence facilitating 
intercomparison of observed elevation changes and modelled firn thickness change experiments 
of this study. We limit our analysis to the EAIS because surface melt there is minor compared to 
the AP and WAIS, and FDM fidelity remains questionable for simulating wet firn compaction, 
water percolation and refreezing (Steger et al., 2017; Verjans et al., 2019; Vandecrux et al., 
2020). 

 
 References 
FDM  
Armap Arthern et al. (2010); Verjans et al. (2020) 
GSFC-FDMv0 Smith et al. (2020) 
Cr Vionnet et al. (2012); van Kampenhout et al. (2017) 
HL Herron and Langway (1980) 
HLmap Herron and Langway (1980); Verjans et al. (2020) 
Lig Ligtenberg et al. (2011) 
LZ15 Li and Zwally (2015) 
LZmap Li and Zwally (2011); Verjans et al. (2020) 
Morris Morris and Wingham (2014) 
RCM  
RACMO2.3p2 (27 km) van Wessem et al. (2018) 
MARv3.11 (35 km) Agosta et al. (2019); Kittel et al. (2020) 
HIRHAM5 (12.5 km) Christensen et al. (2007) 

��   

L11 Ligtenberg et al. (2011) 
fixed-350 Smith et al. (2020) 

Table 1: The nine firn densification models (FDM), three regional climatic models (RCM) and two surface density 
parameterisations (��) used in this study. The horizontal resolutions of the RCM grids are given in brackets. All 
RCMs were forced by the ERA-Interim reanalysis at their boundaries (Dee et al., 2011). See Supplementary 
Information for details on the FDMs. 
 

2.2 Firn thickness change calculations 

Observed ice sheet elevation changes, once corrected for glacial isostatic adjustment, are 
composed of two different signals: one related to ice dynamical imbalance and one to firn 
thickness change. In this study, we focus on the latter. The change in firn thickness at time step �,  �ℎ�(�), is given by: 

�ℎ�(�) = �ℎ
��(�) − �ℎ
(�) − �ℎ�(�) − �ℎ���(�)  (1) 
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with all components expressed in metres and considered positive, and � set to a daily time step in 
this study. The subscript � refers to surface firn removal by melting and ��� refers to net snow 
accumulation. Both �ℎ
�� and �ℎ
 depend on the RCM-computed mass fluxes and on the value 
assumed for surface snow density, but they are independent of FDM calculations. The 
component �ℎ� is the emulated firn compaction term (Section 2.3). The last component, �ℎ���, 
quantifies changes in the flux through the lower boundary of the firn column and thus captures 
changes in the rate of conversion from firn to ice. Changes in �ℎ��� act on much longer 
timescales than the other components (Zwally and Li, 2002; Kuipers Munneke et al., 2015). As 
such, �ℎ��� can be set constant and equal to the average rate of conversion from firn to ice over a 
reference period (we use 1979-2009, following Ligtenberg et al., 2011), �ℎ���� . By assuming firn 
thickness in steady state, thus without trend, over the reference period, �ℎ����  balances the 
reference period averages of the other components: 

�ℎ���� = �ℎ
��� − �ℎ
� − �ℎ��  (2) 

Substituting �ℎ����  for �ℎ��� in Eq. (1) yields Eq. (3). This is equivalent to calculating firn 
thickness change by computing anomalies in each of the ���, � and � components with respect 
to their average value in the reference period (Li and Zwally, 2015). 

�ℎ�(�) = �ℎ
��(�) − �ℎ
(�) − �ℎ�(�) − �ℎ����   (3) 

In this study, we are interested in the cumulative 1992-2017 firn thickness changes. We thus 
integrate Eq. (3) over this time period to compute a total firn thickness change �ℎ����. 
 

2.3 Emulation of firn compaction  

The nine FDM emulators are first calibrated at 50 sites on the EAIS and over the entire time span 
(1979-2017) covered by the output of RCMs (Supplementary Information for details). The goal 
of the emulation is to capture both long- and short-term sensitivity of �ℎ� to climatic forcing. 
The long-term (1979-2017) mean and trend in �ℎ� are estimated by linear regressions on the 
long-term means and trends of temperature, accumulation and melt. These linear regressions are 
specific to each FDM and show good performance in capturing the FDM-computed means and 
trends at the calibration sites (R2>0.99 and R2>0.97 respectively). Gaussian Process regression 
complements the linear regression by capturing short-term fluctuations from the long-term trends 
as a function of detrended values of temperature and accumulation. We evaluate the emulation 
capabilities in a leave-one-out cross-validation framework; the nine FDM emulators reproduce 
the FDM output well, both for the total 1979-2017 �ℎ� (R2>0.99, RMSE=0.49 m, corresponding 
to 3.5% of the mean total �ℎ�) and for daily values (R2>0.99, RMSE=0.15×10-3 m) 
(Supplementary Information for details). 

 

2.4 Uncertainty contributions 

In order to evaluate uncertainty on the time series of cumulative �ℎ�(�) and on �ℎ����, we 
construct a model ensemble; the spread arising from a large number of simulations provides an 
estimate of uncertainty (e.g. Déqué et al, 2007). Our ensemble includes all combinations of the 
nine FDM emulators and the three RCMs (Table 1). Furthermore, surface snow density, ��, 
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contributes to uncertainty in all components of �ℎ� (e.g. Ligtenberg et al., 2011; Agosta et al., 
2019). As such, we use two different possibilities for the value of ��: the climate-dependent 
parameterisation of Ligtenberg et al. (2011) and the approach of Smith et al. (2020), which takes 
a constant value of 350 kg m-3 (B. Medley, personal communication, 2020) (Table 1). The 
different combinations of RCM, FDM and �� provide 54 different firn thickness change 
scenarios across the EAIS. We refer to the spread in the model ensemble results as the total 
ensemble uncertainty to distinguish it from the true uncertainty, which may not be captured by 
the ensemble. We then use the analysis of variance (ANOVA) theory to partition the total 
ensemble uncertainty among the three factors RCM, FDM and �� (von Storch and Zwiers, 1999; 
Déqué et al., 2007; Yip et al., 2011). This approach allows us to decompose the variance in 
model results into the contribution of each factor and of each interaction between these factors 
(Eq. (4)). 

�� = ���
� + ���
� + ���� + ���
 ��
� + ���
 ��� + ���
 ��� + ���
 ��
 ���   (4) 

where �� is the variance in the ensemble results (m2) and the �� terms are the contributions from 
each factor and interaction between factors to ��. Interaction effects stem from a non-linear 
behaviour of the three uncertainty sources. Contributions are calculated by computing the sum of 
squares associated with each �� term. 

!"
#
"$��� = %

&' ∑ ()�.. − )…)�&'�,%
�� -� = %

&' &/ ∑ ∑ 0)�-. − )�.. − ).-. + )…1�&/-,%&'�,%
�� - 2� = %

&' &/ &3 ∑ ∑ ∑ 0)�-2 − )�-. − )�.2 − ).-2 + )�.. + ).-. + )..2 − )…1�&32,%
&/-,%&'�,%

   (5) 

where 4 denotes the number of possible levels for a factor (3 for RCMs, 9 for FDMs, 2 for ��), ) denotes the value of the variable of interest (�ℎ����) and a dot represents the arithmetic mean 
with respect to the index it is substituted for. Because the sums of squares in Eq. (5) are averaged 
departures from a mean, these terms are biased estimates of the variance (Déqué et al., 2007). An 
unbiased estimate should be divided by 4 − 1, but dividing by 4 results in �� terms fulfilling 
Eq. (4). As such, any ratio ��/�� is only interpreted as a percentage of contribution to the total 
ensemble uncertainty. We group together all �� terms capturing an interaction effect to quantify 
the non-linear behaviour of the model experiments with respect to the three factors (��7��� ).  
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3 Results  

3.1 Ensemble scenarios 

 
Figure 1: Ensemble mean 1992-2017 firn thickness change (�ℎ����) in each EAIS basin. Simulation results are 
interpolated by nearest-neighbour to a common 12.5 km grid. The map uses a 3×3 median filter. Each inset shows 
the basin-averaged modelled time series of all the 54 model scenarios. Red, yellow and blue curves represent 
scenarios forced with RACMO2, HIRHAM and MAR respectively. Each curve represents a particular RCM-FDM-�� combination. The thick black curve represents the ensemble mean. Basin numbers are displayed within the insets. 
Frame colours show whether �ℎ���� is significantly positive (blue), negative (red) or not significantly different from 
zero (black) (at ±2�). Basin limits follow Zwally et al. (2015). 

The model ensemble shows a stable firn thickness over 1992-2017 for most of the EAIS, but 
strong regional changes are evident in several of the 16 basins (Figure 1). The large interior 
basins (2, 3, 10, 17) show no significant thickness change; the 9: uncertainty ranges of the 
ensemble results encompass zero. In contrast, the ensemble shows a significant and pronounced 
(>0.49 m) firn thickening in Dronning Maud Land (basins 5-8), driven by high snowfall rates 
since 2009 (Boening et al., 2012; Medley et al., 2018). Conversely, decreases in snowfall rates 
cause firn thinning (>0.25 m) in the areas of Shackleton ice shelf and Totten glacier (basins 12-
13), which coincide with localised zones of high ice flow velocities (Rignot et al., 2019). Low 
accumulation since 2005 also induced thinning in Victoria Land (basin 14) (Velicogna et al., 
2014). In such cases of accumulation anomalies, the firn compaction signal must be accounted 
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for as it partially mitigates the overall change in firn thickness; increased accumulation provides 
more pore space and thus higher compaction rates, while decreased accumulation has the 
opposite effect. In other basins, the ensemble suggests thickening (e.g. basins 3-4) or thinning 
(e.g. basins 9 and 15) but high variability among model scenarios precludes any firm conclusion. 

 
Basin �ℎ���� 

[cm] 
����� 
[cm] 

�;<=� �ℎ� 
[cm yr-1] 

����7>  �ℎ� 
[cm yr-1] 

?@ABCD >EF
G���7> >EF G  

[%] 

Altimetry 
trend 

[cm yr-1] 

���
� /�� 
[%] 

���
� /�� 
[%] 

���� /�� 
[%] 

��7��� /�� 
[%] 

2 -9.1 6.5 -0.3 ± 0.3 100 0.3 ± 2.3 92.1 6.2 0.2 1.5 
3 7.3 8.8 0.5 ± 0.4 80 0.7 ± 0.1 97.6 1.4 0.0 1.0 
4 26.7 21.3 2 ± 0.8 40 3.3 ± 0.4 * 97.3 1.0 0.4 1.3 
5 70.9 12.6 2.2 ± 0.6 27 4.4 ± 0.6 * 49.4 32.5 15.3 2.8 
6 54.1 6.9 2 ± 0.3 15 1.8 ± 0.3 28.5 42.6 26.1 2.8 
7 49.0 6.8 1.9 ± 0.3 16 1.6 ± 0.3 18.9 46.0 28.2 6.9 
8 68.9 16.0 3.6 ± 1.0 28 4.1 ± 0.4 71.9 11.8 12.6 3.7 
9 -13.1 9.1 0.8 ± 0.7 88 3.0 ± 0.7 * 69.5 23.9 0.3 6.3 
10 -10.2 5.5 -0.1 ± 0.3 300 0.0 ± 0.2 92.5 6.2 0.1 1.3 
11 6.3 2.2 0.5 ± 0.2 40 0.4 ± 0.4 84.9 6.0 5.6 3.5 
12 -44.8 12.0 -0.8 ± 0.4 50 1.8 ± 0.4 * 51.0 40.8 3.9 4.3 
13 -25.5 9.0 -1.2 ± 0.5 42 -0.7 ± 0.4 60.8 32.8 3.4 3.1 
14 -17.3 7.9 -2.3 ± 0.4 17 -1.5 ± 0.2 * 74.6 21.1 1.3 3.1 
15 -18.4 9.4 -2.7 ± 0.9 33 -6.2 ± 1.5 * 72.1 21.6 1.2 5.2 
16 2.2 5.0 -0.2 ± 0.4 200 -0.1 ± 0.3 95.5 1.4 0.0 3.1 
17 3.3 2.5 -0.3 ± 0.2 67 0.3 ± 0.1 * 70.5 21.6 0.1 7.9 

Table 2: For each EAIS basin, ensemble mean (�ℎ����) and standard deviation (�����) of firn thickness change. Mean 
(�;<=� �ℎ�) and standard deviation (����7>�ℎ�) of the linear trends fitted to the ensemble scenarios, and their ratio 

(
?@ABCD >EF

G���7> >EF G). Altimetry trends are from Shepherd et al. (2019). Superscript * denotes non-overlapping uncertainty 

ranges from altimetry and from the model ensemble. ��/�� ratios show contributions of the sources of uncertainty 
to the ensemble spread. 

 

Model uncertainties in basin-averaged rates of firn thickness change range between 0.2–1.0 cm 
yr-1, translating into relative uncertainties between 15–300% (Table 2). Despite low absolute 
uncertainties, the interior basins (2, 3, 10, 16, 17) show the largest relative values because their 
trends in �ℎ� are close to zero (<0.4 cm yr-1). Basins with trends exceeding 1 cm yr-1 have lower 
relative uncertainties. Yet, some of these still exhibit relative uncertainties higher than 25% (4, 5, 
8, 13, 15). The relative importance of the RCM, FDM and �� factors on the model spread varies 
between basins. An area-weighted averaging demonstrates the general predominance of the 
RCM factor (72%) followed by the FDM (20%), �� (4%) and interaction (4%) factors.  The high 
influence of RCM choice is mostly due to the large and direct impact of SMB on firn thickness. 
In addition, there is an indirect impact of RCM output as forcing for FDMs and for the climate-
dependent L11 parameterisation of ��.  

Cold basins with low snowfall rates (e.g. 2-3, 10-11) are characterised by particularly high 
contributions of ���
�  (>90% of ��). In such dry conditions, small discrepancies between RCM-
modelled snowfall anomalies translate into large relative differences in firn thickness change. 
FDM contribution to the total ensemble uncertainty increases in basins with higher temperature 
and accumulation (e.g. 5-7, 12-13), with ���
�  explaining approximately 30 to 45% of the 
spread. These climatic settings drastically increase both the sensitivity of FDMs to temperature 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

fluctuations and the absolute compaction rates. Consequently, small relative differences in 
compaction rates between the FDMs result in large absolute differences in firn thickness change. 
Moreover, high total snowfall amounts mitigate the impact of small differences between RCM 
estimates of accumulation, thus reducing ���
� . Another aspect that favours high ���
� /�� 
values is spatial variability of climatic conditions within basins; within basins spanning many 
climatic zones, there is more likely to be a region in which the FDMs disagree on compaction 
rates. Contribution of ����  is highest in basins with large and positive snowfall anomalies (basins 
5-8). In such basins, it accounts for up to 28% of the model spread because the thickening caused 
by the anomaly is sensitive to the snow density parameterisation. Basins 16 and 17 illustrate the 
role of interaction effects. In these basins, MAR simulates substantially higher temperatures and 
accumulation rates, causing larger disagreements between FDMs forced by MAR than between 
FDMs forced by RACMO2 or HIRHAM. This nonconstancy of variance across FDMs for 
different RCMs leads to a significant interaction term ��7��� . Because interaction effects account 
for a non-negligible part of the model spread in all basins (1 to 8% of ��), our results 
demonstrate the importance of combining RCMs, FDMs and �� within different model 
experiments to assess firn thickness change uncertainty. 

 

3.2 Comparison with altimetry 

 
Figure 2: Comparison of 1992-2017 altimetry-based elevation trends and firn thickness trends of the ensemble, with 
their respective 1� uncertainty ranges. Map shows the absolute ensemble-altimetry differences, crosses highlight 
basins with non-overlapping uncertainty ranges. 

We compare our estimates of basin-wide trends in firn thickness with elevation trends reported 
by Shepherd et al. (2019) (Table 2, Figure 2). Firn thickness change is only a single component 
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of the ice sheet elevation change signal, which also captures ice dynamical imbalance. Thus, 
accurate estimations of firn thickness change can be compared to measured elevation changes to 
identify areas of dynamical imbalance (Li and Zwally, 2011; Kuipers Munneke et al., 2015; 
Hawley et al., 2020). For 9 of the 16 basins, the model ensemble uncertainty ranges and the 
altimetry uncertainty ranges overlap. In these cases, our results provide no evidence to support 
the existence of net ice flow imbalance. However, basin-wide averaging may conceal localised 
dynamic changes. On Totten glacier (within basin 13) for example, ice dynamical imbalance 
close to the grounding line makes a substantial contribution to recent mass loss and thus to local 
elevation decrease (Li et al., 2016). On the other hand, the uncertainty ranges do not overlap for 
several basins, highlighting the need to better understand the source of the discrepancies in these 
regions. In such cases, three possibilities, or combinations thereof, should be considered: (1) the 
model ensemble may fail to represent the true firn thickness change over the 1992-2017 period, 
(2) the 1: uncertainty range associated with the altimetry measurements may not adequately 
capture the true signal or (3) a component of the elevation changes may be related to ice 
dynamical imbalance.  

At this stage, identifying the exact cause of the discrepancy remains speculative. The long 
response time of ice flow makes any dynamical imbalance challenging to evaluate because long-
term trends may still outweigh recent changes (Zwally et al., 2015). Moreover, disagreements 
persist between simulated SMB and field observations in certain regions (Wang et al., 2016), 
which can lead to substantial differences in mass balance partitioning (Martin-Español et al., 
2017; Mohajerani et al., 2019). Similarly, different sources of altimetry data, inter-satellite bias 
correction, and other processing steps induce uncertainty in altimetry signals (Shepherd et al., 
2019). We use several basins where ensemble- and altimetry-based trends disagree to illustrate 
these factors. In basins 4 and 5, Medley et al. (2018) demonstrated that global climate models 
underestimate recent increases in snowfall. A similar underestimation from the RCMs used here 
would explain the lower ensemble trend compared to the observed elevation trend. In basin 12, 
significant changes in ice discharge may hint at a dynamic imbalance causing the disagreement 
(Rignot et al., 2019). However, this area also shows major discrepancies in SMB anomalies from 
different model estimates (Wang et al., 2016) and from probabilistic inversion techniques 
(Martin-Español et al., 2017), suggesting that modelling SMB in this region is challenging.  
Basin 15 is characterised by sparse satellite sampling but also shows a large spread in our model 
ensemble and is thus poorly constrained. The relatively high model- and altimetry-uncertainties 
may both be related to the complex topography of this basin. Finally, a robust evaluation of 
FDM-reliability in all possible EAIS areas and climatic conditions does not exist and models 
may fail to predict true compaction rates. The objective of comparing ensemble firn thickness 
trends and altimetry trends is not to draw hasty conclusions about dynamical imbalance, but 
rather to highlight areas which deserve greater attention because recent measurements and 
current state-of-the-art model scenarios do not match.  

In critically evaluating our work, it is important to highlight sources of uncertainty that are not 
accounted for in the ensemble. We use three RCMs forced by ERA-Interim at their boundaries. 
Different atmospheric reanalyses could, in theory, be used to force the RCMs or could be 
directly taken over the EAIS domain itself. Both the L11 and fixed-350 parameterisations of HI 
assume a time-invariant surface density because possible seasonal and interannual variabilities 
are unknown. The ensemble is limited by the deterministic RCM, FDM and HI combinations 
considered here. In the future, the work could be extended to consider stochastic perturbations 
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and parametric uncertainties in climate input, FDMs and HI, thereby providing a larger range of 
results. In principle, the process of emulation might lead to localised discrepancies between the 
emulator and a corresponding FDM, although evaluation (Supplementary Information) shows 
that this is unlikely when averaged over large spatial areas, as is done here. One critical 
assumption is the reference climatic period of 1979-2009. Different ice core analyses and model-
based studies disagree on the existence of a trend in Antarctic SMB over the last decades and 
centuries, but several agree on existing regional trends (Monaghan et al., 2006; Frezzotti et al., 
2013; Previdi and Polvani, 2016; Medley and Thomas, 2019). The year 1979 coincides with the 
start of satellite data assimilation into atmospheric products, and thus with the earliest RCM 
output, motivating this choice of reference period for practical reasons (e.g. Ligtenberg et al., 
2011; Rignot et al., 2019). However, we cannot discount that substantially lower/higher past 
accumulation rates would result in under/over-estimating recent firn thickness change, thus 
providing a possible cause of disagreement with elevation change measurements. Nevertheless, 
because all model scenarios use the same reference period, it has a minor impact on both the total 
ensemble uncertainty and the uncertainty partitioning; using another reference period could shift 
the estimates of each scenario but would affect differences between the estimates only 
marginally.  

 

4 Conclusions 

Our model ensemble experiment provides a range of modelled scenarios of 1992-2017 firn 
thickness change on the EAIS that encompass current state-of-the-art modelling capabilities. 
Using statistical emulation of firn model output, we compute a total of 54 scenarios to assess 
variability associated with different RCMs, FDMs and surface snow density parameterisations. 
The ensemble agrees that firn thickness changes in the interior are minor, but there are 
pronounced thickening and thinning patterns in coastal areas. At basin-level, the uncertainty on 
the model estimates ranges between 0.2–1.0 cm yr-1 and is generally dominated by differences 
between RCMs due to the strong and direct effect of SMB on firn thickness. However, in basins 
with high snowfall and with large spatial variability of climatic conditions, FDM-related 
variability increases up to 46% of the total ensemble uncertainty. The surface snow density 
factor has a large impact on uncertainty in basins with recent increases in snowfall rates, 
reaching a maximum contribution of 28%. Finally, non-linear interactions between the three 
sources of uncertainty are substantial across the EAIS. Our results demonstrate that refining 
SMB estimates in RCMs is the priority for constraining future assessments of firn thickness 
change. However, as snowfall and temperatures are expected to increase in Antarctica 
(Ligtenberg et al., 2013; Lenaerts et al., 2019), FDMs and snow density will increasingly 
contribute to model uncertainty and should not be neglected. By comparing the ensemble 
scenarios with satellite measurements of elevation changes over the same 1992-2017 period, we 
find that these estimates are consistent over a majority of basins. Nonetheless, we identify 
several basins where model estimates do not match altimetry measurements. While ice 
dynamical imbalance could be the source of the discrepancies in these regions, so too could be 
inadequacies in the respective uncertainty characterisations. As such, our analysis serves to 
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highlight specific areas where further focus on potential sources of errors in model and altimetry 
results is needed in order to better constrain mass balance assessments in East Antarctica. 
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