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Topology Design
with Stress Constraints

Minimum compliance design
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‘OVERVIEWI

RELEVANT STRESS CRITERIA
FOR POROUS COMPOSITES

Stresses in layered materials
Stress criterion for rank 2 layered materials

Stress criterion for power law materials

SOLUTION ASPECTS

A constraint relaxation of stresses

A mathematical programming approach of the

numerical solution

NUMERICAL APPLICATIONS
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RELEVANT STRESS CRITERIA
FOR POROUS COMPOSITES

e Establish a relationship between stresses at
micro-level, the macroscopic stresses and the

micro-structural parameters (density ... )

e Limit the micro-stress state with a relevant

failure criterion

e The 'homogenized’ stress criterion is the
expression of the local criterion in terms of the

ma CFOSCOpiC stresses
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‘Stresses in layered materials'

Stresses/strains in each layers are constant

0ij + c3t;t;

5'7;]' — %Cgtit]‘

: compliance tensors of the layers
. stresses in the two layers
. macroscopic stresses

: normal and tangent layer directions

. relative thickness of layers of material +
L —p)fT+uf~
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‘Stresses in layered materials'

E+ E-
f

If n=(1,0) and t = (0, 1),

two isotropic materials: (E™,v) (strong)
(E~,v) (soft)
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Stresses in porous layered
materials of rank 2

Recursive use of previous formula in a top to

bottom process in the micro-structure
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Stresses in porous layered
materials of rank 2

RANK2 LAYERING:

Determine the behaviour of ¢ when E— — 0T

1 —
C3 — ,ulu 099 (8)

In the layers of solids:

L2 _ _+

02%2:0;2 = <o92> /. (9)

L2 _ _+

and in the rank 1 composite layers:

o1, = <o11>

T99 0

010 = <012>
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Stresses in porous layered
materials of rank 2

RANK1 LAYERING:

One more use of recursive formula gives the stresses

in the layers of solids

1 11—~ _
011 — 011 — V 022
~
_|_ —
099 022

+ _
019 012

It comes:
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Stresses in porous layered
materials of rank 2

RANK2 LAYERING:

L2
011

L2
099

L2
019

RANK 1 LAYERING :

L1
011

L1
099

L1
019
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REMARK

e Rank 2 composite are unable to withstand shear

loads

e Assume that layers are aligned with principal

directions of macroscopic stresses

o <o12>= 0 in layering axes
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Homogenized von Mises criterion
for rank 2 materials

Von Mises stress in plane stress state

Oeq = \/afl + 035, — 011022 + 307,
CRITERION FOR RANK 1 LAYERS

|<o11>/7v] <o

CRITERION FOR RANK 2 LAYERS

<o >2 <O99>
23 — <011> 22 <o
I3 I3

<o11>2 +
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Homogenized von Mises criterion
for rank 2 materials

_ Rank:1 Layers

:,.,_,\\\Bank'l;Z Layers

~\ "‘
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Homogenized von Mises criterion
for rank 2 materials

Failure in the different layers are considered
separately
= overall failure criterion = 'composite’ surface

Similar to Hashin's failure criterion of
unidirectional composites

The failure criterion (13) for the inner layer

looks like a stress limit of a fibrous material of

relative volume ~

The failure criterion (14) for the outer layer
looks like Hill's criterion with X; = o0; and

Xo = (o
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‘Asymptotic behaviour at zero density'

MACROSCOPIC STRAINS AND STRESSES

Macroscopic strains <e;;> are continuous and keep

a finite value

lim  <e;> = <ei;> (15)
py—0t

Macroscopic stresses are continuous and vanish at

zero density

lim <0;;> = Eijkl <& > = 0 (16)
pyy—0T
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‘Asymptotic behaviour at zero density'

LOCAL STRESSES o;; TEND TO FINITE (NON
ZERO) VALUES AT ZERO DENSITY

Rank 1:
lim 011 — E<€(1)1>
p,y—0+

lim g929 0
pyy—0T

lim J12 0
pyy—0F
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‘Stress criterion for power law materials'

STIFFNESS LAW
<E(p)>= p’E’ (19)

LOCAL STRESS MODEL

Assume that local stresses are related to

macroscopic stresses by a power law of the density

<0;;>
05 — Q Zij (20)
pq
Choose a = 1.

Exponent ¢ will be determined later.
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‘Stress criterion for power law materials'

STRESS CRITERION

For a local von Mises criterion:

<o>eq < p? oy (21)

CHOICE OF EXPONENT ¢

By analogy with the rank 2 materials, local stresses
must remain finite and non zero at zero density

pr 0
Eiju <ep> # 0 (22)

lim Oy — ——
p—0F p1

<

P=4d
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Singularity Phenomenon
with Stress Constraints

<||e||> : an homogenized stress criterion

P . the density parameter

Stress constraints:

lg|l> < o7 if p<O

Limit value of stresses at zero density

lim <||o||> # 0
p—0T
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Singularity Phenomenon
with Stress Constraints

Design domain contains degenerated parts

Optima are generally located in some of these
degenerated appendices

Qualification of constraints (i.e. Slatter

conditions) are not satisfied in these regions

Optima are unreachable with algorithms based
on Karush-Kuhn-Tucker conditions
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‘Constraint Relaxation of Stresses.

e Stress constraints:

lg|l> < o7 if p<O (23)
e Eliminate zero condition:

p (<llol|>/o1—=1) <0 (24)

e However, it does not remove the singularity and
the algorithmic problems. To circumvent the
singularity of the design space:

e ¢ constraint relaxation (Cheng and Guo, 1997)

p (<|lof|>/or — 1) €
¢’ p (25)
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‘Constraint Relaxation of Stresses'

min /p df
p
s.t. p (<||lol|>/or—1) <e€
e < p
e Relaxation in the sense of mathematical

programming

e Continuous point-to-set maps between the

parameter ¢ — 0 and the relaxed design

domains as well as their optimal solutions

e Solution of relaxed problems is regular and can
be attacked with Mathematical Programming
algorithms
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A Mathematical Programming
Approach of the Solution

Large scale optimization problem

Huge number of design variables and of active

constraints

Problem is a kind of fully stressed design.
Percentage of active stress constraints
proportional to the ratio of volume used

CONLIN approximation:

Restriction formulated as:

<llell> _

<1 (27)

€
o) P

Dual algorithms:

to solve the convex and separable subproblems
(CONLIN optimizer from Fleury (1989))
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‘APPLICATIONSI

TWO BAR TRUSS TOPOLOGY PROBLEM

Geometry

3

Material data

Young's modulus: E = 1Nm?

Poisson's ratio : v = 0.3
Stress limit o7 = 25.Nm?

Power law p=q=3

Distributed shear load: P = 12N
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TWO BAR TRUSS TOPOLOGY PROBLEM

Without constraint relaxation

Relaxed problems
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TWO BAR TRUSS TOPOLOGY PROBLEM

|
\
\
|
\
|
\

Sequence of relaxed problems




Technical University of Denmark

TWO BAR TRUSS TOPOLOGY PROBLEM

Relaxed restriction on the stresses

Maximum value: 25.Nm?
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Homogenized stress criterion

Maximum value: 68. Nm?
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MBB BEAM TOPOLOGY PROBLEM

Geometry

1m 2P

Material data

Young's modulus: E = 1Nm?

Poisson's ratio : v = 0.3
Stress limit . o7 = 20.Nm?

Power law p=q=3

Distributed load: P =1N
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L BEAM TOPOLOGY PROBLEM

Geometry

Material data

Young's modulus: E = 1Nm?

Poisson's ratio : v = 0.3
Stress limit 07 = 30.Nm?

Power law p=q=3

Distributed load: P =1N
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L BEAM TOPOLOGY PROBLEM
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Compliance = 235.6
Volume = 0.308

Max stres criterion = 1.0

Compliance = 206.2

Volume = 0.3

Max stress criterion = 1.83

Minimum compliance design
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‘CONCLUSIONSI

Relevant stress criterion for rank 2 materials
A criterion for power law materials

e constraint relaxation of stress constraints to

circumvent the singularity phenomenon

Solution of large optimization problems with a

mathematical programming approach
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‘ FUTURE WORKS '

e Relaxation (in the sense of varitional principles)
of topology problems with stress constraints

e G-closure problem with stress criteria
e More general topology problems

min / p df)
P

s.t. lol|>< oy if p>0

/fTungﬁ
Q
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e |Improve efficiency of solution algorithms

e |Improve capturing of stress concentrations




