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ABSTRACT

We introduce an extension of topology optimization of continuum structures to deal with
local stress criteria. We �rst consider relevant stress criteria for porous composite materials,
initially by studying the stress states of the so-called rank 2 layered materials. Then, an
empirical model is proposed for the power law materials (also called SIMP materials). In a
second part, solution aspects of topology problems are considered. To deal with the so-called
'singularity' phenomenon of stress constraints in topology design, an � constraint relaxation
of the stress constraints is used. We describe the mathematical programming approach that
is used to solve the numerical optimization problems. The proposed strategy is applied to
illustrative applications.
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INTRODUCTION

It is now a well-established methodology to use a material distribution formulation for topol-
ogy design problems involving continuum structures. Since the introduction of this technique,
much research have been devoted to the extension of minimum compliance design to other
global criteria (see, e.g. Bends�e [1] for a survey). Here we present an extension of topology
optimization of continuum structures to cater for local stress criteria which are expected to
have a non-trivial inuence on the resulting designs when there are several load cases (min-
imum compliance design for single load cases is well capable to handle stress limitations, in
accordance with the principle of fully stressed design which holds for discrete structures).

There are two main questions to address when considering stress constraints in continuum
topology design. One is the formulation of relevant stress criteria and the other is to devise
e�cient methods for handling the many constraints in a computational procedure (arising
from the local nature of the constraint).

Note that we in the work here have not tried to obtain a consistent mathematical relax-
ation (in the sense of variational analysis) of the stress constrained 0-1 material-void problem



statement, but rather we have pursued the goal of obtaining relevant stress criteria for vari-
able density models which are well-established for the minimum compliance problem.

STRESS CRITERIA FOR POROUS COMPOSITES

For the stress constraints, the developments in this work are devoted to the formulation
of relevant stress limits for elastic design, in terms of models which allow for a density
description of the structure. Here this includes layered materials and the so-called SIMP
method of using a power-law interpolation of material properties. For the former models an
evaluation of micro stresses in analytical form allow for the identi�cation of a '�rst failure'
criterion. From this, relevant formulations for the latter models can also be identi�ed.

In order to exhibit a relevant stress criterion for composite porous materials, we adopt
an approach where a relationship between the stresses at the micro-level, the macroscopic
stresses and the micro-structural parameters like the density is �rst established. Then we
limit the micro-stress state with a relevant failure criterion. The 'homogenized' macroscopic
stress criterion is then the expression of the local criterion in terms of the macroscopic stresses,
and it is this criterion which is taken into account in the optimization process.

For convenience we have carried out the scheme outlined above for layered materials. As
the e�ective elastic properties of such materials can be written analytically and because the
micro-strains and the micro-stresses in layered materials are constant in each layer, the micro-
stress state of layered composites can be determined analytically in terms of the layering
parameters and in terms of the macroscopic stresses <�ij> (see Ref. [1, 2])

As an example for a so-called rank-2 layering (with layers aligned with the principal
directions of the macroscopic stresses), the von Mises equivalent stress criterion results in the
following macroscopic stress criterion

j<�11>=j � �l (1)
p
<�11>2 +<�22>2=�2� <�11> <�22>=� � �l (2)

which guarantees that the stress level is everywhere in the micro-structure under the material
elastic limit �l. Here � and  are the densities of the two orthogonal layers, with a total
density of material equal to � +  � � ( is the density of the inner layering of void and
material, � the density of the outer layering). Since there are two levels of layering, one
considers the failure in the di�erent layers separately and the overall failure criterion is a
'composite' surface made of two parts. This approach is similar to Hashin's failure criterion [3]
of unidirectional composites where the matrix and �bers failure modes are distinguished.
The failure criterion (1) for the inner layer looks like a stress limit of a bar of relative cross-
section . The true local stress increases when the density of this layer decreases while the
e�ective macro-stress is kept constant. By considering uniaxial stress states, one can see that
the expression (2) for the outer layer is similar to a Hill's criterion in which the stress limit in
the direction orthogonal to the layer is �l, while it is reduced to the value ��l in the direction
of the layering, due to the relative thickness of the layers. This allows one to understand
how the strength domain shrinks and becomes narrower when the porosity increases. This
situation is sketched in �gure 1.

Apart from models with layered materials, another very convenient technique for prac-
tical topology applications is the well known power penalization of sti�ness at intermediate
densities by a parametrization of rigidity as <E(�)>= �pE0 (the so-called SIMP approach).
For this case we propose that the allowable stress at intermediate density, like the rigidity,
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Figure 1: Overall strength domain of a rank 2 layered materials

depends on a power q of the density parameter �. The limitation of the von Mises equivalent
stress <�>eq then becomes:

<�>eq � �q �l (3)

where a comparison with the layered model (which is consistent) shows that the natural
choice is q = p (see Duysinx and Bends�e [2] for details).

SOLUTION ASPECTS

A constraint relaxation for stresses

As it was shown for truss structures (cf., Kirsch [4], Cheng and Jiang [5]), a special feature
of topology design with stress constraints is the possibility that when a bar area or a element
density tends to zero, the stress tend to �nite values. As stress constraints must not be
considered for zero density, the design space can include degenerated parts and this results
in a the so-called 'singularity' of topology design. For the continuum model proposed here,
we can likewise demonstrate that, when the density of material tends to zero, the average
stresses vanishes while the local stresses (i.e., the constrained stresses) tend to �nite values.
Due to this `paradoxical' behaviour at zero density, classical optimization algorithms (based
on Kuhn-Tucker conditions) would not be able to remove totally the low density regions and
then to reach the true optimal topologies, unless the problem is reformulated.

If <k�k> is the homogenized stress criterion de�ned previously and if � is the density
parameter, then the constraints are <k�k>� �l if � < 0. To eliminate the zero condition
from the constraint, one considers the formulation:

� (<k�k>=�l � 1) � 0

which however, does not remove the algorithmic problems. Nonetheless, one can circumvent
the singularity of the design space by rewriting the stress constraints using the � constraint
relaxation approach proposed by Cheng and Guo [6]. For our continuum model, one then
considers the following stress constraints and side constraints:

� (<k�k>=�l � 1) � � , �2 � � (4)

where the � parameter is given. This relaxation (in the sense of mathematical programming)
creates continuous point-to-set maps between the parameter � and the relaxed design domains
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Figure 2: Two bar truss problem

as well as their optimal solutions. This means that the solutions of a sequence of optimization
problems with decreasing value of � converges to the original solution of the optimization
topology problem. The solution of every relaxed problem is regular and can be attacked with
classical mathematical programming algorithms.

A mathematical programming approach of the numerical solution

If one consider the distribution of minimum volume and only stress constraints, the optimal
structure is a kind of fully stressed design. Thus, the numerical solution of topology optimiza-
tion problems is characterized by a large number of design variables but also a huge number
of active stress constraints. In fact, if the distribution was made only of voids and solids,
the percentage of stress constraints being active should be approximately proportional to the
ratio of volume used in the structure. The conclusion remains nearly the same with the �-
relaxed formulation because relaxation leads to remove the stresses from the active constraint
set as soon as the density arrives at its lower bound. Nevertheless, in the designs obtained
during the �rst steps of the optimization process, there exists large zones of intermediate
densities and one can have to deal with a huge number of stress constraints.

Our solution procedure is based on a mathematical programming approach using convex
approximations and dual solvers and the approach is an extension of the works described in
Duysinx [7] and Duysinx et al. [8].

Since the density variables are strictly positive for � > 0, we can treat the stress constraints
in a more convenient way:

<k�k>

�l
�

�

�
� 1 (5)

In this �rst study of stress constraints, we simply use a CONLIN approximation of the
constraints. The experiments showed that the mixed approximations of CONLIN were su�-
ciently conservative and precise when applied to the statement (5). Solutions of the convex
and separable subproblems are realized with a dual method based on a robust second order
algorithm designed by Fleury [9]. This algorithm is able to deal with the huge dimensions
of the problem and to provide a solution with a reasonable computation time. Important
other features to save computational e�ort are a strategy for selecting potentially dangerous
constraints and a careful implementation of sensitivity analysis.

NUMERICAL APPLICATIONS

In the �rst example, we treat the well known two bar truss topology problem. The two bar
truss topology can be recovered by minimizing the volume of material subject to a given
bound over the stresses. This problem illustrates clearly the di�culties of topology design
with stress constraints. Young's modulus and Poisson's ratio of the material are normalized:



Figure 3: Solution without relaxation
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Figure 4: Topology designs with decreasing �min = �2 parameters: 1.e-1,1.e-2, 1.e-3, 1.e-4

E = 1Nm2 and � = 0:3. Under a distributed shear load of P = 12N , the stress is bounded
to �l = 25:Nm2.

If the problem is solved without relaxing the homogenized stress constraints, it is impossi-
ble to remove the material membrane between the frame due to the singularity phenomenon.
The result is shown in �g.3 on a coarse mesh of 30 by 10 �nite elements. To be able to
create or delete holes, one has to relax the stress constraints to be able to reach 'singular'
designs. Figure 4 shows a sequence of relaxed problems. The problem is solved on a 60 by
20 nine node �nite element mesh. The whole optimization process takes 120 iterations and
the �nal area of the structure is 1.010578, i.e. around 30 percent of the design area. The
e�ect of the relaxation is shown for example in �g. 5 and in �g. 6. Attention must be paid
to the fact that the 2 pictures have not the some grey scale. The relaxed stress criterion
is everywhere under the prescribed limit, but in the grey areas, the maximum homogenized
von Mises stress is 68Nm2. Thus the low density region between the frame is over-stressed
compared to the solid in the bars. However, the stress constraints are relaxed so that this
region can be removed. During the �rst design steps the number of active stress constraints
is quite large: 1112 potentially dangerous stresses are retained for sensitivity analysis and
648 of them are active in the CONLIN dual optimizer. In the �nal iterations the number of
active constraints is reduced to 446 potentially dangerous stresses and 180 active constraints.

Figure 5: Homogenized von Mises stress for a minimum density of 1.e-1



Figure 6: Relaxed stress constraint for a minimum density of 1.e-1
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