

Martin Volvert, Gaëtan Kerschen

University of Liège

ONLINE, FEBRUARY 16 - 19, 2021

Nonlinear normal mode definitions

$$M\ddot{x}(t) + C\dot{x}(t) + Kx(t) + f_{nl}(x(t), \dot{x}(t)) = f(t)$$

Rosenberg: Periodic solution of the underlying conservative system

$$f(t) = C\dot{x}(t) = 0$$
 & $f_{nl}(\dot{x}) = 0$

Krack: Extension of the periodic motion concept to

nonconservative systems through additional damping

$$f(t) = \xi M \dot{x}(t)$$

Limitations: Unpractical multi-harmonic, multi-point forcing

Superharmonic and subharmonic resonances not

considered

Motivating example

$$\begin{cases} \ddot{x}_1 + 0.02\dot{x}_1 - 0.01\dot{x}_2 + 2x_1 - x_2 + x_1^3 = f\sin\omega t \\ \ddot{x}_2 + 0.11\dot{x}_2 - 0.01\dot{x}_1 + 2x_2 - x_1 = 0 \end{cases}$$

k: v harmonic resonance

$$x(t) = \frac{c_0}{\sqrt{2}} + \sum_{k=1}^{\infty} \left(c_k \cos k \frac{\omega}{\nu} t + s_k \sin k \frac{\omega}{\nu} t \right)$$

Any harmonic component can trigger a resonance $k:\nu$ as long as the relation $k\frac{\omega}{\nu}$ is the frequency of a fundamental resonance of the system

 $k = \nu$: fundamendal resonance resonance

 $k < \nu$: subharmonic resonance

 $k > \nu$: superharmonic resonance

Illustration on a Duffing oscillator (I)

$$\ddot{x}(t) + 0.01\dot{x}(t) + x(t) + x^3(t) = f \sin \omega t$$

Illustration on a Duffing oscillator (II)

Illustration on a Duffing oscillator (III)

Phase lag of harmonic k

Each harmonic component *k* can be rewritten

$$x_k(t) = A_k \sin\left(k\frac{\omega}{\nu}t - \phi_k\right)$$

$$A_k = \sqrt{s_k^2 + c_k^2} \qquad \qquad \phi_k = \operatorname{atan2}(-c_k, s_k)$$

Fundamental resonance

Phase resonance occurs for a phase lag of $\frac{\pi}{2}$ between the harmonic k = 1 and the forcing

Odd superharmonic resonance k: 1

Phase resonance occurs for a phase lag of $\frac{\pi}{2}$ between the harmonic k and the forcing

Even superharmonic resonance k: 1

Phase resonance occurs for a phase lag of $\frac{3\pi}{4}$ between the harmonic k and the forcing

Odd subharmonic resonance 1: ν

Phase resonance occurs for a phase lag of $\frac{\pi}{2}$ between the harmonic 1 and the forcing, when $\nu > 1$

Even subharmonic resonance 1: ν

Phase resonance occurs for a phase lag of $\frac{3\pi}{8}$ between the harmonic 1 and the forcing, when $\nu > 1$

Phase resonance nonlinear mode

By feeding back the T-periodic k-th harmonic of the velocity of the considered DOF shifted by a delay $\frac{\nu}{k}\frac{\alpha}{\omega}$, with $\alpha = \frac{\pi}{2} - \delta_k$, the autonomous system is driven into a phase resonance nonlinear mode.

$$\delta_k$$
 is the phase lag at the $k:\nu$ resonance $\begin{cases} \delta_k = \frac{\pi}{2} & \text{if } k \text{ and } \nu \text{ are odd} \\ \delta_k = \frac{3\pi}{4\nu} & \text{if either } k \text{ or } \nu \text{ is even} \end{cases}$

PRNMs of the fundamental resonance

$$\ddot{x}(t) + 0.01\dot{x}(t) + x(t) + x^{3}(t) - \mu \dot{x}_{1,T}(t) = 0$$

PRNMs of odd resonances

$$\ddot{x}(t) + 0.01\dot{x}(t) + x(t) + x^{3}(t) - \mu \dot{x}_{k,T}(t) = 0$$

PRNMs of even resonances

$$\ddot{x}(t) + 0.01\dot{x}(t) + x(t) + x^3(t) - \mu \dot{x}_{k,T} \left(t - \frac{v \alpha}{k \omega} \right) = 0$$

PRNMs of the Duffing oscillator

Conclusions and key findings

• The k: ν resonance can be enforced by feeding back the T-periodic k-th harmonic of the velocity of the considered DOF shifted by a delay $\frac{\nu}{k} \frac{\alpha}{\omega}$ into the autonomous system

• The phase lag ϕ_k at which the resonance occurs depends on the parity of k and ν and is either $\frac{\pi}{2}$ or $\frac{3\pi}{4\nu}$

 The exact locus of the phase resonance points, under single-point, harmonic forcing, can be computed thanks to the PRNM equation