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Nonlinear normal mode definitions

Mi(t) + Cx(t) + Kx(t) + fru(x(@), %()) = f(t)

Rosenberg: Periodic solution of the underlying conservative system
f@=Cx(t)=0 & frux)=0

Krack: Extension of the periodic motion concept to
nonconservative systems through additional damping

f(t) =sMx(t)

Limitations: Unpractical multi-harmonic, multi-point forcing
Superharmonic and subharmonic resonances not
considered



Motivating example

¥, +0.02x; — 0.01%, + 2x; — x, + x3 = f sinwt
¥, + 0.11%, — 0.01%; +2x, —x;, = 0
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k:v harmonic resonance

x(t) = \/_ 2(6,{ Cosk—t + S5 smk—t)

Any harmonic component can trigger a resonance k:v as long as the
relation k% IS the frequency of a fundamental resonance of the

system

k = v: fundamendal resonance resonance
k < v:subharmonic resonance
k > v: superharmonic resonance



lllustration on a Duffing oscillator (I)

X¥(t) + 0.01x(t) + x(t) + x3(t) = f sin wt
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lllustration on a Duffing oscillator (1)

—_
[\

Amplitude [m]
(@) 0] 5

N

0 2 4 6 8 10 12
Frequency [rad/s]



20

—
Ot
T

Amplitude [m]
=

0 6 18

lllustration on a Duffing oscillator (lIl)

Frequency [rad/s]




Phase lag of harmonic k

Each harmonic component k can be rewritten

X, (t) = A, sin (k%t — qbk)

A, = \/S,% + cf ¢, = atan2(—cy, si)



Fundamental resonance

Phase resonance occurs for a phase lag of g between the harmonic
k = 1 and the forcing
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Odd superharmonic resonance k: 1

Phase resonance occurs for a phase lag of g between the harmonic k
and the forcing
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Phase resonance occurs for a phase lag of %” between the harmonic
k and the forcing
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Odd subharmonic resonance 1:v

Phase resonance occurs for a phase lag of g between the harmonic 1
and the forcing, whenv > 1
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Even subharmonic resonance 1:v

Phase resonance occurs for a phase lag of %” between the harmonic
1 and the forcing, whenv > 1
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Phase resonance nonlinear mode

By feeding back the T-periodic k-th harmonic of the velocity of the
considered DOF shifted by a delay %% with a =~ — &y, the

autonomous system is driven into a phase resonance nonlinear mode.
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PRNMs of the fundamental resonance

X(t) +0.01x(t) + x(t) + x3(t) —pxy r(t) =0
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PRNMs of odd resonances
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PRNMs of even resonances
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PRNMs of the Duffing oscillator
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Conclusions and key findings

* The k:v resonance can be enforced by feeding back the T-periodic
k-th harmonic of the velocity of the considered DOF shifted by a

delay -~ into the autonomous system

* The phase lag ¢, at which the resonance occurs depends on the
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parity of k and v and is either % or —

* The exact locus of the phase resonance points, under single-point,
harmonic forcing, can be computed thanks to the PRNM equation
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