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1 Introduction

Modal analysis has been, and continues to be, the dominant dynamical method used
in structural design. The goal of modal analysis is to find the vibration modes,
resonance frequencies, and damping ratios of the considered system [1]. One key
assumption of modal analysis is linearity, which, however, real-world structures
violate because they may feature advanced materials, friction, and contact [2].
The theory of nonlinear normal modes (NNMs) was developed to generalize the
concept of a vibration mode to nonlinear systems [3]. In direct analogy to a linear
mode, Rosenberg defined a NNM as a synchronous vibration of the undamped,
unforced system for which all points reach their extreme values or pass through
zero simultaneously [4, 5]. This definition is only valid for multi-point, multi-
harmonic forcing, which is not always used in practice. The focus of this chapter
is on phase resonances for fundamental resonances of harmonically forced, damped
systems as well as for superharmonic and subharmonic resonances. For these latter
resonances, the phase lag between the harmonic of interest of the displacement and
the forcing may not necessarily be equal to 7 /2, unlike fundamental resonances. In
this context, we propose herein a generalization of phase resonance of nonlinear
systems for which the corresponding structural deformation is termed a phase
resonance nonlinear mode (PRNM). These PRNMs are applied to the well-known
Duffing oscillator.
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2 Resonances of the Duffing Oscillator

The Duffing oscillator comprises a mass attached to linear and cubic springs and a
linear damper. The governing equation of motion of the harmonically forced Duffing
oscillator is

(1) 4+ 0.015(1) + x(t) + x> (1) = fsinwt, (1)

where f is the forcing amplitude, whereas w is the excitation frequency.
Considering the Fourier decomposition of the displacement, where the positive
integer v takes into account the subharmonics of the excitation frequency w,

x(t) = % + g (sk sin (k%t) ~+ ¢ cos (k%t)) 2)

shows that many resonances exist in this simple system. Specifically, each harmonic
component of the displacement can trigger a resonance as long as the relation %w
corresponds to the frequency of the fundamental resonance of the system. When
the ratio ];‘ is lower (greater) than 1, the resonance is said to be subharmonic
(superharmonic) and is located after (before) the fundamental resonance. In this

chapter, the resonances are divided into four categories, namely:

— Fundamental resonance (k =1, v = 1)

Superharmonic resonance k:v (k > v, v = 1)

— Subharmonic resonance k:v (v > k, k = 1)

— Other superharmonic and subharmonic resonances k:v (k > 1, v > 1)

Superharmonic and subharmonic resonances can further be divided into subcate-
gories depending on the parity of k and v.

The goal of this section is to analyze carefully the resonant response of the
Duffing oscillator, as previously achieved in [6]. To this end, the system is analyzed
considering four different forcing amplitudes f, i.e., 0.0IN, 0.25N, 1IN, and 3N.
The nonlinear frequency response curves (NFRCs) are depicted in Fig. 1. For a
forcing amplitude of 0.01N in Fig. la, the only nonlinear effect appearing in the
NFRC is the hardening of the fundamental resonance. At 0.25N in Fig. Ib, 3:1
superharmonic and 1:3 subharmonic resonance branches appear before and after
the fundamental resonance, respectively. It should be noted that the subharmonic
resonance is isolated from the main curve. Additional branches corresponding to
2:1,4:1,5:1, and 7:1 superharmonic and 1:2 subharmonic resonances arise in Fig. ¢
at 1N. Finally, as the forcing continues to increase, new resonances, for which both k
and v can be different from 1, start to appear, first as isolated singular point solutions
and then as growing isolated branches. When the forcing amplitude is 3N, some of
these resonances, such as the 7:3, 3:2, 4:3, 7:2, 2:3, 3:4, 5.7, and 3:5 resonances, can
be observed in Fig. 1d. A close-up on these specific superharmonic and subharmonic
resonances is made in Fig. le,f, respectively. The main resonances are examined
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Fig. 1 NFRCs of the Duffing oscillator: (a) f = 0.0IN, (b) f = 0.25N, (¢) f = 1IN, and

(d) f = 3N, (e) close-up on the superharmonic resonances, (f) close-up on the subharmonic
resonances

in greater detail hereafter. Particular attention is devoted to the phase difference

between the dominant harmonic component of the displacement and the harmonic
excitation.
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Fig. 2 NFRCs of the fundamental resonance of the Duffing oscillator for f = 0.001N (------ ),

f =0.005N (- --),and f = 0.01N (—): (a) amplitude and (b) phase lag of the first harmonic
component. The red dots correspond to phase resonance

2.1 Fundamental Resonance

The amplitude and phase lag of the first harmonic component of the displacement
in the neighborhood of the fundamental resonance are displayed in Fig.2a,b,
respectively. The phase lag varies between 0 and 7 and passes through /2 at
resonance.

2.2 Superharmonic Resonances (k > v, v =1)

In the case of superharmonic resonances, the ratio % is greater than one, and the
resonance peaks are located before the fundamental resonance. The phase lags of
the 3/1 and 2/1 harmonic components of the 3 : 1 and 2 : 1 resonances are depicted
in Fig. 3a,b, respectively.

2.2.1 0Odd Superharmonic Resonances (k is Odd)

The phase lag of the 3/1 harmonic component of the 3:1 resonance is comprised
between 0 and 7 and, as for the fundamental resonance, passes through /2 at
resonance. The same observation holds for the 5 : 1 and 7 : 1 superharmonic
resonances. These results suggest that phase quadrature between the forcing and the
dominant harmonic component exists at resonance for odd superharmonic branches.
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Fig. 3 Phase lags of the 3:1 and 2:1 superharmonic resonances for 4 forcing amplitudes: (a) 3:1
and (b) 2:1. The points where the phase lag is equal to 7 /2 are marked by red dots

2.2.2 Even Superharmonic Resonances (k is Even)

The phase lag of the 2/1 harmonic component of the 2:1 resonance is comprised
between 7 /2 and 7 and passes through 37 /4 at resonance. The same observation
holds for the 4:1, 6:1, and 8:1 resonances. It can be noted that these resonances
bifurcate out of the main NFRC.

2.3 Subharmonic Resonances (v > k, k =1)

The ratio % is lower than one, and the resonance branches are located beyond the
fundamental resonance. The phase lags of the 1/3 and 1/2 harmonic components
for the 1 : 3 and 1 : 2 resonances are depicted in Fig. 4a,b, respectively.

2.3.1 Odd Subharmonic Resonances (v is Odd)

The corresponding phase lag for the 1/3 harmonic component is bounded by 7 /3
and 27 /3. Since the branch is isolated, the phase lag is twice equal to 7 /2, which
happens at the extremities of the isolated branch. For higher-order 1 : v subharmonic
resonances, the phase lag of the 1/v"” harmonic component is located within the
interval [ /2 &+ 7 /2v].

2.3.2 Even Subharmonic Resonances (v is Even)

As for even superharmonic resonances, the phase lag of even subharmonic res-
onances is not centered around m/2. Specifically, for the 1:2 resonance, it is
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Fig. 4 Phase lags of the 1:3 and 1:2 subharmonic resonances for 3 forcing amplitudes: (a) 1:3 and
(b) 1:2

Table 1 Phase lag of the k/v
harmonic component of the
k : v resonance

k & vareodd |k orv iseven
Phase lag at resonance | /2 3 /4v
Phase lag interval /v w/2v

centered around 377/8 and comprised between 7 /4 and 7 /2. For higher-order 1 : v
resonances, the phase lag interval is 77 /2v and centered around 37 /4v.

2.4 Other Superharmonic and Subharmonic Resonances
(k>1Lv>1)

Resonances for which neither k nor v is equal to 1 (see Fig. le,f) can also be studied
based on the parity of k and v. Specifically, for the k : v resonance, if either k or
v is even, the phase lag of the k/v harmonic component at resonance is 37 /4v as
for even superharmonic and subharmonic resonances, and /2 when both k and v
are odd as for odd superharmonic and subharmonic resonances. These results are
summarized in Table 1.

3 Phase Resonance Nonlinear Modes

For linear systems, phase resonance takes place when the single-point harmonic
forcing and the displacement at the forcing location are in quadrature, i.e., the phase
is locked at /2 [7]. As illustrated in Fig. 2, this linear definition extends to the
fundamental resonances of nonlinear systems.
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The results in the previous section allow us to generalize the concept of phase
resonance to superharmonic and subharmonic resonances of nonlinear systems.
Indeed, they demonstrate that the phase lag can still be used as a robust criterion to
track the locus of their resonance peaks, as carried out for fundamental resonances
in [8]. The key finding is that phase quadrature between k /v harmonic component
of the k : v branch and the forcing is no longer necessarily achieved for such
resonances, but depends on the parity of k and v as indicated in Table 1.

3.1 A New Nonlinear Mode Definition

Considering the unforced linear oscillator
mix(t) + cx(t) + kx(t) =0, 3)
velocity feedback can be considered to drive the system into resonance [9, 10]:
mx(t) + cx(t) + kx(t) — ux() =0, 4)

where the feedback term wx (¢) plays the role of virtual forcing. Because this virtual
forcing and the velocity are collinear, phase quadrature with the displacement x(¢),
and, hence, phase resonance, is naturally enforced when & = c.

Phase resonance nonlinear modes (PRNMs) further extend Eq. (4) and take into
account superharmonic and subharmonic resonances of nonlinear systems:
The PRNMs of the k : v resonance correspond to the periodic responses obtained
by feeding back the T-periodic velocity of the harmonic component k /v shifted by
the delay va/ kw into the autonomous system.

Mathematically, the following equation is to be solved for the Duffing oscillator:

() + €E(0) + kx(t) + kux (1) = s (r _ %%) =0, (5)
where o is the frequency at which the PRNMs are to be calculated, and T is the
corresponding period. « = /2 — § where § is the phase lag at resonance given in
Table 1. For instance, « = O for all resonances for which k and v are odd. The ratio
¢ in the delay accounts for the fact that the period of the fundamental harmonic
component is k/v times that of the k/v harmonic component.

Considering the 1:2 subharmonic resonance (k = 1, v = 2) as an illustrative
example, Fig. 5 shows the three steps to calculate the velocity feedback from the

original velocity x(¢) shown in Fig. 5a:
1. Filtering out all the harmonic components of x (¢) that are different from k/v to
obtain the %T—periodic signal: x% o7 (t) (Fig.5b)
2. Transforming )'ck,%T(t) into a T-periodic signal: X« ,(¢) (Fig. 5c)
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Fig. 5 Calculation of the velocity feedback: (a) original velocity, (b) after step 1 (filtering), (c)
after step 2 (7'-periodic), and (d) after step 3 (delay)

3. Delaying X« ,(¢) by the angle pa, i.e., 7t /4 for the 1:2 resonance: X« ,(t— %
(Fig. 5d)

For multi-degree-of-freedom systems, the velocity feedback is applied at the
degree of freedom where the external forcing is located.

3.2 PRNMs of the Duffing Oscillator

3.2.1 Fundamental Resonance

The PRNM backbone of the fundamental resonance is superposed to the NFRCs of

the Duffing oscillator in Fig. 6. As anticipated, the backbone goes exactly through

the 77 /2 phase lag points in Fig. 6b and traces very closely the locus of the resonance
peaks of the different NFRCs in Fig. 6a.
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Fig. 6 NFRCs and PRNM:s of the fundamental resonance of the Duffing oscillator: (a) amplitude
and (b) phase lag. Black: NFRC; blue: PRNM

3.2.2 Superharmonic Resonances

For odd and even superharmonic resonances, the phase lags are 7/2 and 37 /4,
respectively. The PRNM backbones corresponding to 3:1 and 2:1 resonances are
shown in Fig. 7a,b, respectively. These figures confirm the relevance of the PRNMs
for the characterization of superharmonic resonances.

3.2.3 Subharmonic Resonances

The PRNMs of the 1:3 and 1:2 subharmonic resonances are represented in Fig. 8,
where the phase lags at resonance are /2 and 3m/8, respectively. An important
remark is that a critical forcing amplitude is required to activate these resonances.
Below this forcing, the isolated resonance branch, and, hence, the PRNM, does not
exist.

3.2.4 Other Superharmonic and Subharmonic Resonances

The PRNMs of the remaining superharmonic and subharmonic resonances can also
be computed based on the results from Table 1.
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Fig. 7 NFRCs and PRNMs of the 3:1 and 2:1 superharmonic resonances for 4 forcing amplitudes:
(a) 3:1 and (b) 2:1. Black: NFRC; blue: PRNM
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Fig. 8 NFRCs and PRNMs of the 1:3 and 1:2 subharmonic resonances for 3 forcing amplitudes:
(a) 1:3 and (b) 1:2. Black: NFRC; blue: PRNM

4 Conclusions

The objective of this chapter was to carry out a detailed study of the phase
lags associated with superharmonic and subharmonic resonances of the Duffing
oscillator. The study has revealed that phase quadrature still holds for £ : v
resonances when k and v are both odd. Otherwise, resonance occurs for a phase
lag equal to 37 /4v. Based on these results, the PRNMs of the k : v resonance
correspond to the periodic responses obtained by feeding back the delayed velocity
of the harmonic component k/v into the autonomous system at the point where the
external forcing is located.
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