
 

 

 

 
Remote Sens. 2021, 13, 1090. https://doi.org/10.3390/rs13061090 www.mdpi.com/journal/remotesensing 

Article 

Individual Identification of Cheetah (Acinonyx jubatus) Based 

on Close-Range Remote Sensing: First Steps of a New  

Monitoring Technique 

Guillaume Baralle 1, Anoine F. J. Marchal 2,*, Philippe Lejeune 1,2 and Adrien Michez 1,3 

1 Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre (Forest Is Life). 2, Passage des Déportés, 

University of Liège (ULiège), 5030 Gembloux, Belgium; guillaume.baralle@alumni.uliege.be (G.B.); 

p.lejeune@ulg.ac.be (P.L.); adrien.michez@univ-rennes2.fr (A.M.) 
2 Wildlife 3D Tracking (W3DT), rue des Ponts 98, 1480 Tubize, Belgium 
3 Place du Recteur Henri Le Moal, University Rennes 2 LETG (CNRS UMR 6554),  

35043 Rennes CEDEX, France 

* Correspondence: info@wildlife3dtracking.org 

Abstract: Wildlife monitoring is an important part of the conservation strategies for certain endan-

gered species. Non-invasive methods are of significant interest because they preserve the studied 

animal. The study of signs, especially tracks, seems to be a valuable compromise between reliability, 

simplicity and feasibility. The main objective of this study is to develop and test an algorithm that 

can identify individual cheetahs based on 3D track modelling using proximal sensing with an off-

the-shelf camera. More specifically, we propose a methodological approach allowing the identifica-

tion of individuals, their sex and their foot position (i.e., left/right and hind/front). In addition, we 

aim to compare different track recording media: 2D photo and 3D photo models. We sampled 669 

tracks from eight semi-captive cheetahs, corresponding to about 20 tracks per foot. We manually 

placed on each track 25 landmarks: fixed points representing the geometry of an object. We also 

automatically placed 130 semi-landmarks, landmark allowed to move on the surface, per track on 

only the 3D models. Geometric morphometrics allowed the measurement of shape variation be-

tween tracks, while linear discriminant analysis (LDA) with jack-knife prediction enabled track dis-

crimination using the information from their size and shape. We tested a total of 82 combinations 

of features in terms of recording medium, landmarks configuration, extracted information and tem-

plate used. For foot position identification, the best combination correctly identified 98.2% of the 

tracks. Regarding those results, we also ran an identification algorithm on a dataset containing only 

one kind of foot position to highlight the differences and mimic an algorithm identifying the foot 

position first and then an individual factor (here, sex and identity). This led to accuracy of 94.8 and 

93.7%, respectively, for sex and individual identification. These tools appear to be effective in dis-

criminating foot position, sex and individual identity from tracks. Future works should focus on 

automating track segmentation and landmark positioning for ease of use in conservation strategies. 

Keywords: Acinonyx jubatus; cheetah; non-invasive monitoring; close-range remote sensing; photo-

grammetry; track; wildlife monitoring 

 

1. Introduction 

Since the 1950s, the intensive use of ecosystems by humans has led to major changes 

in the biosphere [1]. Most of the world's biological diversity cannot adapt to such sudden 

transformations. In addition, mammal populations tend to decline drastically, particu-

larly carnivores [2–4]. Our study case, the cheetah (Acinonyx jubatus), is classified as vul-

nerable with a total estimated population of 6674 mature individuals according to the 

International Union for Conservation of Nature’s Red List assessment [5]. This number 
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keeps declining [6]. Nowadays, the majority of wild cheetahs live in southern and eastern 

Africa, mainly outside protected areas [5]. Their current range is estimated at 10% of the 

historical range [7]. The need for data to understand and monitor cheetah populations is 

therefore crucial. 

Wildlife monitoring enables a better understanding of animal populations. However, 

it often requires direct contact with the studied animal. From the most intimate contact, 

such as fitting GPS collars, to the most distant, such as camera trapping, monitoring can 

affect the animals, potentially modifying their fitness [8,9]. The possibility of indirectly 

monitoring wild animals without disturbing them is of significant interest. Accomplishing 

this is to record indirect signs of presence. These signs include feces, territorial marks and 

tracks [10]. Tracks are particularly interesting, because they have specific and differentia-

ble characteristics that are related to the species, sex, age and even individual. This is high-

lighted by the ability of some traditional trackers to identify the species, age and sex of 

animals and/or individual wild animals through their tracks with a high degree of cer-

tainty [11,12]. For several years, study programs have been trying to use presence signs to 

monitor certain animal species. For tracks, successful attempts have been made, first using 

direct measurement [13] and, more recently using digitized measurements, in particular 

the FIT (Footprint Identification Technique) program [13–15]. Based on photographs of 

tracks, researchers were able to create individual identification algorithms for a wide 

range of mammal species [13–15], with some emphasis on cheetah [16]. 

The use of a three-dimensional (3D) recording technique is a recent advance in the 

field, which has been used on lions (Panthera leo) [17–19]. This new method allows the 

extraction of more information from the track (including depth), to decrease the manipu-

lator bias and allow greater automation of both the recording and feature extraction pro-

cesses. In order to extract information on the geometry of tracks, the 3D method uses ge-

ometric morphometrics analysis. Morphometrics is used to study the geometry of living 

organisms, their variations and covariations (Cucchi et al., 2015). 

These techniques are based on the placement of landmarks, which are discrete points 

corresponding to anatomical loci that are homologous among the studied entities [20]. As 

landmarks sometimes do not allow the characterization of all geometric information, par-

ticularly variations in curves and surfaces, morphometricians developed semilandmarks 

[21]. These are discrete points that do not correspond to anatomical loci and are therefore 

able to slide along curves and surfaces [22], hence their designation as curve or surface-

sliders. The positions of the landmarks and semilandmarks are then subjected to a gener-

alized procrustes analysis (GPA). This superimposition projects all the landmark coordi-

nates into a non-linear space. It uses a least-squares superposition method to minimize 

the distance between all homologous landmarks in the sample and thus, to isolate the 

shape of the studied objects [23]. The new coordinates are known as Procrustes coordi-

nates [21]. This process eliminates the effects of size, orientation and position using an 

iterative algorithm in order to keep only the true differences between tracks shapes [21]. 

GPA creates a consensus object based on the mean position of the superimposed land-

marks made out of the entire dataset. Shape variations between the objects are studied in 

relation to this consensus. In addition to shape, size is also analyzed by calculating the 

centroid size of each track. It is mathematically traduced by the square root of the sum of 

the squared distances to the centroid of the object and corresponds to all the information 

available on the size [20]. The information added from the shape and the size refers to the 

form [24]. The method of Marchal et al. [17,18] uses morphometrics to extract geometric 

information from tracks that can be used for individual identification. However, this 

method remains under development. Even if it successfully distinguished foot position, 

age and sex of lions, individual identification remains inaccurate [18]. 

The objective of this study is to compare different combinations of features, such as 

recording medium, landmark configuration, type of extracted information and template, 

to implement an identification algorithm for cheetah tracks. The aim is to find the most 

suitable set of features to identify the foot position, sex and individual with the highest 
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accuracy. In the end, this could become a reliable, user-friendly and cost-effective tool to 

identify and sex animals in a non-invasive way that would improve wildlife monitoring, 

and therefore conservation strategies. 

2. Materials and Methods 

2.1. Ethics Statement 

The cheetahs used for this experiment are legally held in captivity and registered by 

N/a'ankusê Wildlife Sanctuary (Khomas Region, Namibia). The animals were not re-

strained or harmed in any ways; their participation consisted of walking through a pre-

pared sand patch in exchange for a food reward (Figure 1A). 

2.2. Track Sampling 

The study was conducted at N/a'ankusê Wildlife Sanctuary, located in the Khomas 

Region of Namibia. The tracks of 8 cheetahs, 4 males and 4 females, were sampled on 

prepared sandy plots according to the recommendations of Jewell et al. [16]. The cheetahs 

were all mature adults (adult female (AF) and adult male (AM)) and some were related: 

AM4, AF3 and AF4, AM1 and AM2, and AF1 and AF2 were from the same litters. 

Cheetah tracks were sampled with a Nikon D3200 (24.2 MP) equipped with a Nikkor 

18–105 mm f/3.5−5.6 lens (Nikon, Tokyo, Japan). Six photos were taken of each track (Fig-

ure 1B), 1 photo from above for the 2D method and 5 photos for the 3D method (1 from 

above and 4 in the cardinal directions at an angle of 10–15° from the vertical line). As 

recommended by Marchal [19], the focal length was kept low (between 30 and 55 mm) 

and constant during each track sampling. 

 

Figure 1. Track sampling and processing scheme. (A) Track sampling: the cheetah is led into sand patch in exchange for 

food reward. (B) Photographic track sampling protocol scheme: track is framed by rectangular centimetric ruler (2D) and 

3D targets for automatic recognition in Agisoft. Rectangles represent 6 photos of sampled track (in black) needed to re-

construct 3D model by photogrammetry (5 pictures, from above and around track) and for 2D method (1 picture, from 

above). (C) Landmarking: 150 surface-sliders (3D) and 25 landmarks on photo (2D approach). 

2.3. Processing of Cheetahs’ Tracks 

2.3.1. 2D Approach 

Photos for the 2D method were scaled with ImageJ software (https://imagej.nih.gov/, 

(accessed on 1 March 2021)) by using the centimetric ruler placed next to the track (Figure 
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1B). When needed, the operator decreased the contrast to allow clearer visualization of 

the track contours. 

2.3.2. 3D Approach 

All 5 photos were used to reconstruct 3D models of each track using the Agisoft 

Metashape photogrammetric suite (Agisoft LLC, St. Petersburg, Russia). We used the 

same reconstruction parameters as in [17] except for the number of key points and tie 

points (respectively 10,000 and 2000 points) and the reconstruction quality for the dense 

cloud, which was set on high quality, representing an approximate mean ground sam-

pling distance above 0.0008 mm per pixel. The 3D models were scaled and optimized us-

ing 5 targets automatically located inside the images by the software. These targets were 

printed on a perpendicular ruler placed next to the track (Figure 1B). Among the 3D mod-

els, the tracks were manually segmented from the rest of the model using CloudCompare 

software (www.cloudcompare.org, (accessed on 1 March 2021)) in order to extract the 

track from the background. To minimize manipulator biases only one manipulator seg-

mented all 3D models and always observed the following procedure. Firstly, the operator 

used the bounding box Principal Component Analysis fit function to allow the model to 

be as perpendicular as possible to the z axis (representing depth). In order to improve the 

quality of the segmentation, the model was then colored by depth, highlighting the shape 

of the track. In the end, the track was manually cut out from the background by using the 

polygonal selection tool and clicking on the edge of the track to preserve its geometry. 

2.4. Geometric Morphometrics 

2.4.1. Landmarking 

On each track, 25 landmarks were manually placed on the photos (2D approach) and 

3D models according to the guidelines from Jewell et al. (Figure 1D) [16]. The fixed land-

mark fixed points intended to represent the geometry of the track were displaced at the 

vertex of the curves of each pads of each track. We used ImageJ for the photos and the 

Geomorph R package for the 3D models [25]. In addition, surface-sliders (i.e., unfixed 

landmarks sliding on the model surface) were automatically positioned on the surfaces of 

each 3D models with the Geomorph package (Figure 1D). In total, we placed 150 surface-

sliders. 

2.4.2. Generalized Procrustes Analyses 

Generalized procrustes analyses (GPA) aim to minimize the shape differences be-

tween tracks by superimpose the coordinates of the landmark using the least-square dis-

tance. It allows removing effects of position, size and rotation between tracks. We per-

formed GPA using the Geomorph package on (i) the entire dataset and (ii) reduced da-

tasets based on foot positions (right hind (RH), left hind (LH), right front (RF), left front 

(LF)) to reduce the variability induced by different foot positions. This partition allowed 

us to accentuating the variability caused by sex or identity of the cheetah and therefore 

enable us to identify these factors more efficiently (more details in Sectopn 2.6, Accuracy 

Analysis section). GPA allowed us to extract shape (Procrustes coordinates) and size (cen-

troid size) information from the landmark positions. 

2.4.3. Template Consideration 

Geomorph allows the automatic placement of surface-sliders using a template based 

on one of the studied objects. In order to measure the influence of the chosen template, we 

tested 2 situations: the use of a single template for all tracks and the use of different tem-

plates per foot position. To designate the template, we used the mathematically closest 

track to the consensus from the GPA with 3D fixed landmark as a template using the find-

MeanSpec function of the Geomorph R package. The consensus template allowed us to 

maximize the differences between tracks in a dataset. 
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2.5. Statistical Analysis 

2.5.1. Principal Component Analysis 

We ran a principal component analysis (PCA) on the Procrustes coordinates for each 

recording medium (2D or 3D), landmark configuration (fixed only or fixed with surface-

slider), datasets used (entire track set or foot position divided sets) and, for the surface-

slider modality the template used (one common template or one template per divided 

dataset). The results of 19 methodological schemes are described in Figure 2. In the re-

mainder of the paper, we call one set of each modality a combination corresponding to 

any possible path in Figure 2. 

 

Figure 2. Summary of features implemented in identification algorithm. One set of modalities (recording medium, land-

mark configuration, dataset and template used) creates a combination. Every possible combination is represented by fol-

lowing green arrows. In all, 19 combinations were obtained and implemented in linear discriminant analysis (LDA), lead-

ing to 82 tested identification algorithms (19 combinations x identification factors x shape or form information). 

2.5.2. Linear Discriminant Analysis 

Then, we applied a linear discriminant analysis (LDA) with jack-knife prediction by 

implementing an increasing number of principal components (PCs) to compare the accu-

racy of prediction for every identification factor (foot position, sex or identity) and every 

combination tested (Figure 2). We also conducted the same LDA adding centroid size to 

the PCs in order to use the form information (= size + shape) in the algorithm (Figure 2). 

That allowed us to compare prediction accuracy using information on the shape only ver-

sus information on the form. 

2.6. Accuracy Analysis 

We calculated the total prediction accuracy from the LDA for every possible combi-

nation using shape or form information (Figure 2). 

Due to the different geometry of the track due to foot position, we believe that an 

efficient algorithm would need to differentiate the foot position first, and then more pre-

cise individual features. This would allow enhancing the contrast related to cheetah’s sex 

or identity within the dataset and therefore enable to identify these factors more effi-

ciently. In order to mimic such an algorithm, we assessed different identification “steps”: 

the first step uses the data from the GPA and its LDA on the entire dataset to predict the 

foot position of the track (foot position prediction (FPp)). The first identification is com-
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bined with the second “step”: predicting mean accuracy for sex or identity using the re-

sults from LDA datasets divided according to foot position (Figure 3). Thus, the total ac-

curacy for these combinations is the foot position identification multiplied by the mean 

prediction of the divided datasets of the factor (mean factor prediction (MFp)) (Equation 

(1)). Specifically, for the “one template per foot position” combination, we used the FFp 

from the “one common template with the entire dataset” combination as the first identifi-

cation step. 

����� �������� ��� ��� ���� �������������� =  ��� × MFp . 

where  

MFp = 0.25 × (�� ������� ���������� +  �� ������� ���������� +  �� ������� ���������� +

 �� ������� ����������) 

(1)

 

Figure 3. Diagram of “two steps” algorithm. First step: use dataset with entire track collection to assess track position. 

Second step: use a reduced dataset with track from previously identified position to determine sex or identity. 

3. Results 

We collected 669 tracks corresponding to 18–24 tracks per foot (Table 1). After recon-

structing the 3D models and manually segmenting them, the landmarks were positioned 

on the 3D models. A total of 16,725 fixed landmarks (25 per model) and 100,350 surface-

sliders (150 per model) were placed on all 3D models (n = 669). For the 2D approach, after 

rescaling, 16,725 landmarks were positioned in total (25 per photo). All data extracted 

from the pictures and 3D models are available by contacting corresponding author or 

Wildlife 3D Tracking (https://www.wildlife3dtracking.org/, (accessed on 1 March 2021)). 

3.1. Statistical Analysis Results 

For every combination, the first two components of the PCA explained between 

43.1% and 11.8% and between 15.5% and 8.6% of the variation, respectively. The first PC 

from combinations using the entire dataset accounted for the most variation (between 
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43.1% and 35.0%) compared to combinations using only the tracks from a specific foot 

position (between 20.4% and 11.8%). Figures 4 and 5 show the PCA (PC1 and PC2) in 3D 

with form information colorized according to a different factor for each figure. This pro-

vides a clear visualization of the differences between points. Figure 4 plots every sampled 

track and Figure 5 only the right front tracks, to improve visualization of those differences. 

Figure 4 clearly shows four clusters of points (n = 669) corresponding to the four foot po-

sitions. Figure 5A is colorized by sex only, while Figure 5B is colorized by individual. We 

observe that sex is well segregated by PCs (Figure 5A) and specific clusters correspond to 

individuals or group of individuals (Figure 5B). 

Table 1. Number of sampled tracks per foot position and individual. RF, right front; RH, right 

hind; LF, left front; LH, left hind; AF, adult female; AM, adult male. 

Cheetah LH LF RH RF Total 

AF1 22 20 19 20 81 

AF2 18 21 20 24 83 

AF3 20 20 23 24 87 

AF4 23 19 24 21 87 

AM1 20 20 20 20 80 

AM2 20 20 20 20 80 

AM3 21 20 20 20 81 

AM4 23 21 24 22 90 

Total 167 161 170 171 669 
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Figure 4. Principal component analysis (PCA) of every sampled track (n = 669) with fixed landmark only in 3D and form information colorized by foot position. RF, right front; RH, 

right hind; LF, left front; LH, left hind. Thin-plate spline deformation grids illustrate differences in shape between tracks corresponding to extremes of each principal component axis 

and consensus. 
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Figure 5. (A) Principal component analysis of right front (RF) tracks (n = 171) with fixed landmark only in 3D with form 

information colorized by sex (M, male; F, female). Thin-plate spline deformation grids illustrate differences in shape be-

tween tracks corresponding to extremes of first principal component axis and consensus. (B) Principal component analysis 

of right front (RF) tracks (n = 171) with fixed landmark only in 3D with form information colorized by identity (AM, adult 

male; AF, adult female). 

3.2. Accuracy Analysis Results 

The maximum prediction accuracy for LDA was assessed for each combination. The 

accuracy percentage corresponded to the best accuracy obtained with the minimum PCs 

implemented in LDA. The results show that foot position prediction accuracy was better 

in 3D than in 2D, with 98.2 and 91.6% of correct identification, respectively (Table 2). For 

sex and identity factors, the combinations using all tracks were less accurate than those 

using datasets divided according to foot position. 

The best total accuracy for sex prediction (94.8%) is the combination of 3D fixed land-

marks with surface-sliders issued from one common template and derived from a form 

study (Figure 6), while the best total accuracy for identity prediction (93.7%) was the same 

combination using a different template for each foot position. However, the combination 

using different template modalities was almost as accurate. The differences are 0.1 and 

0.4% for the best sex and identity prediction, respectively. 

In addition, overall prediction accuracy was better with two identification steps for 

sex and identity factors. LDA results using either shape or form variables were similar. 

The combination using form had a slightly better prediction rate: mean difference was 3.3 

for sex and 2.3% for identity factors. 
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Table 2. Maximum prediction accuracy obtained for each combination and factor. 

  2D 3D 

Landmark Config-

uration 
Fixed Fixed 

Fixed + Surface-

Sliders (Common 

Template) 

Fixed + Surface-

Sliders (One Tem-

plate per Dataset) 

Tracks 

Used (n) 
Factor Shape Form Shape Form Shape Form Shape Form 

All (669) 

Position 91.0% 91.6% 98.2% 98.2% 97.9% 97.9% - - 

Sex 76.8% 87.6% 84.5% 87.1% 86.2% 89.4% - - 

ID 57.0% 66.5% 74.3% 75.3% 80.7% 82.1% - - 

LF (161) 
Sex 89.4% 91.3% 96.9% 96.3% 98.1% 98.1% 98.8% 98.1% 

ID 77.6% 80.7% 90.7% 90.7% 93.2% 93.2% 93.8% 93.8% 

LH (169) 
Sex 82.6% 88.6% 88.6% 92.8% 91.6% 95.8% 92.2% 95.8% 

ID 80.2% 81.4% 89.2% 92.8% 95.2% 97.6% 97.6% 97.6% 

RF (171) 
Sex 95.9% 97.7% 98.8% 98.8% 100.0% 100.0% 100.0% 100.0% 

ID 85.4% 88.9% 94.2% 93.6% 94.7% 94.2% 95.3% 95.3% 

RH (170) 
Sex 80.0% 90.0% 90.0% 89.4% 92.9% 93.5% 92.9% 92.9% 

ID 84.7% 90.0% 94.1% 94.7% 96.5% 96.5% 96.5% 96.5% 

 

 

A 



Remote Sens. 2021, 13, 1090 11 of 16 
 

 

 

Figure 6. (A) Total accuracy for sex prediction. (B) Total accuracy for identity prediction. Numbers inside bars correspond 

to number of identification “steps” in the combination: 1 = all tracks used directly for prediction, 2 = foot position predic-

tion for entire track set combined to identity prediction with datasets already divided by foot position (i.e., two steps: 

identify foot position and identify identity in dataset of previously found foot position). 

4. Discussion 

During this experiment, we achieved the identification of individual features of adult 

cheetahs using different combinations of modalities (Figure 2). Firstly, differentiation of 

each foot was successfully accomplished. For 3D, about 98% of positions were correctly 

discriminated by LDA over the entire dataset. Such a high rate makes it possible to con-

sider using a second identification step based on datasets divided by the previously found 

foot positions. Predictions on sex and identity remained imprecise for combinations using 

the entire track set (Figure 6). This is certainly due to the difference in morphology be-

tween tracks. 

Two factors are involved: the foot position and the size of the pads, which depends 

on right-left symmetry and the length of the paw impression on the substrate. Cheetahs’ 

front paws are wider, and their hind paws are larger and longer. We can observe that PC1 

and PC2 separate right and left more efficiently than front and hind positions (Figure 4). 

This is also probably due to the impression quality of the track on the ground. When the 

substrate is too soft, we noticed that the tracks appeared to be longer because of the weight 

transfer on the leg when the animal is moving, making front tracks look like hind track. 

Furthermore, sexual dimorphism also generates statistical noise, as males are larger than 

females (Figure 5A, Marker et al. [26]) and the front feet of a male can be mistaken for the 

hind feet of a female if the track impression is not optimal. The distinction between front 

and hind tracks for females is also more visually subtle because the hind track elongation 

is less pronounced. 

Here, the quality of the used tracks was optimal due to the sampling conditions. In a 

natural environment, the tracks are prone to degrade quickly under the influence of many 

factors, such as humidity, substrate, the animal's gait or weather conditions [10]. During 

this study, the tracks were sampled in moistened and smoothed sand patches. Further-

more, sand aggregates falling inside the track were gently blown away. As this tool is 

intended to be used under real conditions, we recommend that future studies test differ-

ent substrates and gaits to verify their impact on predictions. Besides the prediction accu-

racy, these factors can induce variability in the segmentation of tracks and thus on the 

B 
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positioning of landmarks. Loose impressions in the substrate or deformed tracks due to 

cheetah movement present poorly defined contours, especially for lower part of the main 

pad. The segmentation, even colored by depth, is then subjected to operator bias. In our 

case, we reduced the possible influence of this bias by working with a single operator. 

To overcome the variability induced by the foot positions discussed above, we sepa-

rated the dataset into four subsets depending on foot positions. The accuracy increased, 

because these datasets highlighted the variability between tracks from the same foot of 

different individuals, thus the variability related to sex and identity. A sex sub-division of 

these datasets was performed, but the identity identification results decreased. This may 

be due to the small number of cheetahs remaining in these datasets. Furthermore, we can 

observe that the best results were obtained with fixed landmarks coupled with surface-

sliders (Figure 6). The influence of the number of templates used is relatively limited and 

could indicate that the number of surface-sliders is too high. We believe that with more 

individuals implemented in the dataset, the differences would be more significant. Curve-

sliders could also be placed on the edges of the tracks. Nevertheless, the edges are de-

pendent of the depth of the track, making them relatively variable between tracks. In the 

same way, as 3D models are polygonal meshes, the manual removal of tracks can induce 

additional noise from the irregularities of the remaining mesh faces. We believe that using 

curve-sliders would have led to more statistical noise than usable information and made 

the method more tedious. 

The graph of PCs 1 and 2 for the front right tracks (Figure 5B) shows that some indi-

viduals are more clearly segregated from others. This separation seems to correspond to 

the general size of the individuals. For example, AM3 is the largest cheetah in this dataset. 

His tracks appear as a cluster distinct from the others. It would be interesting to test the 

relationship between the form of the track and the body condition of the animal in further 

studies. Links between track form and morphological features such as body mass are be-

ing investigated for different species and for estimation of features of extinct animals [27]. 

This algorithm might allow a more precise estimation of the morphological parameters of 

cheetahs such as their overall size or weight. Such information would be valuable for sci-

entists in charge of setting up conservation strategies specifically for elusive carnivores 

[14,15]. Besides, AM4 is a smaller male, and PC1 and PC2 hardly distinguish it from fe-

males. 

In addition, it should be noted that for two of the three groups of cheetahs (AF1-AF2 

and AF3-AF4-AM4) from the same litter, the scores of related individuals are juxtaposed 

or superimposed. As well, the cluster formed by AM3, not related to any other cheetah, is 

well segregated from the others. To some extent, it is conceivable that the morphology of 

the track is a hereditary trait and might be evidence of the animal’s genetics. Thus, this 

method could potentially assess the relatedness between cheetahs. 

Differences among results using information from shape or form remain relatively 

small (Table 2, Figure 6). Therefore, size information seems to be of limited relevance for 

the morphometric study of adult cheetah tracks. Further analysis of size should include 

more individual cheetahs to assess the true impact of size on predictions, especially with 

different age groups. Size may have a significant influence when discriminating animal 

age. Methods implying size are already being used to estimate age and population age 

structure but sometimes remain imprecise [19,28]. Concerning the variation in the geom-

etry of the tracks according to age, the track being dependent on the anatomy of the leg 

and foot, as well as the gait, the ontogeny of the animal can have an effect on its shape. 

The gait changes for the domestic cat (Felis catus) as the animal's neuromuscular devel-

opment change from plantigrade or semi-plantigrade to digitigrade as an adult [29]. A 

similar development in cheetahs could influence the tracks left by animals of different age 

groups. This question could be answered by following different animals throughout their 

lives and comparing their tracks. However, geometric morphometry is a technique that 

eliminates the effects of size and only keeps the differences in pure geometry. Using only 
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shape data, the differences according to age could be minimized, therefore enabling indi-

vidual identification throughout the entire life of individuals. In addition, the use of the 

shape alone would make it possible to ignore the use of a scale, since GPA eliminates any 

effect of scale, position and orientation. Thus it simplifies fieldwork by removing the ne-

cessity of having a ruler. The user would then need only a camera, which is readily avail-

able thanks to the existence of smartphones. 

Using photography and 3D models to differentiate and identify species or individu-

als is the main goal of both FIT and the method explained in this paper. FIT has already 

proven its efficacy in discriminating individual features in various mammals [15]. How-

ever, some limitations might exist when it comes to tracks with limited geometrical vari-

ety. Indeed, morphometrics studies permit us to extract information related to the form of 

the track. As carnivores and rodents have complex tracks with digits and pads, the quan-

tity of information extracted is considerably larger and the identification is more likely to 

be successful [16,30,31]. In another way, other animal such as ungulate mammals tend to 

have simpler tracks from a geometrical point of view, and identification would then seem 

to be more challenging regarding the lack of mathematical information [10]. However, it 

would be possible to determine morphological features such as age and sex thanks to size 

variations and sexual dimorphism. Here, we believe that 3D would be of great interest: 

depth information of the 3D model could be used to estimate features such as the body 

mass. In order to achieve that, the relationship between the tracks and body features of 

studied species is discussed in various studies [27,28,30]. In this study, we did not have 

access to the weight of the animals. However, cheetahs are animals with a clear sexual 

dimorphism, the males being larger and heavier than the females [26]. The efficiency of 

sex identification allows us to consider the possibility of estimating the weight of an indi-

vidual based on its tracks. On the other hand, it is also possible that a significant variation 

in the weight of an individual can induce differences in the track and lead to misidentifi-

cations, as cheetahs are animals that can undergo significant weight variations due to their 

environment. In addition, substrate conditions such as composition or wetness can have 

an impact on the quality of the imprint and thus the geometry of the modelled tracks. 

Similarly, the tracks will be different depending on the gait of the animal. Tracks left dur-

ing a run are unusable because of their poor quality. To overcome these problems, we 

used controlled conditions (i.e., prepared sand patch) to limit as much as possible the dif-

ferences linked to the substrate. The cheetahs were always at a slow pace, following the 

operator in possession of the meat reward. At the end of the sampling, only good quality 

prints were kept. To overcome limitations related to track quality in the field, we recom-

mend collecting cheetah tracks near riverbeds or on sandy roads, with little or no stones, 

or after rainy episodes. Wet soils allow for a better impression of the foot in the substrate. 

In addition, animals are more likely to walk slowly near water, for example to come and 

drink. The probability of finding good quality tracks therefore tends to be higher. Never-

theless, tracks variation depending on substrate conditions and animal’s gait still needs to 

be investigated. 

The best identification algorithm allows 93.7% of individuals to be distinguished 

(Figure 6B). By way of comparison, the FIT approach with cheetahs also has a success rate 

of more than 90% [16]. However, FIT only uses the left hind tracks. The tool under devel-

opment in this study can identify individuals based on any cheetah track. The FIT algo-

rithm is also calibrated with more data (38 cheetahs sampled). A trial with as many indi-

viduals would be necessary to verify which technique is the most efficient. As LDA is a 

supervised classification method, a comparison with an unsupervised classification 

method would highlight the efficiency of geometric morphometrics studies to discrimi-

nate individual characteristics extracted from tracks. In addition, Table 2 shows that front 

tracks facilitate the separation of sex, while hind tracks facilitate the separation of individ-

uals (mean for sex predictions is 97.4% for front and 90.6% for hind tracks; mean for iden-

tity predictions is 90.8% for front and 92.6% for hind tracks). These observations are re-

lated to the sexual dimorphism of cheetah feet, as explained above. On the one hand, 
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males have more massive paws than females. The variability explained by the PC incor-

porated in the LDA explains this difference. On the other hand, hind tracks are more sim-

ilar between males and females. The variability thus emphasizes the individual differ-

ences. 

Another major difference from FIT is the use of 3D models versus purely 2D photos. 

The FIT technique is therefore comparatively easier to apply. Nevertheless, the differences 

between our 2D and 3D algorithms show better predictions with 3D data. The principal 

limitations of the 3D approaches lie in the processing time for model reconstruction and 

manual segmentation. These steps are time-consuming, especially for large datasets. 

However, the possibility of using cloud computing would overcome the first limitation 

by providing access to computers powerful enough to make 3D reconstruction virtually 

instantaneous. The recent development of LiDAR sensors integrated in smartphones is 

also very promising as they allow instantaneous 3D perception. For segmentation, an ap-

proach using machine learning should be able to separate the tracks from the substrate. It 

would need to first recognize tracks based on their geometry and depth information, and 

segment them from the model. This technique is being developed for 2.5D by FIT [32] with 

limited success. We believe that 3D would obtain better results. The positioning of land-

marks could also be automated by using the geometry of the track. The placement of land-

marks (type II) corresponds to the extrema curves of local structures that could be identi-

fied by trained algorithms [23]. Ultimately, track recognition software such as a citizen-

science smartphone application could be developed using only five track photos as input. 

The pictures could be geo-referenced thanks to the integrated GPS of the cellphone. The 

software would place the landmarks depending on the geometry of the track parts and 

allow for the identification of animals from different species, along with their sex and 

identity. It would provide accurate and valuable information to conservation scientists, 

inform tourists or local community members, and raise awareness about the status of 

identified animals. 

5. Conclusions 

To conclude, the use of close-range remote sensing and morphometry turns out to be 

effective at extracting mathematical data from tracks, which can then be translated into 

individual traits. With a greater volume of data and by automating the process, this tool 

could enable managers and conservationists of protected areas to obtain precise infor-

mation on the population status of elusive animals that are difficult to inventory in the 

conventional way, such as carnivores. This non-invasive approach decreases the intrusion 

on the study animals and is cost-effective. The method can potentially be extended to any 

species, including humans (for anti-poaching efforts), that present idiosyncratic foot mor-

phology. It would, therefore, have an impact on various fields such as conservation biol-

ogy, wildlife management, human–wildlife conflict and anti-poaching. 
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