Low mass stars seismology with WhoSGIAd and EGGMiMoSA

Martin Farnir

Université de Liège Prof. Marc-Antoine Dupret

$2^{\mbox{nd}}$ of December 2020

Study stars ?

- 🔶 🛛 Heavy elements factory,
 - Stellar ages ightarrow galactic history,

Exoplanetary masses, radius and ages,

Credits: NASA

Credits: NASA

Stellar models need improvement :

• Chemical composition : He in low mass stars (Lebreton & Goupil 2014), solar mixture reference (Grevesse & Noels 1993, Asplund et al. 2009);

Context

- Opacities;
- Transport processes : Chemical elements, angular momentum (Eggenberger et al. 2012);
- ..
- ightarrow Information about internal structure needed
- \rightarrow 'Classical' methods : mainly superficial information (T_{eff} , [Fe/H],..)

Asteroseimology in a Nutshell

Asteroseismology accurately probes stellar interiors

- Stellar structure may oscillate around an equilibrium state
- Stellar oscillation frequencies directly linked stellar internal structure
 - $\rightarrow c(r)$, internal rotation, chemical composition profiles,...
- Many successes : helioseismology, constraints about stellar structure, asteroseismology of red giants,...
- But also highlights models limitations

An example

Unexpectedly slow giants core rotation

Credits: Deheuvels et al. (2014)

Asteroseimology and data

- Very precise data
 - → CoRoT (Baglin et al. 2009), Kepler (Borucki et al. 2010), TESS (Ricker et al. 2014), PLATO (Rauer et al. 2014)
- And precise methods
 - WhoSGIAd: Main sequence stars (Farnir et al. 2019,2020)
 - ② EGGMiMoSA: Sub- and red-giants (Farnir et al. in prep.)

Part I: Main sequence

HR diagram

Part I: Main sequence & WhoSGIAd

Chaplin WJ, Miglio A. 2013. Annu. Rev. Astron. Astrophys. 51:353–92 Part I: Main sequence

Oscillations

Oscillation spectra

Acoustic glitches

- Oscillation spectrum \rightarrow smooth and glitch parts
- Glitches : due to sharp features in the stellar structure
- Provide local information

Acoustic glitches

- Oscillation spectrum \rightarrow smooth and glitch parts
- Glitches : due to sharp features in the stellar structure
- Provide local information

Acoustic glitches

- Oscillation spectrum \rightarrow smooth and glitch parts
- Glitches : due to sharp features in the stellar structure
- Provide local information

Acoustic glitches

- Oscillation spectrum \rightarrow smooth and glitch parts
- Glitches : due to sharp features in the stellar structure
- Provide local information

Glitch fitting

Several techniques: Monteiro et al. (2000), Basu et al. (2004), Mazumdar et al. (2014), Verma et al. (2014)

Limitations :

- Non linear formulation,
- Smooth part regarded as dispensable,
- Correlated indicators,
- Regularisation term needed.

$$f(n,l) = \underbrace{\sum_{k=0}^{4} A_{k,l} n^{k}}_{\text{K}=0} + \underbrace{\mathcal{A}_{He} \nu e^{-c_{2}\nu^{2}} \sin(4\pi\tau_{He}\nu + \phi_{He})}_{\text{CZ Glitch}} + \underbrace{\frac{\mathcal{A}_{CZ}}{\nu^{2}} \sin(4\pi\tau_{CZ}\nu + \phi_{CZ})}_{\text{CZ Glitch}} (1)$$

Verma et al. (2014)

WhoSGIAd - Whole Spectrum and Glitches Adjustment (Farnir et al. 2019,2020)

Analyses oscillations spectrum as a whole

 \Rightarrow proper correlations are derived;

Consider the frequencies vector space:

- ① Build orthonormal basis of functions (Gram-Schmidt);
- ② Project the frequencies on the basis → get independent coefficients;
- ③ Combine the coefficients into indicators as uncorrelated as possible;
- ④ Use the indicators to obtain best fit stellar models.

Seismic indicators

Smooth:

- $\Delta \rightarrow \sim \Delta \nu$, Mean density (Tassoul 1980, Ulrich 1986)
- $\hat{r}_{0l} \rightarrow \sim \text{Roxburgh \& Vorontsov (2003), Composition and evolution}$

Linear combination of ν

Seismic indicators

Glitch:

Part I: Main sequence

Results

Application to 16 Cygni

 $\begin{array}{rl} X_0: & 0.72 \pm 0.05 \\ Y_s: & 0.23 \pm 0.02 \end{array}$

Necessity of non-standard processes

Part I: Conclusions & Perspectives

Conclusions:

- Linear formulation:
 - \rightarrow Reduced correlations,
 - \rightarrow Fast computations,
 - \rightarrow Stringent constraints on the structure
- Constraint on Y_s
- Thorough adjustment of the 16 Cygni system (Farnir et al. 2020) \rightarrow show models shortcomings

Perspectives:

- Taking advantage of AIMS (Rendle et al. 2019), adjust the Kepler LEGACY sample (Lund et al. 2017),
- Automated treatment of PLATO data

Part II: Giants HR diagram

Part II: Giants & EGGMiMoSA

Chaplin WJ, Miglio A. 2013. Annu. Rev. Astron. Astrophys. 51:353–92

Mixed-modes

Credits: Grosjean et al. (2014)

Mixed-modes

A typical spectrum

2 characteristic quantities: (1) $\Delta \nu = \left(2 \int_0^R \frac{dr}{c}\right)^{-1} \sim (\bar{\rho})^{-1/2}$ (Tassoul 1980, Ulrich 1986) (2) $\Delta \pi_1 = 2\pi^2 \left(\int_g \frac{N}{r} dr\right)^{-1} \sim M_{\text{core}}$ (Tassoul 1980, Montalbàn et al. 2013)

- Modes of mixed p and g character
- → pressure and gravity cavities coupled via evanescent region
 - H-shell vs core-He burning (Bedding et al. 2011)
 - Core mass (Montal-
 - Core rotation (Beck et al. 2012)

Credits: Mosser et al. 2014

EGGMiMoSA:

Extracting Guesses about Giants via Mixed-Modes Spectrum Adjustment (Farnir et al. in prep.)

- Goals:
 - → Provide a seismic adjustment of mixed modes spectra (e.g. Hekker et al. 2018),
 - \rightarrow Define seismic indicators,
 - → Study the evolution of seismic indicators along a grid of models,
 - \rightarrow Future implementation in AIMS (Rendle et al. 2019)

Developed in collaboration with M.-A. Dupret and C. Pinçon

Asymptotic formulation coupling between p and g cavity:

 $an heta_p = q an heta_g$ (2) Shibahashi 1979, Unno et al. 1989,

where:

$$\theta_{p} = \pi \left[\frac{\nu}{\Delta \nu} - \epsilon_{p} \right]$$
(3)
$$\theta_{g} = \pi \left[\frac{1}{\nu \Delta \pi_{1}} - \epsilon_{g} + \frac{1}{2} \right]$$
(4)

Adapted from Mosser et al. 2015. See also Pinçon et al. 2019

5 parameters L-M minimisation: $\Delta \nu$, $\Delta \pi_1$, ϵ_p , ϵ_g , qNo further simplifications \Rightarrow adapted to red and subgiants

Local method \Rightarrow need of proper estimates

Formalism

 \rightarrow Guess within 10% of target value

Part II: Giants

Results

Evolved giant: g-dominated

$$\mathcal{N} = \frac{\Delta \nu}{\Delta \pi_1 \nu_{max}^2}$$
 Mosser et al. (2015)

Results

Giant: g-dominated

$$\mathcal{N}=3.8$$

- $M = 1 M_{\odot}$,
- $X_0 = 0.72$,
- $Z_0 = 0.015$

Results

$\mathcal{N} \simeq 1$: transition

 $\mathcal{N} = 1.01$

- $X_0 = 0.72$,
- $Z_0 = 0.015$

Part II: Giants

Results

Late subgiant: p-dominated

$$\mathcal{N} = 0.89$$

- $X_0 = 0.72$,
- $Z_0 = 0.015$

Results

Subgiant: p-dominated

 $\mathcal{N}=0.16$

- $X_0 = 0.72$,
- $Z_0 = 0.015$

Part II: Giants Re:

Results

Evolved giant: p-modes drift

 $\mathcal{N} = 29.6$

Evolved giant: p-modes drift and q

 $\mathcal{N}=29.6$

q may vary with ν (Cunha et al. 2019)

Results

$\mathcal{N} \simeq 1$: transition

N = 1.01

With bad guesses

With an improved guess

+ Mod - Fit 450 500 550 650 600 $\nu(\mu Hz)$

Evolution along subgiant and red giant phases

Evolution along subgiant and red giant phases

Evolution along subgiant and red giant phases

Credits: Pinçon et al. (2019)

Evolution along subgiant and red giant phases

Parameters

Credits: Mosser et al. (2017)

Part II: Conclusions

- Efficient adjustment along the red giant branch. $\mathcal{N} > 1$
 - \rightarrow May use $q(\nu)$ relation (Cunha et al. 2019)
 - \rightarrow Automated
- Good fit for subgiants $\mathcal{N} < 1$
 - \rightarrow But large χ^2 values
 - → Careful in defining indicators
- Difficult around $\mathcal{N} \sim 1$
 - \rightarrow Modified parameters guesses

Short term:

- Define seismic indicators representative of stellar structure (as in Hekker et al. 2018),
- Comparison with asymptotic indicators,
- Comparison with observed indicators (e.g. Mosser et al. 2015),
- Coupling with AIMS (Rendle et al. 2019),
- Model Kepler stars

Long term:

- Include second order in θ_p for subgiants,
- Improve parameters guesses around $\mathcal{N} \simeq 1$,
- $q(\nu)$ relation for evolved giants (Cunha et al. 2019),
- Adjust for the signature of glitches:
 - \rightarrow Helium glitch: WhoSGIAd (Farnir et al. 2019,2020)
 - $\rightarrow\,$ Buoyancy glitch: see Miglio et al. 2008, Mosser et al. 2015, Cunha et al. 2015

Appendices

Appendices

Pulsating Stars

- Solar-like $(P \sim 2 15min),$
- γ Dor ($P \sim 0.5 - 3 days$),
- SPB
 (P ∼ 0.8 − 3days),
- Red giants and subgiants $(P \sim 3-30 days)$,

. . .

Credits: Christensen-Dalsgaard J.

WhoSGIAd basis Elements

We selected the basis functions:

- Smooth
 - $\begin{array}{cccc} \textbf{1} & p_0(n) &= 1 \\ \textbf{2} & p_1(n) &= n \\ \textbf{3} & p_2(n) &= n^2 \end{array}$

An Illustrative Example

Convection Zone Glitches

Mixing processes badly constrained

0.450.40 \rightarrow Convection zone glitch : radiative -▷ 0.35 convective regions transition \Rightarrow Transition No Over 0.30localisation Ad Over Rad Over 0.25 ± 0.68 0.69 0.700.710.720.73

 r/R_*

 $\mathcal{N} > 1$: g-dominated $ightarrow heta_p$ varies slowly

$$(2) \Leftrightarrow \theta_g = \phi(\theta_p) + n_g \pi$$
$$= \pi \left[\frac{1}{\nu \Delta \pi_1} - \epsilon_g + \frac{1}{2} \right]$$
$$\Rightarrow P_i = \left\{ \phi_i / \pi + \epsilon_g + n_{g,i} - 1/2 \right\} \Delta \pi_1$$

with $\phi\left(\theta_{p}\right)\equiv\phi_{i}=\arctan\left[q^{-1}\tan\theta_{p}\right]$

Period spacing fitting

To be rid of ϵ_g we fit:

$$\Delta P_i = P_{i+1} - P_i = \{\overbrace{(n_{g,i+1} - n_{g,i})}^1 + (\phi_{i+1} - \phi_i) / \pi\} \Delta \pi_1 \quad (5)$$

Levenberg-Marquardt adjustment of ΔP_i with $\Delta \nu$, $\Delta \pi_1$, ϵ_p and q as parameters.

To find ϵ_g , we have to minimise $\chi^2 = \sum_i \left(\frac{P_{\text{obs},i} - P_{\text{th},i}}{\sigma_i}\right)^2$ Taking advantage of the previous step, we get:

$$P_{\text{th,i}} = P_1 + \sum_{j=1}^{i-1} \Delta P_j$$

with $P_1=\phi_1/\pi+\epsilon_g+n_{g,1}-1/2$

We have to solve $\frac{\partial\chi^2}{\partial\epsilon_g}=0$ This yields:

$$\epsilon_g = \frac{\sum\limits_i \left[P_{\text{obs},i} - \sum\limits_{j=1}^{i-1} \Delta P_j \right] / \sigma_i}{\Delta \pi_1 \sum\limits_i 1 / \sigma_i^2} - (n_{g,1} + \phi_1 / \pi - 1/2)$$

Parameters estimation

Mosser et al. 2015 define:

$$\zeta = \left[1 + \frac{q}{\mathcal{N}} \frac{1}{q^2 \cos^2 \theta_p + \sin^2 \theta_p}\right]^{-1} \tag{6}$$

such that $\frac{dP}{dn} = \zeta \Delta \pi_1$

• q: Estimated from ratio $Z = \frac{\zeta_{max}}{\zeta_{min}}$

•
$$\Delta \pi_1$$
: $\Delta \pi_{1,0} \simeq \max(\Delta P_{obs})$

 $\rightarrow \Delta \pi_1 \simeq \Delta \pi_{1,0} / \zeta_{\text{max}}$

Δν, ε_p: radial modes fitting with WhoSGIAd (Farnir et al. 2019,2020)

Parameters estimation

Local method \Rightarrow need of proper estimates

Parameters estimation

Local method \Rightarrow need of proper estimates

Parameters estimation

Local method \Rightarrow need of proper estimates

Evolution along subgiant and red giant phases

Parameters evolution

Evolution along subgiant and red giant phases

Stellar Modelling

