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ABSTRACT 

Neuroscience has generated a number of recent advances in the search for the neural correlates 

of consciousness, but these have yet to find valuable real-world applications. 

Electroencephalography under anesthesia provides a powerful experimental setup to identify 

electrophysiological signatures of altered states of consciousness, as well as a testbed for 

developing systems for automatic diagnosis and prognosis of awareness in clinical settings. In 

this work, we use deep convolutional neural networks to automatically differentiate sub-

anesthetic states and depths of anesthesia, solely from one second of raw EEG signal. Our results 

with leave-one-participant-out-cross-validation show that behavioral measures, such as the 

Ramsay score, can be used to learn generalizable neural networks that reliably predict levels of 

unconsciousness in unseen transitional anesthetic states, as well as in unseen experimental 

setups and behaviors. Our findings highlight the potential of deep learning to detect progressive 

changes in anesthetic-induced unconsciousness with higher granularity than behavioral or 

pharmacological markers. This work has broader significance for identifying generalized 

patterns of brain activity that index states of consciousness. 

CLINICAL RELEVANCE 

In the United States alone, over 100,000 people receive general anesthesia every day, from 

which up to 1% is affected by unintended intraoperative awareness [1]. Despite this, brain-

based monitoring of consciousness is not common in the clinic, and has had mixed success [2]. 

Given this context, our aim is to develop and explore an automated deep learning model that 

accurately predicts and interprets the depth and quality of anesthesia from the raw EEG signal.
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I. Introduction 

The science of consciousness has received growing interest over the past decades, as brain 

imaging, neuroscience and computer science have generated new empirical tools and 

computational methods. One of the research questions arising from this problem, pertains to the 

electrophysiological signatures of the full neural correlates of consciousness. The investigation 

of these signatures can contribute not only to our theoretical understanding, but also to 

biomedicine, where automated detection of these signatures can improve monitoring of depth of 

anesthesia (DOA), and inform better diagnosis and prognosis for patients with disorders of 

consciousness. To this end, electroencephalography (EEG) during anesthesia provides a valuable 

experimental paradigm to tackle this research question, while also being a viable clinical tool, 

which is simple, convenient and widely accessible in hospitals. 

One of the challenges encountered in applying EEG metrics of DOA, is that they require expert 

analysis and interpretation, while the currently available partial or fully automated DOA systems 

have not produced reliable results [2]. Here, deep learning with artificial neural networks offers 

a promising methodology in terms of its predictive accuracy, computational efficiency, 

automation and generalizability. Recent advances in EEG classification using deep learning, have 

demonstrated its ability to produce state-of-the-art performance [3, 4]. In our own work, we 

have highlighted the potential of deep convolutional neural networks to discover and utilize 

temporal features in raw EEG, for classifying anesthetic states [5]. 

In this paper, we demonstrate the power of deep learning to generalize and estimate levels of 

unconsciousness in unseen sub-anesthetic states and experimental contexts. In these contexts, 

unconsciousness due to propofol anesthesia is determined by either behavioral or 

pharmacological measures, the former of which is primarily used in clinical settings. However, 

as neither behavioral nor pharmacological measures can yet provide inconvertible evidence for 

consciousness in the brain [6, 7], we test the reliability of our neural network model in both 

experimental contexts. Our results show that reliable models can be learnt to predict behavioral 

states of anesthesia, and to generate robust predictions in unseen data. 

II. Methods 

Our methodology focused on the investigation of two datasets acquired and reported in previous 

studies [7, 8]. The studies were approved by the Ethics Committee of the Faculty of Medicine of 

the University of Liege [8] and the Cambridgeshire 2 Regional Ethics Committee [7] respectively, 

with written informed consent from all participants. In both studies, propofol was administered 

to healthy participants in order to induce two progressively deeper levels of sedation. In the first 

study, these levels were defined by a behavioral response of each participant according to a 

standardized clinical scoring scale. In the second study, specific propofol concentrations were 

targeted in each state, irrespective of the participant’s behavioral response. Our aim here was 
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not to find the optimal network parameters for each given task, but rather to have an 

exploration and evaluation framework for the model’s generalization capabilities. 

A. EEG DATASETS 

1) DATASET 1 

Dataset 1 acquisition is described in detail in [8]. Briefly, fifteen minutes of spontaneous high-

density EEG (256- channel EGI Hydrocel GSN) was recorded from 9 participants (mean age 22 ± 

2 y, 4 males) during anesthesia, at 4 states: Wakefulness, Sedation, Loss of Consciousness (LOC) 

and Recovery. Each state was determined based upon reaching and sustaining the desired 

Ramsay score, assessed twice by a verbal command. The desired Ramsay score for Wakefulness 

and Recovery was 2 (clear response to command), Ramsay 3 for Sedation (clear but slow 

response) and Ramsay 6 for LOC (no response). Throughout the experiment, computer-

controlled intravenous infusion was used to obtain constant effect-site concentrations of 

propofol (alongside the pharmacokinetic Marsh model). Arterial blood samples were also taken 

immediately before and after each anesthetic state, for subsequent determination of propofol 

levels (average concentrations were 1.91 ± 0.52 μg/ml for Sedation, and 3.87 ± 1.39 μg/ml for 

LOC). The experimental design is depicted in Fig. 1. 

2) DATASET 2 

Dataset 2 acquisition is described in detail in [7]. Briefly, seven minutes of spontaneous high-

density EEG (128- channel EGI Hydrocel GSN) was recorded from 20 participants (mean age = 

30.85, SD = 10.98, 9 males) during anesthesia, at 4 different states: Wakefulness, Mild Sedation, 

Moderate Sedation and Recovery. For each state, a desired plasma concentration was targeted 

and controlled by a computerized syringe driver that determined and maintained the required 

infusion rate of propofol (Marsh model). The targeted plasma level for Mild Sedation was 0.6 

μg/ml (relaxed but still responsive) and 1.2 μg/ml for Moderate Sedation. For Recovery, EEG 

measurements were taken 20 minutes after cessation of infusion, to ensure that propofol 

concentrations would approach zero (based on pharmacokinetic simulation). Blood samples 

were taken at the beginning and end of each state, in order to measure propofol levels and 

characterize inter-individual variability, as well as to confirm similarity to target concentrations. 

The experimental design is depicted in Fig. 2. 

After each resting state period, a simple behavioral task was performed that involved a fast 

discrimination (button press) between two possible auditory stimuli. Each participant’s hit rates 

(percentage of correct responses) and reaction times were recorded for further analysis. Based 

on binomial modelling of their hit rates, two subgroups of 13 and 7 participants were identified 

and characterized as Responsive and Drowsy, which reflected the behavioral impairment of the 

participant-specific effect of the drug. 

B. EEG PRE-PROCESSING 

Minimal pre-processing steps were applied to the original EEG recordings, in order to preserve 

the information in the signal and enable the neural network to extract relevant features. Twenty 

channels were selected from both datasets, based on the 10-20 system, namely: Fp1, Fp2, F7, F3, 
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Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, Oz, and O2. The data were filtered from 0.5 to 

40 Hz (windowed FIR design), down-sampled from 1000 Hz to 100 Hz, and rereferenced to the 

average. No artifacts were rejected, ensuring that the pre-processing required no manual 

intervention and could potentially be deployed in real-time in a clinical setting. The above pre-

processing steps were implemented using the MNE-python library. 

The input to the deep learning model described below were 1-second non-overlapping epochs of 

the raw EEG signal. Within each epoch, data were normalized using the robust standardization 

implemented in Scikit-Learn. 

C. CONVOLUTIONAL NEURAL NETWORK 

The model used in this work employed a novel 3D convolutional neural network design, which 

innovated upon our previous model in [5]. In this design, the spatial configuration of the EEG 

channels is transformed into a 2D grid that preserves the spatial continuity and structure of the 

channels, resulting in a 3D representation per sample (5 x 5 x 100) (similar approaches found in 

[9, 10]). This approach enables us to exploit the potential of the convolution operation 

simultaneous in time and space. It also has the prospective of better model interpretability, by 

preserving the spatio-temporal relations understood in clinical EEG. Finally, and equally 

importantly, converting the data from channel space to a 2D grid enables a model design that is 

independent of the specific EEG montage. 

The precise architecture of the convolutional neural network can be seen in Fig. 3. All activation 

functions are ReLU units, except for the output neuron which is linear. 

Figure 1. The experimental design of Dataset 1. Anesthetic induction was guided by the desired Ramsay 

score on each of the 4 states. 

 

D. MODEL TRAINING 

The model was trained using the data from the 1st experimental design, in a regression-on-

Ramsay-score optimization problem. Behavioral measures are better suited for the given 

ground-truth, in contrast to pharmacokinetic models, which are unable to associate targeted 

propofol infusion rates with specific states and levels of unconsciousness (already known from 

clinical practice). We experimented with the inclusion of an increasing number of states during 

training, from the two prominent states of Wakefulness and LOC, to the sub-anesthetic Sedation, 

and finally Recovery, which introduced more and more subtle changes. 

The evaluation of the model was based on a Leave-One- Participant-Out cross validation, as a 

way to test the generalizability to unseen participants and to avoid overfitting (often missed in 

EEG studies). Each input sample was labeled with the Ramsay score of its corresponding state. 
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The model was trained using the mean-squared-error (MSE) loss and evaluated with the mean-

absolute-error (MAE) for its performance. Weight initialization was done with the Xavier normal 

initializer implemented in Keras. A batch size of 100 was used, and 10 runs of the whole dataset, 

which ensured performance convergence. All experiments were implemented in Python 3 using 

Keras/Tensorflow and run on a CUDA NVIDIA GPU (Tesla P100). 

 

Figure 2. The experimental design of Dataset 2. Anesthetic induction was guided by the drug 

concentrations targeted on each of the 4 states. 

 

Figure 3. The 3D convolutional Neural Network Architecture. 

 

III. Results 

A. MODEL EVALUATION 

The results for Dataset 1 are summarized in Table I, combining three experiments with 

increasing number of states included in model training. Training with regression on Ramsay 

scores revealed an estimation bias, which was affected by a number of factors, such as the 

number of samples in each state, the given states (ground-truth), and the assumption of the 

Ramsay scale to represent changes in levels of consciousness linearly. Notably, Sedation was 

significantly overestimated (MAE: 1.12) in the 2-state case (as test state), while LOC was 

significantly underestimated (MAE: 1.07) in the 4-state case, when looking at the average 

Ramsay scores (3.45 for Sedation and 5.08 for LOC, respectively). Importantly, when trained 

only on 3 states (Wakefulness-Sedation-LOC), the model reached an overall MAE of 0.56, with 

the most balanced per-state error (Fig. 4). Hence, this optimal model was used for all 

subsequent testing and evaluation. 

Table I. Exp 1. Regression On Ramsay Score 

States in T raining 
Mean Absolute Error 
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Per State Total 
Wakefulness,LOC (0.36>1.12>0.67>0.38) 0.62 
Wakefulness ,Sedation,LOC (0.31>0.58>0.87>0.47) 0.56 
Wakefulnes,Sedation,LOCRecovery (0.23>0.59>1.07>0.25) 0.54 
Unseen test states are underlined. Optimal model is highlighted in bold. 

Figure 4. Ramsay score predictions for the unseen test subjects of Exp. Design 1 (average of 9 subjects). 

Within-subject predictions are robust and consistent in time, when trained in the 3 states highlighted by 

black boxes. 

 

B. MODEL PREDICTIONS ON TRANSITIONAL STATES 

We acquired EEG recordings during inter-state transitional periods from 3 participants in the 1st 

experimental design - namely during WS (Wakefulness to Sedation), SL (Sedation to LOC) and 

LR (LOC to Recovery). With these data, we were able to test our model’s generalizability to both 

stable and unstable sub-anesthetic states of unconsciousness. Ramsay score estimations (Fig. 5) 

showed a clear increasing trend within WS and SL (and up to the end phase of LOC), followed by 

a rapid decrease during LR, accurately tracking the anesthetic induction protocol during the 

experiment. 

C. MODEL PREDICTIONS ON EXPERIMENTAL DESIGN 2 

In order to further show the generalizability of our model trained with the 3 states from Dataset 

1, we used Dataset 2 as a test set. Again, predicted Ramsay scores were consistent in levels and 

increased over time, showing an average range of 2 to 4, in agreement with behavioral reports 

[7]. As per the original study, we divided participants in Dataset 2 based on the two subgroups - 

Responsive and Drowsy - defined solely by the anesthetic-induced change in their individual 

behavioral states. The model was able to predict the Ramsay scores corresponding to these 

behavioral states (Fig. 6). This was confirmed statistically by entering the average Ramsay score 

for each participant and each state, into a mixed ANOVA model (fitrm/ranova, MATLAB) with 

one non-repeated measure (Participant Group - Responsive or Drowsy) and one repeated 

measure (Level of Sedation - Wakefulness, Mild Sedation, Moderate Sedation, Recovery). We 

found a significant interaction between participant group and sedation level (F(3) = 8.8, p = 

0.0007) in the predicted Ramsay scores. This interaction effect was driven by a significant effect 

of group during the Moderate Sedation level (p = 0.00006). Taken together, these effects 

highlight that the model generalized to correctly predict Ramsay scores in experimental design 

2. 
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Figure 5. Ramsay score predictions of the 3-state model for all transitional states of Exp. Design 1 (median 

subject and average of 3 subjects). Trained states are highlighted by black boxes. The changes in levels of 

consciousness are consistent over time, in agreement with the anesthetic paradigm. 

 

Figure 6. Ramsay score predictions (average) of the two subgroups from Exp. Design 2. Group 1 

(Responsive) and Group 2 (Drowsy) predictions reveal the behavioral traits found in the original study. 

 

IV. Discussion 

The challenge we have addressed in this work is relevant to both research into consciousness 

and clinical practice of depth of anesthesia monitoring, with various techniques developed in 

order to tackle each (e.g. PCI, Algorithmic Complexity, SWAS). Here, we have shown the ability of 

deep learning to accurately detect progressive, fine-grained changes in levels of 

unconsciousness, straight from one second of raw EEG. 

The inter-individual variability of the pharmacodynamics impact of propofol, which has been 

previously reported [7], provides further motivation for the development of more accurate 

metrics that can be passively and non-invasively obtained during anesthesia. Here, we have 
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shown the ability of deep learning to learn EEG signatures that track levels of consciousness 

(almost) linearly, corresponding to the Ramsay scale. 

Additionally, we have shown that our model generalized accurately to novel, unseen states. This 

is highlighted by the model predictions in Dataset 2, where behavioral unconsciousness was 

determined by auditory discrimination rather than the Ramsay scale. It is also highlighted in the 

3- state model trained with Dataset 1, when tested on the unseen Recovery state. Though 

behaviorally equivalent to Wakefulness (Ramsay score 2), our model slightly overestimated the 

level of unconsciousness (see Fig. 4), which in turn revealed the EEG signature of residual 

propofol during Recovery. This was also evidenced by the blood samples taken at the beginning 

of Recovery in Dataset 2 (average concentration of 0.29 μg/ml, for 20 participants). 

Hence in summary, our model was able to generalize to unseen participants (with leave-one-

participant-out cross-validation), unseen transitional states, and even to unseen experimental 

setups (by generalization from Dataset 1 to Dataset 2). Future work should focus on extending 

generalization to novel clinical anesthetics. This would serve as an important demonstration of 

the ability of EEG to track behavioral consciousness (connected consciousness), and maybe even 

intraoperative awareness (disconnected consciousness, as revealed from retrospective reports 

after certain anesthetics, such as ketamine [11]), in a broad set of clinically relevant use cases. 
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