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ABSTRACT 

Hyperspectral imaging has been widely used for different kinds of applications and many 

chemometric tools have been developed to help identifying chemical compounds. However, most 

of those tools rely on factorial decomposition techniques that can be challenging for large data sets 

and/or in the presence of minor compounds. The present study proposes a pixel-based identification 

(PBI) approach that allows readily identifying spectral signatures in Raman hyperspectral imaging 

data. This strategy is based on the identification of essential spectral pixels (ESP), which can be found 

by convex hull calculation. As the corresponding set of spectra is largely reduced and encompasses 

the purest spectral signatures, direct database matching and identification can be reliably and 

rapidly performed. The efficiency of PBI was evaluated on both known and unknown samples, 
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considering genuine and falsified pharmaceutical tablets. We showed that it is possible to analyze a 

wide variety of pharmaceutical formulations of increasing complexity (from 5 to 0.1% (w/w) of 

polymorphic impurity detection) for medium (150 x 150 pixels) and big (1000 x 1000 pixels) map sizes 

in less than 2 min. Moreover, in the case of falsified medicines, it is demonstrated that the proposed 

approach allows the identification of all compounds, found in very different proportions and, 

sometimes, in trace amounts. Furthermore, the relevant spectral signatures for which no match is 

found in the reference database can be identified at a later stage and the nature of the corresponding 

compounds further investigated. Overall, the provided results show that Raman hyperspectral 

imaging combined with PBI enables rapid and reliable spectral identification of complex 

pharmaceutical formulations. 

 

GRAPHICAL ABSTRACT 

 

HIGHLIGHTS 

• The pixel-based approach allowed to detect low-dose compound in less than 2 min. 

• The elucidation of 1,000,000 spectra was possible with only 0.1% of the data. 

• The ESP approach allowed to keep all relevant spectral information. 

 

1. Introduction 

Hyperspectral chemical imaging techniques are now widely approved as efficient analytical tools 

providing meaningful highquality data relatively rapidly. Depending on the spectroscopy used, both 

organic and inorganic compounds can be analyzed, opening a large range of applications [1-5]. 

Combined with appropriate data analysis, both chemical and spatial information is provided. 

In the pharmaceutical field, analysis of tablets by Raman hyperspectral imaging is widely used for 

quality control purposes and has now been included in the general chapters of the European 

Pharmacopeia [6]. Indeed, it can be used for many applications as for the detection of impurities such 

as polymorphic forms [7], the evaluation of tablet homogeneity [8-10] or to analyze falsified 

medicines [11-13]. However, data analysis can be a challenge because pharmaceutical tablets are 

commonly or generally wide objects to observe, providing a huge amount of data to analyze. 



Furthermore, the useful Raman information can be hindered by the fluorescence of some 

compounds (e.g. cellulose derivatives). In case of spectral unmixing requirement, the most 

appropriated algorithm to use is the multivariate curve resolution - alternating least squares (MCR-

ALS) [14-16]. It is based on the assumption that the signal can be described as a weighted sum of the 

pure spectra. Nevertheless, this strategy requires a lot of user input, is very time consuming and 

hardly applicable for the analysis of large data. Indeed, it is well known that factorial decomposition 

methods can be difficult to apply on big data matrices, as well as in the presence of many 

constituents, and results may suffer from rotational ambiguity [17-19]. In case of falsified medicines, 

the use of sequential MCR-ALS [14,16,22] allowed to elucidate the composition of falsified medicines 

[11,23]. However, it requires a lot of computational time and, because of the rotational ambiguity, 

some spectra are hardly resolved. 

Moreover, even when the composition is known, the MCR resolution can also be challenging. First 

of all, some low-variance sources can be diluted in the process of unmixing and can hardly be 

resolved without information on the expected sample composition [20,21]. Some minor compounds 

can also be present in a few pixels and missed in the MCR process. Finally, chemicals are sometimes 

mixed so intimately that the mathematical unmixing of their spectra is impossible and should be 

considered as a single MCR component. 

However, the sample composition is generally known or partially known in the pharmaceutical 

field, and spectral identification of the raw materials can be attempted readily. Some studies have 

proposed strategies for database matching purpose using the correlation coefficient or some 

adaptations [24]. Others have used decision trees [25] or deep learning [26]. In all cases, many 

parameters have to be optimised and results can be rather different depending on the nature of the 

data and the pre-processing. For these reasons, the most commonly used database matching tool 

remains the spectral correlation coefficient [27] because it provides a good compromise between 

implementation, easiness and reliability of the results. 

Regarding the compound identification for samples having a complex composition, a new strategy 

must be worked out to bypass the limitation associated to approaches based on factorial 

decomposition of the data matrix. One way can be to step back to the analysis of individual pixel. 

This, if it could be performed somehow exhaustively, i.e. for all pixels, would consist of the ultimate 

and most efficient method for database matching [28]. 



However, this is not always possible in practice because of the number of pixels measured. One 

has thus to rely on pixel selection and the analysis of a reduced data set of pixels. To select subsets 

of pixels, different approaches that rely on different priors exist. The easiest way is random selection 

(RS) of a predetermined proportion of pixels, but of course, the risk is to miss information, in 

particular e.g. information that would be only observed at a few pixels. Others would select pixels 

with a criterion in mind as, for instance, the Kennard-Stone (KS) [29] algorithm that aims to select a 

subset of samples which provides uniform coverage over the data set. Recently, it was also proposed 

to select Essential Spectral Pixels (ESP) based on archetype analysis. This algorithm allows getting 

free from the pre-stated issues by reducing drastically the number of pixels while preserving the most 

linearly dissimilar spectral information [30,31]. 

In this context, the objective of the present study is to develop a pixel-based identification (PBI) 

strategy that relies on the identification of ESP to elucidate chemical composition of Raman 

hyperspectral images of complex pharmaceutical formulations. We will first apply PBI on multi-

component samples of different map size in presence of impurity at different concentrations in order 

to mimic samples having minor compounds. We will then evaluate the performance of our approach 

by the composition elucidation of falsified chloroquine tablets seized during the COVID-19 pandemic 

[23]. For the sake of comparison, the results obtained with RS and KS pixel selection will be provided. 

The last point will focus on the usefulness of the PBI approach to detect all relevant spectral 

signatures, including the ones that are not referenced in the spectral database. 

 

2. Materials and methods 

2.1. Samples 

2.1.1. RAW MATERIALS 

2.1.1.1. Carbamazepine polymorphs. Carbamazepine formulations were made of 

carbamazepine form III (TCI, Belgium), carbamazepine form I and a fixed 

proportion of excipients (see Table S1): microcrystalline cellulose (Sigma-Aldrich, 

Belgium) (MCC), mannitol (Sigma-Aldrich, Belgium), sodium croscarmellose 

(Fagron, Belgium), aerosil (Certa, Belgium) and magnesium stearate (Certa, 

Belgium). The carbamazepine form I (triclinic) was obtained following the 

protocol described in Ref. [32]: carbamazepine form III is dehydrated during 3h at 



65 C and then heated during 40 min at 175 C. The raw spectra of the two 

carbamazepine forms are presented in Fig. 1-A. They were acquired with the same 

Raman acquisition parameters than the ones used for the implementation of the 

in-house database (c.f. 2.2.1), which explains the nice resolved and smooth 

spectra. The characteristic peaks were compared with the literature [33]. Two 

levels of polymorphic contamination were realized: 1 and 5% (w/w). The mixtures 

were homogenized in a mortar with a pestle. Powders were then pressed with a 

manual hydraulic press (Specac, United Kingdom) using 12 mm dies, with 5-ton 

compression to obtain 200 mg tablets. 

2.1.1.2. Piroxicam polymorphs. Piroxicam formulations were made of piroxicam form 

β (TCI, Belgium) and piroxicam form α2. A fixed proportion of lactose (Fagron, 

Belgium) was added to the mixture. Piroxicam form α2 was obtained following 

the protocol described in Ref. [7], by dissolving 1.5 g of piroxicam form β in 380 

mL of ethanol at 60 C until complete dissolution. The solution was leK for cooling 

overnight and filtered using Büchner apparatus. The powder obtained was dried 

under vacuum for one hour. The raw spectra of the two piroxicam forms are 

shown in Fig.1-B. The characteristic peaks were compared with a reference to 

check the effectiveness of the transformation [7]. Five levels of concentration of 

polymorph impurity were obtained (0.1, 0.5, 1, 1.5 and 2% (w/w)). The mixtures 

were homogenized in a mortar with a pestle. Powders were then pressed with a 

manual hydraulic press (Specac, United Kingdom) using 12 mm dies, with 5-ton 

compression to obtain 200 mg tablets. 

2.1.1.3. Falsified medicines. The falsified chloroquine samples were seized by local 

authorities during the COVID-19 pandemic. They are described in details in the study 

[23]. The analyzed data are Raman hyperspectral images obtained from the authors. 

 

 

 

 

 



 

2.2. Hyperspectral imaging techniques 

2.2.1. RAMAN MICROSCOPY 

Raman hyperspectral imaging analyses of the samples were performed with a Labram HR 

Evolution (Horiba scientific) equipped with an EMCCD detector (1600 X 200-pixel sensor) (Andor 

Technology Ltd.), a Leica 50x Fluotar LWD objective and a 785 nm laser with a power of 45 mW at 

sample (XTRA II single frequency diode laser, Toptica Photonics AG). The spectra were collected with 

the LabSpec 6 (Horiba Scientific) soKware. 

For the carbamazepine samples a 300 gr/mm grating fixed at 1200 cm-1 (spectral range of 463-1853 

cm-1) was used to perform the mappings with two accumulations of 1 s. The confocal slit-hole was 

fixed at 200 mm. The whole tablet surface was analyzed with a 150 x 150 pixels mapping and a step 

size of 87 mm (total map size of ~13 X 13 mm2). The data analysis time was 12.5 h. 

For the piroxicam samples, a 600 gr/mm grating fixed at 1300 cm-1 (spectral range of 900-1700 cm-

1) was used to perform the mappings with a single acquisition of 0.05 s using the SWIFT™ mode. The 

confocal slit-hole was fixed at 200 mm. The middle of the tablet surface was mapped with a step size 

of 5.5 μm over a 5.5 X 5.5 mm2, providing a 1000 x 1000 pixels mapping. The data analysis time was 

22 h. 

Regarding the falsified medicines tablets, they were glued on a microscope slide and their surface 

was milled using a Leica EM Rapid milling system equipped with a tungsten carbide miller (Leica 

Microsystems GmbH) before Raman mapping. The acquisition parameters were the same as the ones 

Figure 1. Raman spectra of the raw materials. A) Spectra of the two polymorphic forms of carbamazepine. B) Spectra of the 

two polymorphic forms of piroxicam. 

 



used for the carbamazepine samples. A 150 x 150 pixels mapping (step size of ~50 μm) was done for 

each sample. The data analysis time was 12.5 h. 

 

2.3. Data analysis 

The aim of the study being to identify chemical composition from database matching of the 

spectral information corresponding to selected pixels. Different approaches were investigated as 

illustrated in Fig. 2. Details are provided in the following sub-sections. 

2.3.1. SOFTWARE AND TOOLBOX 

The proposed algorithm was developed on a workstation with Intel® Core™ i7-7820X CPU @ 3.60 

GHz, 8 cores with 128 Go of RAM. The Essential Spectral Pixels algorithm used is described in Ghaffari 

et al. [30]. For some key steps, the Matlab Parallel Computing Toolbox™ was used to improve the 

speed of algorithms. All computations were carried out with Matlab R2019b (The Mathworks) with 

the PLS Toolbox (version 8.6.2, Eigenvector Research Inc). 

2.3.2. PREPROCESSING 

The first step was to remove spikes from the original data with a one-dimensional median filter 

(using the medfilt1 Matlab function), with a degree 5 polynomial function. Then, a noise reduction 

was done by a Savitzky & Golay smoothing (polynomial order: 1, window size: 15). The baseline was 

finally removed by an Automatic Whittaker filter (λ 3.104, p = 1.10-5). 

For the identification of database missing spectra, the ESP were preprocessed by a Savitzky-Golay 

first derivative (polynomial order: 2, window size: 15) followed by a unit area normalization and mean 

centering. 

2.3.3. DATABASE MATCHING 

The database used is an in-house database comprising 169 Raman spectra of active 

pharmaceutical ingredients and excipients. Because the Raman shiK scale was different for database 

and sample spectra, a homemade function was developed to do linear interpolation of spectral data 

to ensure a good correspondence between them. The database matching was performed with the 

correlation coefficient without supplementary preprocessing. Values inferior to 0.5 were not reported 

in the tables. 

2.3.4. PIXELS SELECTION ALGORITHM 



2.3.4.1. Random selection. Random selection of pixels was performed to benchmark 

the proposed algorithms. For that purpose, κ random indices were generated n 

times, with κ corresponding to the number of ESP. 

2.3.4.2. Kennard-Stone randomized. The KS [29] algorithm was evaluated because of 

its geometric properties. Indeed, the KS algorithm starts randomly choosing a 

point in the data cloud. It calculates the Euclidean distances (ED) between this 

point and its neighbors. The data point that has the highest ED is then selected. It 

continues iteratively until selecting the desired percentage or number of samples, 

allowing getting a uniform coverage over the data set. Thus, the idea was to 

generate κ random indices, to get random direction of data. Then, the KS was 

applied on this subspace, keeping 60% of the data. The selection was repeated n 

times in order to select κ pixels, keeping in mind that multiple selection of the 

same pixel should count as one. For simplicity, the algorithm will be denoted KSr 

in the manuscript. 

2.3.4.3. Essential spectral pixels. The ESP [31] approach enables to select the pixels 

that correspond to the most linearly dissimilar spectra. Geometrically, these 

spectra correspond to observations (points) that are found on the envelope of the 

 

Figure 2. Workflow of the proposed strategy. The first step is to unfold the measured hyperspectral data cube. 

Then three different approaches were evaluated to select pixels which were subsequently matched with the in-

house database. For further investigation, spectral pixels for which correlation coefficient values > 0.90 are 

gathered and can be used to do data-reconstruction by a least-squares approach. 

 

 



data cloud and, specifically, at its vertices, where the purest information is found. 

The ESPs can be obtained by calculating the convex hull of the data set in the row-

space of the data set. This set of κ spectral pixels correspond to a highly reduced 

data set containing the most linearly relevant spectral features. We refer to Ref. 

[30] for more detailed explanations. 

2.3.5. PIXEL-BASED ANALYSIS OF KNOWN SAMPLES 

The approach taken for PBI of carbamazepine was the following. The three pixel-selection 

algorithms were applied on the data set corresponding to a Raman image covering the whole tablet 

surface and results were compared. The results were then compared to the ones obtained by 

matching all the measured spectra with the database. 

The approach taken for the PBI of piroxicam analysis was slightly different because of the 

consequent data size. For the sake of comparison, a unique patch of 200 x 200 pixels was first 

evaluated to check the difference in results compared to the carbamazepine study, keeping the same 

order of magnitude data size. Then, the entire Raman image was composed of 200 x 200 pixels non-

overlapping squares, resulting in 25 patches. Each pixel selection algorithm was subsequently 

applied for each strategy and results were compared. 

2.3.6. PIXEL-BASED ANALYSIS OF UNKNOWN SAMPLE 

Unknown samples corresponding to pharmaceutical tablets of complex composition were also 

investigated. In this case, the number of compounds was higher including potentially minor ones. 

The calculation was thus performed using a region of 40 x 40 pixels, in order to have the same order 

of magnitude as the carbamazepine study. The computation of ESP on unknown samples was done 

with a relatively high number of components to ensure that no spectral variability was missed. The 

ESP obtained for all the regions were matched with the database. 

2.3.7. IDENTIFICATION OF UNKNOWN COMPOUNDS 

The computation of the convex hull being dependent of the selected number of components, 

some ESP could potentially be redundant or noisy. Thus, each of them would not necessarily 

receive a significant match. Finally, because database matching is dependent of the in-house 

database, some spectra showing clear spectral features would remain unidentified. In order to select 

those spectra, an outlier detection approach was performed on the data set containing ESP that did 

not correspond to a significant match applying PBI (correlation coefficient < 0.5). For this purpose, 

principal component analysis (PCA) was applied and the samples with a high value of Q2 residuals 



were identified. They correspond to those having clear specific spectral features. To check the validity 

of this approach, the reference spectra of three compounds were removed from the database and it 

was checked whether it was possible to identify these signatures using the proposed approach. 

 

3. Results and discussion 

3.1. Carbamazepine formulation 

The first case was evaluated on two tablets with different proportions of carbamazepine 

polymorphic impurity (form I): 5% (w/ w) and 1% (w/w). The aim was to evaluate the relevance of a 

PBI to elucidate the entire tablet composition. Three different strategies for pixel selection were 

applied. The corresponding spectra were matched with the database and the significance was 

assessed using the correlation coefficient. For the sake of comparison, the correlation coefficient was 

also computed for each of the 22,500 spectra of the entire map (“Full” analysis). As one can see in 

Table 1, the results obtained with the pixels selected by ESP and with the “Full” approach are very 

close for all compounds of the Level 1. For the Level 2, the RS was not able to find the CBZ (form III) 

meanwhile both ESP and KSr strategy elucidate correctly the composition. 

For both level of concentration, the results obtained with the RS and KSr pixel selection methods had 

worst correlation coefficient values. It can be explained by the inherent geometric properties of the 

convex hull, which will keep the edges of the data cloud in a PCA subspace, allowing having the most 

linearly dissimilar spectra. On the contrary, the KSr approach will select the most different spectra in 

the initial data space ignoring spectral redundancy and spectral correlation, inducing less relevant 

results. The results were obtained in 50 s, using only 8% of the initial data for each level, which is 

much faster than the database matching with all spectra (3 min in this case) and requires less 

computing memory. 

 

Table 1 - Comparison of the database matching results of the carbamazepine impurity detection. All results are 

correlation coefficient values. 

 

Abbreviations: CBZ: carbamazepine; MCC: microcrystalline cellulose; MgSt: magnesium stearate; NF: not found. 



 

3.2. Application to pixel selection for piroxicam beta impurity detection 

AKer evaluating the different pixel selection strategies on medium mapping size, the second study 

was focused on the evaluation of the presented strategies for large amount of data (1000 x 1000 pixels 

maps). The analysis was performed on five tablets contaminated with different amounts of piroxicam 

β impurity. The major challenge of this study was to detect the impurity at low levels ranging from 2 

to 0.1% (w/w). Because the map size was big, working with the whole map was not possible. That is 

why a region of 200 x 200 pixels was randomly chosen (patch) and compared to 25 patches of 200 x 

200 pixels (grid). The results are provided in Table 2. 

 

Table 2 - Comparison of the piroxicam impurity detection for high dimensionality data for the three different pixel-

selection strategies. Each of PBI were tested by using one patch and the entire grid. 

 

Abbreviation: NF: not found. 

 

The elucidation was possible for all levels, until 0.1% (w/w) of impurity contamination by selecting 

one patch. In each case, the obtained correlation coefficient was lower for the random approach. 

Because the amount of impurity was smaller than the previous case of study, the use of equivalent 

size patch seemed to be more hazardous. Indeed, the results were significantly improved with the 

grid analysis. In addition, the analysis time between one patch and the entire grid, was 14 s vs 2 min 

respectively, which is still an acceptable computation time regarding the size of data. Consequently, 

it seems that the most appropriate approach for bigger size of data analysis should be the use ESP 

approach combined with a grid of patches, especially when the impurity level is very low (0.1% 



(w/w)). For more details about the results obtained for each PBI approach, PCA representations are 

given in the supplementary materials (Fig. S1). 

The best matching spectra of each compound were then gathered and a least square projection 

was performed to obtain the repartition of each compound along the tablet surface. As it can be seen 

in Fig. 3, the different chemical compounds were correctly identified. Additionally, if the aim was to 

go further in the chemical repartition evaluation, the ESP selected by the proposed strategy could be 

used as initial estimates for spectral unmixing algorithms. 

Compared to the other pixel-selection approaches evaluated in this study, the ESP approach has 

shown the best results in terms of correlation coefficients but also the smallest analysis time. Indeed, 

the spectral identification was possible in a maximum of 50 s for the classical data size and 2 min for 

the big map size by using the grid. Moreover, the correlation coefficients gathered in the end were 

close to those obtained by the entire database matching strategy, which is much more time-

consuming. 

As a global conclusion for the analysis of known samples, the ESP strategy have shown a high 

ability to elucidate from 5 to 0.1% (w/w) of polymorphic impurity for both classical and huge amount 

of data. Thanks to the proposed strategy, it was possible to detect few contaminating pixels among 

a million of pixels. The strategy can be considered as validated. Consequently, it will be applied to 

elucidate the composition of unknown pharmaceutical tablets. 

3.3. Investigation of unknown pharmaceutical tablet composition 

The principal difficulty when analysing falsified medicines consists in the elucidation of a sample 

composition that is totally unknown. The Raman hyperspectral images analyzed here were acquired 

on falsified chloroquine phosphate tablet samples seized during the covid-19 pandemic during a 

previous study [23]. The PBI approach was applied on these samples to elucidate their chemical 

composition. The data size of these samples were similar to the carbamazepine ones (150 x 150 

pixels). However, because the number of chemical compounds was unknown, the computation of 

the convex hull was tricky. That is why it has been decided to analyze them using the grid strategy 

used in the piroxicam study, but with a smaller patch size of 40 x 40 pixels. The results are provided 

in Table 3. 

As it can be seen, it is possible to elucidate each sample with high correlation coefficient. The seven 

samples are different in terms of chemical composition and number of compounds. As noticed 

above, the computation of the convex hull was tricky because, depending on the sample, it would be 



possible to miss some of them. The obtained results were very close to the ones obtained in the 

previous study [16] but in much less time. Indeed, because the MCR-ALS is a factorial method, it 

requires many computation steps to obtain the results. Thus, the improvement in terms of speed of 

the analysis was at least two-fold, 3 h for the MCR-ALS and 1 min for the proposed PBI. In addition, 

the applied strategy requiring fewer inputs may be automated. 

A least squares projection was done using the best matching ESPs to obtain the distribution maps 

of the identified compounds. The proposed strategy was able to detect the chloramphenicol 

localised in a unique pixel, represented in blue in Fig. 4B-C. This observation is very interesting 

because it means that, with a simple pixel selection strategy, it was possible to detect a single pixel 

amongst 22,500 pixels, without any unmixing step easing considerably the interpretation and the 

repeatability of the results. 

AKer evaluating the samples composition by database matching, the second objective was to 

evaluate if it was possible to detect unknown chemicals that are not yet in the database. Indeed, in 

the context of falsified medicine analysis, it is important to provide the most exhaustive results to 

evaluate the potential hazard of the medicine. To mimic the absence of chemical compounds in the 

database, three of them were removed (titanium dioxide, sodium bicarbonate and sodium sulfate) 

when doing the database matching. As explained in the material and method part, aKer removing all 

the matched ESP, the remaining ones were gathered and projected onto a new principal component 

space. This procedure was done to detect potential outliers present in the remaining ESP. For that 

purpose, the Q2 residual distance was observed, giving information about how well the sample are 

modelled by the PCA. 

 

  



Figure 3. Representation of the results of the least squares prediction with the best matched ESP for 0.5% of 

impurity. A) Projection of the different chemical compounds along the map. B) Best matched ESP corresponding 

to the ones who served to do the least square projection. The different spectra are those for the lactose 

monohydrate, piroxicam a2 and piroxicam β in green, pink and yellow respectively. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the Web version of this article.) 

 

 

 

Table 3 - Results of the seven samples spectral identification. The number given in brackets are the correlation 

coefficient obtained for the database matching. 

 

Abbreviation: MCC: microcrystalline cellulose; CaCO3: calcium carbonate; TiO2: titanium dioxide; MgSt: magnesium 

stearate; CaF(POG)H: calcium phosphate. 

 

As it can be seen on Fig. 5-A and Fig. 5-B, the outlying points represented in red, are the most well-

resolved spectral signatures, providing more specific information than the ones in blue (Fig. 5-C). It is 

worth noting that, in ideal case, the ESP are those that either are pure spectra or correspond to the most 

linearly combined pixels. However, because the computation of the ESP was done with a relatively high 

number of components, the obtained ESP are noisier which explains in this case why pure spectra can 

be easily detected as outliers. 

Hence, the spectra in red were gathered, the reference spectra were reinjected into the database and 

the database matching was reiterated. As expected, the results were unequivocal, the strategy 



Therefore, two major conclusions can be drawn. First, the use of PBI based on the selection of ESP 

allowed elucidating the entire composition of the unknown samples without any ambiguity. Second, 

thanks to this strategy, it was possible to find information that was not included in the in-house 

database by using an outlier detection strategy. The next step would be to keep all of the unknown 

detected spectral signatures in order to, build an “unknown component database” or to check the 

identity in another database at a later stage. Indeed, even if the compound did not get a database 

matching, it can be interesting to keep it because it could represent a falsified-manufacturer 

signature that could be useful in eventual forensic analyses. 

 

  

successfully found the three chemical compounds (Fig. 6) with high correlation coefficient (>0.80). 

Interestingly that the titanium dioxide spectrum was not a pure one, but the Raman scattering at 600 cm-

1 is a well-known large and intense band for this compound. An unmixing step could be therefore useful 

to obtain a pure spectrum. 

 

 

Figure 4. Results of the least squares projection on initial data. A) Initial map. B) Representation of 3 compounds 

elucidated by the strategy. C) Representation of the different pure spectra obtained by the strategy. The spectrum in 

red, corresponds to the spectrum of metronidazole. The spectrum in green, corresponds to the paracetamol. The 

spectrum in blue, corresponds to the chloramphenicol. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the Web version of this article.) 

 



Figure 5. Results of the PCA done on the ESPs which had correlation coefficient <0.5. A) Representation of the ESP 

in the PCA space, with the correspondent distances Q2res and T2 Hotelling. B) Plot of the spectra which had Q2res 

values superior to the critical value obtained with alpha = 0.05. C) Plot of the spectra which had Q2res values 

inferior to the critical value obtained with alpha = 0.05. 

 

 

Figure 6. Database matching of the three removed compounds. A) Spectrum matching of the sodium sulfate. B) 

Spectrum of the titanium dioxide (TiO2). C) Spectrum matching of the sodium bicarbonate. 

 

 

4. Conclusion 

The proposed study highlighted the potential of using essential pixel approach for chemical 

identification purposes. It has been shown that, for known samples, both tiny and huge amount of 

data can be analyzed without the need of the entire map, by selecting only a few percentage of pixels 

(8% of the initial data). However, when the analyte is present in very low amounts (0.1% (w/w)), it is 

better evaluating the ESP on the entire map by means of a grid. One major interest of the proposed 



strategies is that the computational time did not exceed 2 min and provided the entire elucidation of 

the chemical compounds. 

In addition, it has been shown that the analysis of unknown samples was possible. Indeed, thanks 

to the inherent properties of the algorithm, the spectra gathered in the end correspond to the most 

interesting ones (both pure and mixed spectra). On one side, the database matching was possible 

with good correlation coefficients. On the other side, thanks to the use of a simple statistical 

calculation, the Q2 residuals, unknown spectral signatures were identified. Thanks to the high 

correlation coefficient, it was possible to perform a classical least square to obtain the repartition of 

the chemicals over the tablet surface. This methodology could thus be applicable for seized falsified 

medicines analysis. 

Overall,  we highlighted the applicability of the propose methodology to other hyperspectral 

imaging techniques or other kind of matrices. Indeed, thanks to the inherent properties of the 

essential spectral pixel algorithm combined with the proposed methodology, the only requirement 

is to have at least one pure pixel by component. In case of mixed spectra or non-linear pixels, the ESP 

could be used as a pre-processing step, to reduce data dimensionality, which has been successfully 

demonstrated in other study [30] and could be easily implemented. Indeed, further investigation 

could be done by initializing the MCR-ALS with the obtained ESP. 
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