

Leloup Emeline, Paquay Célia, Pironet Thierry

Lunch talk

A capacitated Vehicle Routing Problem with pickups, time windows and packing constraints in the context of city logistics

6 Pickup vs delivery

Applications

_unch talk

unch talk

Parameters

Parameters

 $[A_4; B_4]; S_4(4)$

 $(1)[A_1; B_1]; S_1$

3 $[A_3; B_3]; S_3$

Parameters

Aim

Packing

- Each box is completely inside the vehicle transporting it
- No overlap between boxes in a same vehicle
- Stability of boxes (i.e. the box is on the ground or its four corners are supported by other boxes)
- Rotations
- Fragility (in the sense of non stackability) of boxes

Final packing

- Split pickup vs no split pickup
- Reloading vs no reloading
- Homogeneous vs heterogeneous vehicles
- Time windows vs no time window
- Selection of boxes vs all boxes
- Selection of customers vs all customers

Summary

- Homogeneous fleet of vehicles
- A vehicle leaving the depot ends up at the depot
- Travel duration does not exceed the maximal travel duration
- Trips occurs within the different time-windows
- Each customer is visited by exactly one vehicle
- All customers' boxes are loaded
- All vehicles' capacities are respected
- Each box is completely inside the vehicle transporting it
- No overlap between boxes in a same vehicle
- Stability of boxes (i.e. the box is on the ground or its four corners are supported by other boxes)
- Rotations
- Fragility (in the sens of non stackability) of boxes

/ 13

HEC LIÈ

- Combination of two difficult problems
- Heuristics

Authors	Year	Homogeneous fleet	Time Window	Positionning LIFO	Orientation		Stability						
						Stacking	4 sides	Area	Reloading	Heuristics	Exact algorithm	Static	Dynamic
Junqueira et al.	2013	x			х	x		x			x	x	
Gendreau et al.	2006	x		x	x	x		x		Construction of a packing solution for a single vehicle (order of customers is given)		x	
Moura & Oliveira	2009	x	x	x	x	x	X + horizontal		x	Hierarchical method: routes are build and then packing		x	
Bortfeld et al.	2013	×	x	x	x	x		x		x		x	
Tao & Wang	2015	x		x	x	x		x		x		x	
Pace et al.	2015		х	×	?	x	?	?		x		X	
Emeline		x	x	x	x	X (fragile)	x			x		x	x

Based on the article by Pollaris, Braekers, Caris, Janssens, and Limbourg (2015)

AACSB

🕨 🖣 HEC, LIÈGE

Dynamic i.e. last moment changes:

- the dimensions of the boxes vary from what was mentioned
- the weights of the boxes vary from what was mentioned
- a customer cancels (can change the packing solution)
- some boxes are missing (can change the packing solution) or some boxes are added
- a new client arrives during the day
- time windows of one or several customers are modified (boxes not ready,...)
- there is unexpected traffic jam

Pickup vs delivery

- Limited impact on the deterministic and static part of the problem
- Allow to change the plan in the dynamic version of the problem

bulky home application

ideas are welcome (enterprises, etc)

Thanks for your attention!

p Emeline, Paquay Célia, Pi