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Simulation-based inference
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a) estimate  

(e.g., MLE)

b) construct
con�dence sets

c) estimate the posterior 

(or sample from it)

Problem statement(s)
Start with

a simulator that lets you generate  samples  (for parameters

 of our choice),

observed data ,

a prior .

Then,

N x ∼ p(x ∣θ )i i i

θi

x ∼ p(x ∣θ )obs obs true

p(θ)

θtrue
p(θ∣x )obs
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Amortizing Bayes
The Bayes rule can be rewritten as

where  is the likelihood-to-evidence ratio.

p(θ∣x) = = r(x∣θ)p(θ) ≈ (x∣θ)p(θ),
p(x)

p(x∣θ)p(θ)
r̂

r(x∣θ) =
p(x)
p(x∣θ)
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The likelihood ratio trick

x, θ ∼ p(x, θ)

x, θ ∼ p(x)p(θ)
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The solution  found after training approximates the optimal classi�er

Therefore,

d

d(x, θ) ≈ d (x, θ) = .∗

p(x, θ) + p(x)p(θ)
p(x, θ)

r(x∣θ) = = ≈ = (x∣θ).
p(x)
p(x∣θ)

p(x)p(θ)
p(x, θ)

1 − d(x, θ)
d(x, θ)

r̂
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Inference
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Likelihood-free MCMC

MCMC samplers require the evaluation of the posterior ratios:

Extensions with HMC is possible since .

p(θ ∣x)t−1

p(θ ∣x)new =
p(x∣θ )p(θ )/p(x)t−1 t−1

p(x∣θ )p(θ )/p(x)new new

= .
r(x∣θ )t−1

r(x∣θ )new

p(θ )t−1

p(θ )new

∇ p(x∣θ) =θ r(x∣θ)
∇ r(x∣θ)θ

―
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https://blog.stata.com/2016/11/15/introduction-to-bayesian-statistics-part-2-mcmc-and-the-metropolis-hastings-algorithm/


How to assess that the
approximate posterior is
not wrong?

Diagnostics
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Coverage

For every  in a validation set, compute the  credible

interval based on .

The fraction of samples for which  is contained within the interval

corresponds to the empirical coverage probability.

If the empirical coverage is larger that the nominal coverage probaiblity 

, then the ratio estimator  passes the diagnostic.

x, θ ∼ p(x, θ) 1 − α

(θ∣x) = (x∣θ)p(θ)p̂ r̂

θ

1 − α r̂
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Convergence towards the nominal value

If the approximation  is correct, then the posterior  should concentrate

around  as the number of observations

for , increases.

r̂ (θ∣X )p̂

θ∗

X = {x , ...,x },1 n

x ∼ p(x∣θ )i
∗
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ROC AUC score

The ratio estimator  is only exact when samples  from the reweighted

marginal model  cannot be distinguished from samples  from a

speci�c likelihood .

Therefore, the predictive ROC AUC performance of a classi�er should be close to 

 if the ratio is correct.

(x∣θ)r̂ x

p(x) (x∣θ)r̂ x

p(x∣θ)

0.5
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Interaction of Pal 5 with two Interaction of Pal 5 with two ……

Constraining dark matter with
stellar streams

.]

―
Image credits: C. Bickel/Science; D. Erkal. 13 / 16

https://www.youtube.com/watch?v=uQVv_Sfxx5E
https://www.youtube.com/channel/UCnGt3T--gflcoOttV3kqTYg
https://t.co/U6KPgLBdpz?amp=1


Coverage    Convergence to       ROC AUC scoreθ∗
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Preliminary results for GD-1 suggest a preference for CDM over WDM.
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In summary
Much of modern science is based on simulators making precise predictions,
but in which inference is challenging.

Machine learning enables powerful inference methods, such as ratio
estimation based on neural networks.

Amortized estimators are well suited for diagnosing the quality of the
resulting posteriors.
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Thanks!
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The end.
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