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Parameters 0 s Simulator —_—

Latent 2z

Observables x

Prediction:

Well-motivated mechanistic, causal model

Simulator can generate samples = ~ p(z|6)

<

Inference:

Interactions between low-level components lead to
challenging inverse problems

Likelihood p(z|6) = /dz p(x, z|@) is intractable



Problem statement(s)

Start with

e asimulator that lets you generate N samples z; ~ p(x;|0;) (for parameters
@; of our choice),

e observed data Lobs ™~ p(iBobs ‘Otrue)’

e apriorp(6).

Then,
a) estimate 0, ue b) construct c) estimate the posterior
(e.g., MLE) confidence sets (6| Tops)
(or sample from it)
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Amortizing Bayes

The Bayes rule can be rewritten as

p(x|60)p(9)

p(flz) = o(2)

wherer(z|6) = % is the likelihood-to-evidence ratio.
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The likelihood ratio trick

z,0 ~ p(z,0) Simulator

Q
o 0

00000
Q000

classifier

z,0 ~ p(x)p(0) Simulator




The solution d found after training approximates the optimal classifier

p(z,0)
(z,0) +p(z)p(8)

d(z,0) ~d*(x,0) =
p

Therefore,

aloy_ PO _ p@0)

p(z)  p(z)p(f) 1-d(z,0)
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Inference

Parameters @

Observables

_e

Simulator

|
> T >

Observed data

Approximate
likelihood
ratio

Tobs

Prior

arg min L]g] — 7#(2|f) ———>
g

1. Simulation

Run simulator and save data

2. Machine Learning

Train NN classifier, interpret as
likelihood ratio estimator

3. Inference

Amortized: cheap
to repeat for new data



Likelihood-free MCMC

MCMC samplers require the evaluation of the posterior ratios:

P(2|Onew )P (Onew) /P()

P (Onew| )

p(0:1]x)  p(]f

Extensions with HMC is possible since Vyp(z|0) =

( )p(0:-1)/p()
_ 7(Z|Onew) P(Onew)
r(z]0i-1) p(Oi-1)

r(z|0)

Diensity MCMC Reration
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im m h m ow

Step 1:

Step 2:

Step 3:
Step 4:

Image credits: Chuck Huber, 2016.

Postarior(B,..) Beta(1,1,0.306) x Binomial(10,4, 0.306)
Posterior(6,., ) Beta(1,1,0.429) x Binomial(10.4, 0.429)

F{Bow s Bs) = 0.834

Acceptance probability (8., B) = min{r(B...,8.:), 1} = min{0.834,1} = 0834
Draw u ~ Uniform(0,1) = 0.617

H U<QB.Bu) — If 0.617<0834 Then B = By = 0.306
Otherwise 8 = 6., = 0.429
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https://blog.stata.com/2016/11/15/introduction-to-bayesian-statistics-part-2-mcmc-and-the-metropolis-hastings-algorithm/

Diagnostics

How to assess that the
approximate posterior is
not wrong?




Coverage
e Foreveryz, 0 ~ p(x,0)inavalidation set,compute the 1 — a credible
interval based on p (0|x) = 7 (x|0)p(0).

e The fraction of samples for which @ is contained within the interval
corresponds to the empirical coverage probability.

e Ifthe empirical coverageis larger that the nominal coverage probaiblity
1 — «, then the ratio estimator 7 passes the diagnostic.
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Convergence towards the nominal value

If the approximation 7 is correct, then the posterior p (6| X) should concentrate
around 6* as the number of observations

X ={x1,...,2,},

forz; ~ p(x|0*),increases.
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ROC AUC score

The ratio estimator 7 (z|6) is only exact when samples x from the reweighted
marginal model p(x) 7 (|6) cannot be distinguished from samples x from a
specific likelihood p(x|0).

Therefore, the predictive ROC AUC performance of a classifier should be close to
0.5 if the ratio is correct.
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stellar streams o

Pal5 was discovered in 2001 as
the first thin stream formed from

- * a globular cluster. Its current orbit
) takes it far over the galactic center.

Globular clusters
These hives typically hold

100,000 stars or fewer and give
rise to long, thin streams.

o |

. Unpg e sgeam . °
_ &s@ Interaction 6f'Pal5Withtwo ... @
— Gap - N/ AN
Stream > subhaloes
- Impact 1
10 10 20
e-scaled angle along stream (de
. o
, " --"'- : L
- - 3 h“'“.“‘:l-' .."" T
GD1 stream Rl it
Discovered in 2006, GD1 is ' 3 Milky Way
the longest known thin stream, Wiy s . "
stretching across more than half the -’AE,?. i e
_northern sky. It contains a gap that could 4 g _L‘&nf;""'::‘.. o v G LA
image cRAithe:seanef aarkmatter collision 5 T T 13/16

500 million years ago.


https://www.youtube.com/watch?v=uQVv_Sfxx5E
https://www.youtube.com/channel/UCnGt3T--gflcoOttV3kqTYg
https://t.co/U6KPgLBdpz?amp=1
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Receiver operating curve diagnostic
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Posterior density

@

Full GD-1 posterior

Marginalized GD-1 posterior -0
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Preliminary results for GD-1 suggest a preference for CDM over WDM.
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In summary

e Much of modern science is based on simulators making precise predictions,
but in which inference is challenging.

e Machine learning enables powerful inference methods, such as ratio
estimation based on neural networks.

e Amortized estimators are well suited for diagnosing the quality of the
resulting posteriors.
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Thanks!
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The end.
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