
Early prediction of electric power system blackouts by temporal machine learning

P. Geurts and L. Wehenkel
Department of Electrical Engineering - University of Liège

Institut Montefiore - Sart-Tilman B28, B-4000 Liège, Belgium
Email : lwh@montefiore.ulg.ac.be - Fax : Int. +32 4 366 2984

Paper accepted for presentation and publication in the proceedings of the ICML98/AAAI98 Workshop on
‘‘Predicting the future: AI Approaches to time series analysis’’
Madison, July 24-26th, 1998

Abstract

This paper discusses the application of machine learning to the
design of power system blackout prediction criteria, using a
large data base of random power system scenarios generated
by Monte-Carlo simulation. Each scenario is described by
temporal variables and sequences of events describing the
dynamics of the system as it might be observed from real-
time measurements. The aim is to exploit the data base in
order to derive as simple as possible rules which would allow
to detect an incipient blackout early enough to prevent or
mitigate it. We propose a novel “temporal tree induction”
algorithm in order to exploit temporal attributes and reach a
compromise between degree of anticipation and selectivity of
detection rules. Tests are carried out on a data base related to
voltage collapse of an existing large scale power system.

Introduction
This paper presents a new method for the induction of tem-
poral detection rules from large amounts of mixed symbolic
and numerical data. The data base is composed of a large
number of dynamic scenarios of a system characterized by
two types of attributes : variable step-size numeric time-
series and time-tagged sequences of events. Each scenario is
classified with respect to a target symbolic class, and the aim
of machine learning is to build a detection rule which would
be able to detect as early as possible the scenarios of the tar-
get class. The devised method builds up detection rules in the
form of temporal trees, using a two-stage greedy approach :
first a large tree is grown, then this tree is pruned in order to
avoid overfitting. The method is tested on a fairly large data
base corresponding to the detection of power system voltage
collapses from real-time information.

The paper is organized as follows. Next section describes
the physical problem and discusses its peculiarities from the
machine learning point of view. The following two sections
describe in detail the devised algorithms for temporal tree
induction and the results obtained in our empirical case study.
The last sections of the paper discuss further research and
provide a preliminary comparison with related work.

Problem statement
We start by describing the physical problem considered and
then discuss its peculiarities from the machine learning point
of view. We end by stating the objective of the temporal tree
induction method proposed.

The physical problem
Electric power systems are among the most complex man
made systems on the world. One of the main problems in
power systems is to arbitrate between economy and security.
Simply stated, the security of a power system denotes its ca-
pability to provide continuous operation in spite of the large
diversity of disturbances (variations in consumer demand,
internal failures, external perturbations like lightning strikes,
storms �����). Security is handled in practice through two com-
plementary strategies : preventive control, which is carried
out by human operators in order to maintain the system in a
state where it can withstand disturbances; emergency control,
which acts automatically after a disturbance has occurred in
order to minimize its consequences. Since disturbances are
intrinsically random, preventive control will essentially aim
at balancing the economic cost of normal operation with
the risk (expected severity) of instability/insecurity. On the
other hand, emergency control essentially aims at reducing
the severity of instabilities. It is worth noticing that due to
increasing competitive pressure in the electric industry, and
thanks to the possibilities offered by modern communication
and computing technologies, the trend in power systems is
to rely more strongly on emergency control.

One of the main problems in the design of emergency con-
trols is to define appropriate criteria which are able to predict
in real-time whether the system is in the process of loosing
stability or not. This implies the selection of appropriate real-
time measurements (among a multitude of possible ones),
filtering out the useful information contained in them (e.g.
separating short term transients from the relevant trends), and
combining these in order to formulate detection rules. Notice
that since emergency controls are supposed to operate under
extremely stringent but very seldomly observed conditions,
their design process essentially relies on numerical simula-

tion of the power system behavior under various conditions
likely to drive it towards an instability. Thanks to the quickly
growing amount of available computing power it is now pos-
sible to use Monte-Carlo sampling techniques in order to
screen very large samples (several thousand) of large scale
simulations, yielding large data bases of simulation results.
These data can then be exploited using automatic learning
(machine learning, statistical techniques, neural networks)
and other data mining tools (visualization, sorting, subset
selection...) in order to extract synthetic information.

The framework combining automatic learning with
Monte-Carlo simulations in power system planning and oper-
ation is very general, and has been applied to various design,
prediction and monitoring problems. We refer the interested
reader to (Wehenkel 1997) for an overview and to (Wehenkel
1998) for a deeper discussion of this topic. In this paper we
focus on emergency control and more specifically on the way
to exploit temporal attributes by machine learning, in order
to automatically build prediction rules which are at the same
time selective and anticipative enough.

While we use the above power system emergency state de-
tection problem in our experiments, we notice that there are
many other practical applications which present similar char-
acteristics, such as, for example, monitoring of other kinds
of large scale system (telecommunication networks, indus-
trial process control �����) or monitoring patients in various
medical applications.

The early detection problem
From the machine learning point of view, our problem is
intuitively formulated as follows (to save space, we will not
discuss this from the formal point of view) :

Universe of scenarios. We are given a universe
�

of ob-
jects (denoted by �) representing dynamic system trajectories
(scenarios), which are on the one hand described by a certain
number of temporal candidate attributes, on the other hand
classified into one of two possible classes �������	��

������� .

We denote by ����������������� � 1 ������! � a candidate attribute (a
function defined on

�#"%$
0 ����� �'& $

), and by �������(�*)*� its value.
We consider the two following types of temporal attributes :

Numerical : �������(��)*�	�,+ - ;

Event subsets : �������(��)*�/.103254 , where 0/264 is a finite set of
possible events.

Detection rules. Denoting by 7 ���(�8�9� the attribute vector��� 1 ���(�8�9�*� ����� �(:����(�8�9��� , and by 7 ; 0 <=<=< >@? ���(����� its restriction to
the interval

$
0 �����)�A , we consider a detection rule for class �

as a functionB
��������� :

�C"D$
0 ����� �E& $GF
�������� � 1 �

which has the following propertyH �(����IJ� � � H)	� $ 0 ����� �E& $
:$ 7K; 0 <=<=< >@? ���(�����L�M7 ; 0 <=<=< >@? ����I��8�9��AON $ B ���(��)*�L�
B
����I���)*��A � � 2 �

Thus, a detection rule classifies an object at time) on the
basis of 7	; 0 <=<=< >@? ���(����� , or, in other words, it depends only on
present and past attributes values.

Monotonicity. We also assume that if an object is classified
into class � at some time, it will remain so for all later times
(monotonicity). In other words,B

���(�*)*�L�M� P H)QISRE) :

B
���(��)QI��T�U� � � 3 �

Thus, for an object � , we will denote by)*V
����� the first time
it is detectedB

���(��) V �������L�U� and
H)�ISWE) V ����� :

B
���(��)QI��T�X� � � 4 �

Machine learning problem. Given a learning set Y[Z\�
]� 1 ����� �_^`�a. �
(a sample of b objects) of known class, and

whose attributes values are observed for some finite period
of time

$
0 �����)�cd�����eA , the objective is to automatically derive

a detection rule which would perform as well as possible in
detecting objects from

�
. Clearly, a good detection rule is

a rule which will detect only those objects which actually
belong to class � , and among good rules, the better ones are
those having the smallest detection times.

Comments
Note that in our formulation time is continuous. In the prac-
tical application discussed in this paper, numerical attributes
are represented as piecewise linear functions of time, with
step sizes varying from one object to another and possibly
from one attribute to another. On the other hand, event subset
attributes are explicitly represented as lists of pairs

����0 1 ��) 1 � ����� ��03fQ��)Qf������ � 5 �
where) � Wg) �@h 1 and 0 � .g03264 denotes the subset of events
which happen at time) � .

Note also that in our application it is preferable to min-
imize the number of different attributes used in a detection
rule, in order to improve comprehensibility so as to facilitate
validation of results by human experts, and also to reduce
the cost of actual implementation. Given the large scale of
power systems, the number of potential candidate attributes
is however very large. Thus, the machine learning method
should be able to select among the proposed candidate at-
tributes a small number of relevant ones, if these exist, or
indicate that there are no such “ideal” measurements among
those used to represent the scenarios.

The monotonicity property that we impose on detection
rules may appear as quite restrictive. However, we think
that in the early detection problem this assumption is rather
natural, in the sense that what matters is whether and how
early detection happens. As we will see in the next section,
this assumption makes it possible to set up a rather simple
machine learning algorithm.

�
��� �

� � ����
1

�
4

�
2

�
5��� �

� � ����
2

�
3

�
3

�
4

Figure 1: Example temporal tree

Temporal tree induction algorithm
The proposed algorithm is a modification of the well-known
TDIDT (top down induction of decision trees) method
(Breiman et al. 1984; Quinlan 1986). As in TDIDT, tempo-
ral tree induction is composed of two search stages : (i) tree
growing, which aims at selecting the appropriate attributes
and defining the tree structure as a collection of tests; (ii)
tree pruning, which aims at determining the appropriate tree
complexity in order to avoid overfitting the data contained in
the learning set. Prior to tree induction, the overall learning
set Y Z is first decomposed in two disjoint subsets : the grow-
ing sample (�aZ) used to evaluate the quality of candidate
trees during growing, and the pruning sample (%Z) used to
evaluate trees during pruning.

We first describe the proposed semantics of temporal trees
and introduce the quality measures used to evaluate them,
then we discuss the proposed growing and pruning methods.

Proposed semantics of temporal trees
Figure 1 shows a simple temporal tree. The elementary
bricks of this device are the tests

� � corresponding to its
arcs. Each such test is a logical functional of the attributes

� ��������� :
�C"D$

0 ����� �E& $GF
 � ��
 � � � 6 �
which satisfies H �(����IS� � � H)K� $ 0 ����� � & $

:$ 7K; 0 <=<=< >@? ���(�8�9�L� 7L; 0 <=<=< >@? ����I������eAON $ � ���(��)*�T� � ����I���)*��A�� � 7 �
and which has a monotonicity property similar to the detec-
tion rules

� ���(�*)*�T� � P H)QIOR) :
� ���(�*)QI �T� �

� � 8 �
Notice that in practice such tests depend only on a single
attribute.

Using such a temporal tree, and given a value of) , a sce-
nario is propagated through the tree along all paths starting
at the root

�
(i.e. the top-node), until a condition

� � along

the path is false or a terminal node is reached. If the scenario
reaches at least one terminal node, it is classified into class� , otherwise it is classified into class � at time) .

Notice that the monotonicity property of tests implies the
monotonicity of the tree detection. It implies also that sce-
narios can only move downwards the tree as time advances.
Indeed, as time advances, conditions which are true remain
so and other conditions may become true allowing a scenario
to move down the tree. For a given tree � and a scenario � ,
we denote by)�
 ����� the time at which � first reaches a termi-
nal node. Of course, some of the scenarios may never reach
a terminal node and will thus remain classified permanently
in class � .

Notice also that for the sake of consistency we impose that
a trivial tree (composed of only its root) classifies all objects
in class � at any time) .

Given a sample Z of objects, each node of such a tree
corresponds to a subset of Z , namely those states which
eventually satisfy (for some finite time)) all the tests along
the path from the root

�
to the node. In particular, the root

�
corresponds to Z , and the subsets along a branch are nested.
However, the subsets corresponding to different branches
may overlap.

Evaluation function
In order to assess the quality of a temporal tree from a sample
of objects Z , we propose the following evaluation function,
composed of two terms :� ��� �6Z �T��� ��� ��� � Z �O�g� 1 ��� � � > ��� �6Z ��� � 9 �
where

���
evaluates the selectivity of discrimination between

sample objects of different classes,
� > the degree of anticipa-

tion of detection, and �D� $ 0 ����� 1 A is a user defined parameter
to tradeoff anticipation vs selectivity.� �

is defined by (e.g. see (Paliouras 1997))

� � ��� � Z �T� � 1 ���K� b�
�� h ���Tb�
����� 1 ���	��b h ���Tb � , � � $ 0 � 1 A�� � 10 �
where b h (resp. b��) denotes the number of samples of
class � (resp. �), b�
 � h (resp. b!
 ���) denotes the number
of them classified � (resp. �) by the tree � , and � is a user
defined parameter to tradeoff non-detections vs false-alarms.

For
� > we propose the following definition

� > ��� � Z �T� 1b�
 � h
^"

#%$
�&
' �)(
3�����)�cd����� ��� � 11 �

where � h denotes the subset of Z of objects of class �
correctly detected by the tree,)
 ����� the time to detect object� , and

' ����� is a monotonically decreasing function defined on$
0 ����� 1 A such that

' � 0 � � 1 and
' � 1 �T� 0 (in our simulations' ��)J�T� 1 �*)). In eqn. (11)) c ����� denotes the maximal time

after which observation of � stops. This time is fixed a priori
for each object, and allows one to specify a time after which
detection is not considered anymore useful.

Table 1: Temporal tree growing algorithm

INITIALIZE
I1. Denote by �aZ the sample (part of the learning set) used for tree growing;
I2. Denote by � the current tree : set � to the trivial tree containing only the root node

�
;

I3. Push
�

on the intitially empty stack (at any time the stack contains a list of nodes candidate for expansion);
ENDINITIALIZE
BEGINLOOP
L1. If the stack is empty Return � (tree building is finished);
L2. Let

�
be the node at the top of the stack;

IF the subset of �aZ corresponding to
�

contains only objects of class �
THEN the node becomes a terminal node of the tree and is permanently removed from the stack;
OTHERWISE determine among candidate tests an optimal one

� � such that
� ��� � � � � ���aZ � is maximal;

IF
� ��� � � � � ���aZ ��� � � � ���aZ �

THEN set � to �
� � � � (add arc and successor node), push the new successor on the stack and determine its subset of �aZ ;

OTHERWISE do not modify � and remove the node
�

from the stack;
ENDIF

ENDIF
ENDLOOP

Temporal tree growing
The tree growing method is based on the repetitive appli-
cation of a single operator which consists of expanding the
tree by adding a test to one of its nodes. It uses the growing
sample �aZ (part of the overall learning sample) in order to
guide the search. Table 1 describes the overall algorithm,
which proceeds until no further expansion is required. In
Table 1, we denote by � the current tree and by

�
� � � � 12 �

the result of expanding it by adding a test
�

to its node
�

.
Starting with the trivial tree which classifies all objects in

class � at time) � 0, the purpose of the algorithm is to
add tests which should operate as filters preventing objects
of class � to reach terminal nodes, and, at the same time,
should let objects of class � reach a terminal node as quickly
as possible.

The algorithm uses a stack of “open” nodes (initialized to
the root node corresponding to the complete growing sam-
ple), then proceeds by considering the node at the top of the
stack for expansion. At each expansion step, it pushes the
created successor on the top of the stack. It thus operates in a
depth first fashion : it starts by determining a test to attach at
the root node, then proceeds along that branch by consider-
ing the last created successor node. While developing such a
first branch, tests are added in order to prevent false alarms;
development of the branch stops as soon as quality can not
be increased anymore, or if all the states belonging to the tip
of the branch are in class � . Once a branch has been fully
developed, the next stage of the algorithm is to add tests
in parallel to those already installed, so as to increase the

number of states of class � detected and/or to reduce their
detection times by providing alternative detection logics.

Anticipating on the next section, let us mention that each
individual test will use information provided by a single
attribute. In order to determine an optimal test at a given
step, the method scans a certain number of candidate tests
for each candidate attribute (see below) and computes the
corresponding variation of the tree quality with respect to
the tree obtained at the previous step. Among all candidate
tests, it will use the one yielding a maximum increase in
quality.

Hypothesis space of candidate tests

Numerical temporal attributes. The algorithm considers
tests in the form

� ���(��)*�T� �
P�)QI��)	� H�
 � $)QId� ∆) �����)QI9A : �(�����(�
 � W
� >�� � � 13 �

and

� Ie���(��)*� � �
P�)QI��)	� H�
 � $)QId� ∆) �����)QI9A : �(�����(�
 ���
� >�� � � 14 �

It thus determines � (attribute selection), ∆) (filtering) and
� >�� (discretization) to maximize quality. The user defines
for each candidate attribute a limited number of candidate ∆)
values. Then, the method uses a brute force search screening,
for each candidate attribute and ∆) value, all locally relevant
candidate thresholds, computing their incremental quality.

Event subsets. Event subsets are attributes which record a
time-tagged sequence of events; they are the temporal version
of qualitative attributes. We considered the two following
types of tests (0 2 4 denotes the finite set of possible values of
an attribute � � �����8�9� , i.e. � � ���(�*)*�K.E0 2 4)

� ���(�*)*� � �
P�)QI��)	� ����� >�� �������(�
 ���
	 � 15 �

and � ���(�*)*� � �
P�)QI �) �[�������(�*)QI����
	����� � 16 �

where V is selected among a set of candidate subsets of 0 h264 ,
which is the set of all events which appear at least in one �aZ
object of class � .

Notice that in our practical example, the number � of
different events in a set 0 h254 may be of the order of 50 to
100. Thus, it was intractable to screen all possible subsets 	
(their number is 2 �3� 1).

Thus, for the conjunctive tests (eqn. 15) we limited the
search to subsets 	 containing only two events.

On the other hand, the disjunctive tests (eqn. 16) were
determined using a greedy search, as follows. First, all sin-
gleton subsets of 0 h264 are considered and sorted by decreasing
order of their incremental quality. Then the method evaluates
the incremental quality of the following sequence of event
subsets 	 � � ����

1 � <=<=< �
	 1� ���T� 1 � ����� �S� � 17 �

where the 	 1
1 � ����� 	 1� denote the singleton event subsets

sorted by decreasing incremental quality. Among the can-
didate 	a� subsets, the one yielding a maximal incremental
quality is retained. Notice that this family of candidate tests
contains the best singleton also.

Discussion. The above types of tests were designed in or-
der to handle the practical problem of power system voltage
collapse detection.

For example, we defined the hypothesis space of can-
didate tests on numerical attributes based on the fact that
voltage collapse may be detected by observing monotoni-
cally decreasing voltage magnitudes and/or excitation cur-
rents reaching their upper limits. However, due to the su-
perposition of short-term transients it is necessary to use
temporizations, which should be long enough to filter out
irrelevant oscillatory transients and short enough to avoid
postponing the detection too much. On the other hand, due
to the non-linear behavior of power systems it is necessary to
select the appropriate locations in the system where voltages
or excitation currents should be measured and thresholds
need to be adapted to system specifics.

However, the method could be easily tailored to other types
of problems by extending or modifying its hypothesis space

of candidate tests. For example, in order to detect oscillatory
instabilities it would be interesting to consider candidate tests
which detect consecutive oscillations of a certain magnitude;
they would also be characterized by two parameters : oscil-
lation magnitude and number of consecutive oscillations.

Pruning
The temporal tree growing method described above tends to
produce overly complex trees, which need to be pruned to
avoid overfitting the information contained in the learning
set.

The proposed pruning method is similar in principle to the
standard tree pruning methods used in TDIDT. It consists in
generating a nested sequence of shrinking trees � 0 � ����� ���
starting with the full tree and ending with the trivial one,
composed of a single node. At each step, the method com-
putes the incremental quality which would be obtained by
pruning any one of the terminal nodes of the current tree, and
removes the one (together with its test) which maximizes this
quantity. It uses an independent set of objects (i.e. different
from the learning set) in order to provide honest estimates of
the tree qualities, and hence to detect the irrelevant parts of
the initial tree. The tree of maximal quality is selected.

Notice that, while temporal tree growing is quite heavy
from the computational point of view, the overhead of prun-
ing is negligible. As we will see below, pruning reduces
significantly the tree complexity (often by about 50%) and
improves also quality.

Empirical study
Brief description of the practical study
Our tests were carried out on a large scale data base built
by numerical simulation for the study of blackouts of the
French power system (Wehenkel et al. 1997). The scenarios
correspond to random combinations of large external distur-
bances and faulting protection devices (line overload pro-
tections, generator protections, substation protections �����).
The analytical model of this system uses about 11,000 states
variables, and the simulations were carried out in parallel
using a cluster of workstations (each simulation took about
11hours CPU time). Each scenario is characterized by about
800 numerical variables, observed during about 40 minutes
of real-time. In the data base, these are represented us-
ing piecewise linear functions, with variable step-size (the
number of steps varies from one scenario to another, and
is typically of about 50 for stable scenarios and larger than
500 for highly unstable ones). There are about 200 million
values stored in the data base.

In the above data base there are various possible modes
of unstable behaviour (e.g. fast electromechanical tran-
sients, mid-term voltage collapses, cascades of overloaded
line tripping �����) which may act in different regions of the
system. In our investigations we have considered only the

e

ND
 = 7.1%

P = 7.2 %

P
FA

T = 22.5%avg

P = 0.1%

TOP-NODE LS: 321/64

U-BCARS71<234 | 0

T2 LS: 27/64

IF-M.PONT_3> 0.871 | 1

T3 LS: 22/64

IF-PHENIT_1> 0.043 | 1

T4 LS: 20/63

IF-BOLLEH> 0.035 | 0

T5 LS: 19/63

IF-BROMMH> 0.599 | 1

D1 LS: 18/63(0)

IF-BORT_H> 0.852 | 1

D2 LS: 18/62(6)

U-BCARS71< 20.0 | 0

L1 LS: 0/31(0)

U-BCARS71<367 | 5

D3 LS: 5/59(2)

U-NEOULS71< 25 | 0

D4 LS: 1/14(0)

U-BCARS71< 19.9 | 0

L2 LS: 0/31(10)

IF-BOLLEH>1.0561 | 0

D5 LS: 4/13(1)

IF-SSAL7T_2> 0.724 | 1

D6 LS: 5/30(2)

U-NEOULS71<295 | 5

D11 LS: 2/38(5)

IF-BORT_H> 0.938 | 2

D12 LS: 4/18(1)

U-NEOULS71< 25 | 0

D13 LS: 1/14(7)

U-COULAS71<389 | 5

L4 LS: 0/15(1)

Collapse: 64
Stable: 321

Test : attribute < threshold | temporisation

Node name : growing subset composition

increase in observation time due to the test

Previous observation time (parent node)

Class proportions in local waiting subset

Class proportions in local growing subset

Tx -> Test node

Lx -> Leaf (pure terminal node)

 stable / collapse (objects first classified by this terminal node)

Dx -> Deadend (impure terminal node)

Pfa = 7.1%

τ

Pnd = 0.1%
Pe = 7.2%

t = 36%avg

Figure 2: Voltage collapse detection tree (partial view)

voltage collapse problems, related to a particular peripheral
area of the system. The data base contained 1100 scenar-
ios, and we used a subset of about 100 candidate attributes
(voltage magnitudes at different buses, generator excitation
currents, various lists of events). Among the 1100 scenarios,
there are about 250 unstable ones.

Obtained results

Figure 2 shows a partial view of a temporal tree built by
the above method on the voltage collapse problem. The
growing sample used to build the tree is composed of 385
random scenarios (64 correspond to voltage collapse). Tests
are shown beneath the corresponding arcs of the tree, and
each node is graphically represented by a box divided ver-
tically into three parts : (i) the upper most part represents
the proportion of object classes in the local growing subset,
which are the objects which eventually reach the node (at the
root this corresponds to the complete growing sample); (ii)
in the middle, a similar representation shows the objects of
the growing subset which never move downwards the tree
(at the root this subset corresponds to the objects which are
not detected by the tree, at the terminal nodes it is identical
to the local growing subset); (iii) the lower part provides
information about the average time needed to reach the node
and its decomposition into the part required by all preceding

tests (in black) and (in grey) the additional time required by
the last test (notice that the time required to reach the root
node is equal to zero for all states). The numbers in paren-
theses below a terminal node indicate the number of objects
which are really detected by this node, i.e. which reach this
node before any other terminal node. For example, the right
most terminal node (named L4) corresponds to a growing
subset composed of 15 collapse states, among which only
one is detected by this node (all others are detected earlier
by another terminal node of the tree).

In order to build the tree we proposed 29 numerical can-
didate attributes, together with three candidate values for ∆)
(0, 1, and 2 seconds for excitation currents, and 0, 5, and
10 seconds for voltages), and used � � 0 � 4 and � � 0 � 8 in
order to balance early detection with selectivity.

The tree building algorithm has selected 17 relevant at-
tributes, to grow a tree comprizing all in all 26 tests, 22 ter-
minal nodes and 5 internal nodes. This tree was then tested
on the remaining (736) scenarios of the data base, yielding
an overall error rate of 	 � � 7 � 2% (1 non-detection among
167 collapse test scenarios; 52 false alarms among 569 stable
test scenarios). The earliness of detection is measured by the
mean detection time of unstable scenarios) avg
 � 36% (the
mean value of the ratio >�� � #��>�� � #��). Note that the branches which
were developed first are in left-most part of the tree.

Table 2: Tree characteristics under various conditions

Conditions Fully grown tree Pruned tree

# LS CA � � SA C 	 � (%) 	 c 2 (%) 	 � V (%)) avg
 (%) SA C 	 � (%) 	 c 2 (%) 	 � V (%)) avg
 (%)

200 29 1.0 0.5 2 4 4.4 3.6 0.8 57.6 2 3 4.9 4.2 0.7 56.3
200 29 0.8 0.5 15 22 10.2 9.9 0.3 47.4 5 6 6.7 5.7 1 50.2
200 29 0.8 0.3 13 16 10.2 9.9 0.3 47.2 5 6 7.1 6.5 0.6 51
200 29 0.7 0.4 19 30 11.3 10.1 1.2 45.8 6 7 9.2 6.3 2.9 45.3
385 29 0.8 0.4 17 27 7.2 7.1 0.1 36 11 17 5.5 5.3 0.2 40.3

385 13 0.8 0.4 6 22 14.8 8.4 6.4 40.4 4 10 13.3 6.9 6.3 38
600 13 0.8 0.4 6 19 8.7 7.7 1 34.1 6 15 8 7 1 34.2

CA: number of candidate attributes SA: number of selected attributes C: total number of nodes (complexity)

The tree was then pruned: this lead to a reduction in
complexity (to a total of 17 nodes) and of error rate (5.5% :
5.3% false alarms and 0.2% of non-detections), and to an
increase in the average detection time (to 40.3%).

Sensitivity analysis
In order to provide further insight into the behavior of the
method, let us briefly discuss the various trends which appear
from Table 2, which collects results obtained under various
conditions (learning set size, candidate attributes, values of
� and �).

Effect of pruning. A quick comparison of the pruned and
unpruned trees’ characteristics confirms the very strong
effect of pruning : it reduces complexity by more than
50% in the mean, improves errors rates by about 10%,
but may either increase or decrease degree of anticipation
(which is inversely proportional to) avg
).

Influence of � . Looking at the relative numbers of false
alarms 	 c 2 and non-detections 	 � V , it appears that the
method is not very sensitive to � .

Influence of � . Comparing the values of) avg
 for the first
four trees, we observe that they are indeed quite correlated
to the corresponding value of � (negatively, as expected).

Increased number of learning states (# LS). The quality
of pruned and unpruned trees and the complexity of the
pruned ones increase significantly, as expected. Notice
that quality assessment of the three last pruned trees might
be slightly optimistic, since we used the same set of objects
than those used for pruning.

Effect of candidate attributes. Comparing the last two
trees (built using only event subsets types of attributes)
with those in the first part of the table (built using only nu-
merical attributes), we notice that the type of errors (false
alarms vs non-detections) is much more sensitive to the
types of candidate attributes than to � .

Computational performances
The algorithm was implemented in GNU CommonLisp
(GCL). Indicative CPU times on a 200 MHz Sun UltraSparc
workstation are of 15 hours for a tree built with 400 learn-
ing objects, 30 attributes, 3 candidate values of ∆) . As for
classical TDIDT, the computational complexity is slightly
superlinear in the number of learning states, and linear in the
number of candidate attributes and temporizations.

Discussion
We believe that the first results obtained with the proposed
temporal tree growing method are quite encouraging, spe-
cially since they were obtained on a large scale data base
from a real problem. We also believe that the method is
flexible enough to allow its application to other temporal
machine learning problems. However, it needs clearly fur-
ther validation, and there are various problems which have
not yet been addressed. We mention some of them in place
of a conclusion.

Temporal constraint along a path. In our application, a
path in a temporal tree is supposed to correspond physically
to a particular instability mode, represented by a conjunction
of logical tests. Thus, these conditions should become true
altogether within a certain limited time interval. Hence, we
propose to add to each path in a tree a life-time parameter,
to constrain the time span within which its tests must be
satisfied. This parameter can be derived either from the
validation set used for pruning or be fixed a priori by the
user. Notice that this would actually consist in relaxing a
posteriori the monotonicity assumption.

Computational tradeoffs. The present (brute force)
search algorithm is quite slow for large problems. In or-
der to improve its efficiency it might be possible to add
some heuristics so as to reduce the number of candidate tests
evaluated at each step (e.g. reduce the number of candidate
thresholds to allow for searching more systematically for op-

timal values of ∆)). On the other hand, there is ample room
for code improvement and parallization, if required.

Extensions to other problems, types of tests for differ-
ent temporal features. In our work we concentrated on
the automatic identification of thresholds with delays. The
method could, however, be easily extended to identify other
types of candidate tests, for example temporal patterns,
such local maxima, change in pseudo-frequency, change in
concavity ����� , which would be relevant in various practical
applications.

Multiple classes to detect. It should be possible to extend
the method so as to be able to detect several classes rather
than a single one. We believe also that the approach could
be adapted in order to handle numerical outputs, as would be
required for example in time series forecasting applications.

Related work
In the machine learning literature the consideration of tem-
poral problems is rather recent, and there is not yet a clear
body of publications to which we could compare our work.
Nevertheless, in the recent literature on the subject one may
identify several trends.

A first trend consists of separating learning from tempo-
ral data into two successive steps (see e.g. (Torgo 1995;
Manganaris 1997)) : (i) representation, where scalar at-
tributes are defined in order to extract temporal features from
time series; (ii) model selection, where the scalar attributes
are used by an existing machine learning method in order to
extract rules. With respect to this approach, we believe that
the method presented in this paper may take better advan-
tage of available data, by treating these two problems in an
integrated fashion and taking into account explicitly the role
of time in the evaluation of detection rules.

Another approach (e.g. (Paliouras 1997)) consists in using
an a priori defined model structure (possibly more powerful
than our temporal trees) and then using learning set infor-
mation in order to tune the parameters of this model. This
approach may be well suited in situations where the model
structure is indeed known a priori, but not appropriate in
applications like those considered in this paper.

Another research theme concerns unsupervised learn-
ing, such as identifying similar time series or frequent
patterns of events (Mannila, Toivonen, & Verkamo 1997;
Das, Gunopulos, & Mannila 1997). The latter type of meth-
ods are essentially complementary to our work.

Finally, yet another proposal which is also related to our
method is the one given in (Jordan 1994; Jordan, Ghahra-
mani, & Saul 1996). In these publications a hidden Markov
decision tree model is proposed, where decisions at a node
and at some time depend on the decisions taken at that node
at the previous time step. One important difference with

temporal trees is that the resulting model, while very pow-
erful from the statistical point of view, is rather difficult to
interprete. The other important difference is that the hidden
Markov trees do not model explicitly the earliness of detec-
tion, since their aim is to predict the output variable at the
current time, given past and present inputs (and the current
states of the hidden Markov models corresponding to each
test node). The algorithms proposed to build such models are
also quite different from the temporal tree induction method
proposed in the present paper.

References
Breiman, L.; Friedman, J. H.; Olshen, R. A.; and Stone,
C. J. 1984. Classification and Regression Trees. Wadsworth
International (California).

Das, G.; Gunopulos, D.; and Mannila, H. 1997. Finding
similar time series. In Proc. of KDD’97.

Jordan, M. I.; Ghahramani, Z.; and Saul, L. K. 1996.
Hidden markov decision trees.Technical Report 9606,MIT,
Computational Cognitive Science.

Jordan, M. I. 1994. A statistical approach to decision tree
modeling. In Proc. of the Seventh Annual ACM Conference
on Computational Learning Theory. New York: ACM
Press.

Manganaris, S. 1997. Supervised classification with tem-
poral data. Ph.D. Dissertation, Vanderbilt University.

Mannila, H.; Toivonen, H.; and Verkamo, A. I. 1997. Dis-
covery of frequent episodes in event sequences. Technical
Report C-1997-15, University of Helsinki, Department of
Computer Science.

Paliouras, G. 1997. Refinement of Temporal Constraints in
an Event Recognition System using Small Datasets. Ph.D.
Dissertation, Department of Computer Science, University
of Manchester.

Quinlan, J. R. 1986. Induction of decision trees. Machine
Learning 1:81–106.

Torgo, L. 1995. Applying propositional learning to time-
series prediction. In et al, Y. K., ed., Proc. of ECML-95
Workshop on Statistics, Machine Learning and Knowledge
Discovery in Databases.

Wehenkel, L.; Lebrevelec, C.; Trotignon, M.; and Batut,
J. 1997. A probabilistic approach to the design of power
systems protection schemes against blackouts. In Proc.
IFAC-CIGRE Symp. on Control of Power Plants and Power
Systems, 506–511.

Wehenkel, L. 1997. Machine learning approaches to power-
system security assessment. IEEE Expert, Intelligent Sys-
tems & their Applications 12(3).

Wehenkel, L. 1998. Automatic learning techniques in
power systems. Boston: Kluwer Academic.

