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Abstract
In this paper, we investigate the solutions of Fréchet’s functional equation
in the context of Lie groups. In particular, we give the explicit right-
abelian solutions of this equation for connected Lie groups. We also extend
this result to homogeneous spaces and deal with some classical examples.
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1 Introduction
Cauchy’s functional equation,

f(x+ y) = f(x) + f(y) (1)

used to play a central role in the mathematical literature [7, 5, 10]. Given a
function f defined on the Euclidean space, let us set (see e.g. [3, 8])

∆hf(x) = ∆1
hf(x) = f(x+ h)− f(x)

and

∆m+1
h1,...,hm+1

f(x) = ∆hm+1∆m
h1,...,hmf(x) = ∆hm+1 ◦ · · · ◦∆h1f(x),

for m ∈ N; if h1 = . . . = hm, we will write ∆m
h1
f instead of ∆m

h1,...,hm
f . Equa-

tion (1) naturally leads to the following generalization:

∆m
h f(x) = m!f(x). (2)

On the other hand, with Cauchy’s equation as a starting point, Fréchet
proposed in 1909 a functional definition of polynomials by showing that the
continuous solutions of the equation

∆m
h1,...,hmf(x) = 0 (3)

on the Euclidean space are the polynomials of degree at most m− 1. Later, he
proposed this equation as a definition of the “abstract polynomials” of degree at
most m− 1 [6]. From this point of view, equation (2) could serve as a definition
for the abstract monomials of order m. In [4], it is shown that equation (3) is
equivalent to

∆m
h f(x) = 0,
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in the context of abelian groups.
The idea of defining polynomials in a general setting using Fréchet’s equation

is quite old (see e.g. [18, 11]), yet still considered nowadays (see e.g. [14, 15, 1, 12]
and references therein). It is usually studied in either very general contexts (for
abelian [18, 1] or non-abelian groups [11, 15]) or peculiar ones [9, 2, 13, 12]. The
goal of this paper is to provide a general framework for studying equation (3)
in which explicit solutions can be obtained; we do so by considering the notion
of generalized polynomial on Lie groups.

Before going further into the details about the organization of this work, let
us introduce the notations that will be used throughout this paper. Given a
metrisable space X and a distance d on X, Bd(x0, r) will stand for the open
ball centered at x0 ∈ X of radius r > 0, that is

Bd(x0, r) = {x ∈ X : d(x0, x) < r}.

We use the multiplicative notation for group operation and as usual 1 stands
for the identity element. If G is a Lie group, the corresponding Lie algebra
is denoted g, identified with the tangent space T1G. The exponential map is
given by exp : g → G. Given X ∈ g, the corresponding left-invariant (resp.
right-invariant) vector field is written LX (resp. RX). A basis of g is ∂1, . . . , ∂n
and the corresponding vector fields are respectively given by L1, . . . , Ln. The
dual basis is given by dx1, . . . , dxn, so that dxi(∂j) = δij . Given x ∈ G, the left
(resp. right) multiplication by x is denoted by Lx (resp. Rx). Its pullback is
simply written L∗x (resp. R∗x). In such a general context, we must distinguish
left and right difference operators. The left (resp. right) difference operator is
defined by

h∆ = L∗h − I (resp. ∆h = R∗h − I).
Given m ∈ N0, the differences of order m are given by

h1,...,hm∆m = h1∆ ◦ · · · ◦ hm∆ (resp. ∆m
h1,...,hm = ∆hm ◦ · · · ◦∆h1).

Moreover, we denote by HomGr(G,R) the set of smooth group homomorphisms
from G to R and HomLie(g,R) the set of Lie algebra homomorphisms from
g to R. Notice that HomLie(g,R) is just the linear forms vanishing on the
commutator subspace

[g, g] = span([X,Y ] : X,Y ∈ g).

We will also write Homloc
Gr (G,R) to denote the set of germs of smooth func-

tions satisfying the additive equation in a neighborhood of 1. Given a vector
subspace F of E, the annihilator subspace of F , denoted F⊥, consists of the
linear forms on E vanishing on F . Finally, S(a1, . . . , am) stands for the group
of permutations of {a1, . . . , am}.

Let us define a notion a polynomial for a topological group G.
Definition 1. Let G be a topological group; a map T : Gm → R is said to be
multiadditive of degree m if T is a group homomorphism with respect to any of
its variables. It is said to be locally multiadditive if the equalities

T (x1, . . . , xjh, . . . , xm) = T (x1, . . . , xj , . . . , xm) + T (x1, . . . , h, . . . , xm)

hold for any j ∈ {1, . . . ,m} and any x1, . . . , xm, h in a neighborhood of 1. More-
over, T is symmetric if T (xσ1 , . . . , xσm) = T (x1, . . . , xm) for any σ belonging to
S(1, . . . ,m).
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Definition 2. If T : Gm → R is any map, its symmetrization is the map
S(T ) : Gm → R defined by

S(T )(x1, . . . , xm) = 1
m!

∑
σ∈S(1,...,m)

T (xσ1 , . . . , xσm).

Definition 3. Let Dm : G → Gm be the diagonal map; a local monomial of
degree m is a map f : G → R that is equal to T ◦ Dm in a neighborhood of
1, where T : Gm → R is locally multiadditive and symmetric. A monomial of
degree m is the same map f for which the equality holds everywhere. A (local)
polynomial is a finite sum of (local) monomials. The degree of a polynomial is
the degree of the non-vanishing monomial with the highest degree.

The next definition provides a condition under which we can get an explicit
solution for (3).

Definition 4. A function f on G is right-abelian if we have

R∗h1h2
f = R∗h2h1

f,

for any h1, h2 in G.

Such an assumption is made in [17] and is weaker than the abelian condition
given in [16]. It is easy to show that a monomial is right-abelian (see Lemma 2).
In the first section, we recover a result obtained in [17] using the notations
introduced above, stating that the right-abelian solutions of the Fréchet equa-
tion (3) are the polynomials of degree strictly less than m (see Theorem 3 and
Theorem 4 for the continuous version originally obtained in [17]). In Section 3,
we consider n-dimensional connected Lie groups and show the following result:

Theorem 1. Let G be a connected Lie group. If f : G → R is right abelian,
bounded almost everywhere in a neighborhood of 1 and if ∆m+1

h1,...,hm+1
f(x) = 0 for

x and h1, . . . , hm+1 in a neighborhood of 1, then we have the following equality
in a neighborhood of 1:

f =
∑
|α|≤m

aαf
α1
1 · · · f

αk
k , (4)

where the multi-index α runs over Nk with k = dim HomLie(g,R) ≤ n, for
some aα ∈ R and f1, . . . , fk ∈ Homloc

Gr (G,R). Conversely, any such function is
a solution of the local Fréchet equation.

We also consider the case of homogeneous spaces (Proposition 6). The last
section is devoted to a few consequences of Theorem 1; some explicit examples
are given as well: we consider S1, the Heisenberg group and GL(n,R) among
others. We also show that if we do not impose the solution f to be right-abelian
then it can differ from (4) (see Proposition 7).

2 Fréchet’s equation on topological groups
In this section, G denotes an arbitrary topological group; we give a represen-
tation theorem for the solutions of Fréchet equation which are right-abelian in
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this setting. These results have been obtained in [17] with similar proof. They
are given here for the sake of completeness, since we are using other notations
and slightly different perspectives.

The Fréchet functional equation is the following equation in f ,

∆m+1
h1,...,hm+1

f(x) = 0, (5)

for x, h1, . . . , hm+1 ∈ G and where the solution f has to be a real valued function.
We will mainly be interested in the local version of this equation, i.e. in the case
where the solutions f are functions defined in a neighborhood of some x0 ∈ G
and where the variable x belongs to a neighborhood of x0, the parameters
h1, . . . , hm+1 being in a neighborhood of 1. Such an equation will simply be
called the local Fréchet equation at x0. Let us first reduce the problem to the
case where x is in a neighborhood of 1.

Proposition 1. A function f is a solution of the local Fréchet equation at x0
if and only if L∗x0

f is a solution of the local Fréchet equation at 1.

Proof. This is simply due to the fact that the operators L∗x1
and R∗x2

commute
for any x1, x2 ∈ G.

Since no ambiguity can arise, the local equation at x0 = 1 will be called
the local Fréchet equation. For obvious reasons, we will limit our discussion to
the case x0 = 1. Notice that equation (5) concerns right differences only; this
problem is equivalent to the one involving left differences.

Lemma 1. The following formulae hold:

h1,...,hm∆mf(x) = ∆m
h1,...,hmR

∗
xf(1)

and
∆m
h1,...,hmf(x) = h1,...,hm∆mL∗xf(1).

Proof. The proof is given in [17].

The following theorem is inspired by Lemma 2.3 in [17].

Theorem 2. Let m ∈ N and k ∈ {0, . . . ,m + 1}; the function f is a solution
of the Fréchet (resp. local Fréchet) equation if and only if it is a solution of

hk+1,...,hm+1∆m+1−k∆k
h1,...,hk

f(x) = 0, (6)

where x, h1, . . . , hm+1 are in G (resp. in a neighborhood of 1).

Proof. Assume first that f satisfies the Fréchet equation; using the previous
result, we get

hk+1,...,hm+1∆m+1−k∆k
h1,...,hk

f(x)
=∆m+1−k

hk+1,...,hm+1
R∗x∆k

h1,...,hk
f(1) = ∆m+1−k

hk+1,...,hm+1
(∆x + I)∆k

h1,...,hk
f(1)

=∆m+2
h1,...,hk,x,hk+1,...,hm+1

f(1) + ∆m+1
h1,...,hm+1

f(1) = 0.
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Conversely, if f is a solution of (6), then

∆m+1
h1,...,hm+1

f(x) = ∆m+1−k
hk+1,...,hm+1

∆k
h1,...,hk

f(x)

= hk+1,...,hm+1∆m+1−kL∗x∆k
h1,...,hk

f(1)
= hk+1,...,hm+1∆m+1−k(x∆ + I)∆k

h1,...,hk
f(1)

= hk+1,...,hm+1,x∆m+2−k∆k
h1,...,hk

f(1)
+ hk+1,...,hm+1∆m+1−k∆k

h1,...,hk
f(1)

= 0,

as expected.

We can now search for a structure theorem for the solution of the Fréchet
equation. We first have the following property:

Proposition 2. If T : Gm → R is a multiadditive map, then

∆k
h1,...,hk

(T ◦ Dm)(x) =
{

0 if k > m
m! S(T )(h1, . . . , hm) if k = m

.

Proof. Let us prove this result by induction on m, both formulae being obvious
for m = 1. Let us consider the first formula: if it is true for m− 1, let us prove
that it also holds for m. We have

∆h1(T ◦ Dm)(x) = T (xh1, . . . , xh1)− T (x, . . . , x)

=
m−1∑
l=0

∑
i1<···<il

(Th1;i1,...,il ◦ Dl)(x),

where Th1;i1,...,il : Gl → R is the map defined by

Th1;i1,...,il(x1, . . . , xl)
= T (h1, . . . , h1, x1︸︷︷︸

i1

, h1, . . . , h1, x2︸︷︷︸
i2

, . . . , xl︸︷︷︸
il

, h1, . . . , h1),

Th1;∅ being the constant map T (h1, . . . , h1). These maps are clearly multiaddi-
tive of degree l. By induction, since l < m, we get

∆k
u1,...,uk

(Th1;i1,...,il ◦ Dl)(x) = 0,

for k > l. We thus have

∆k
h1,...,hk

(T ◦ Dm)(x) =
m−1∑
l=0

∑
i1<···<il

∆k−1
h2,...,hk

(Th1;i1,...,il ◦ Dl)(x) = 0,

for k > m.
Let us prove the second formula. To do so, let us suppose that the property

is true for the multiadditive maps of order m− 1 and let T be a multiadditive
map of order m. By proceeding in the same manner, we get, using the first
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formula and the induction hypothesis,

∆m
h1,...,hm(T ◦ Dm)(x) =

m−1∑
l=0

∑
i1<···<il

∆m−1
h2,...,hk

(Th1;i1,...,il ◦ Dl)(x)

=
∑

i1<...<im−1

(m− 1)! S(Th1;i1,...,im−1)(h2, . . . , hm)

=
m∑
j=2

∑
σ∈S(2,...,m)

T (hσ2 , . . . , hσj , h1, hσj+1, . . . , hσm)

+
∑

σ∈S(2,...,m)

T (h1, hσ2 , . . . , hσm)

=
∑

µ∈S(1,...,m)

T (hµ1 , . . . , hµm) = m! S(T )(h1, . . . , hm),

which concludes the proof.

The fact that the monomials (as introduced by Definition 3) are right-abelian
is a fundamental property.

Lemma 2. If f is a monomial (resp. a local monomial), then we have

R∗h1h2
f = R∗h2h1

f,

for any h1, h2 in G (resp. in a neighborhood of 1). This implies that

∆k
h1,...,hk

f(x)

is symmetric with respect to the parameters h1, . . . , hk in G (resp. in a neigh-
borhood of 1), for any k ∈ N.

Proof. Let us proceed once again by induction: let us prove the result for any
degree m > 1, the cases m = 0 and m = 1 being trivial. Let T : Gm → R
be a symmetric multiadditive map such that f = T ◦ Dm and denote by Th :
Gm−1 → R the map defined by Th(x1, . . . , xm−1) = T (h, x1, . . . , xm−1). We
have

f(xh1h2) = T (xh1h2, . . . , xh1h2)
= (Tx ◦ Dm−1)(xh1h2) + (Th1 ◦ Dm−1)(xh1h2)

+ (Th2 ◦ Dm−1)(xh1h2)
= f(xh2h1),

where we have used the induction hypothesis on the maps Th.

One easily checks that ∆2
h1,h2

f = ∆2
h2,h1

f for any h1, h2 ∈ G if and only if f
is right-abelian. Using Theorem 2, if f is right-abelian, we have ∆h1,h2f(x) = 0
if and only if h1∆∆h2f(x) = 0. As a consequence, we have the following result:

Corollary 1. Let m ∈ N and k ∈ {0, . . . ,m + 1}; a right-abelian function f
is a solution of the Fréchet (resp. local Fréchet) equation if and only if it is a
solution of

hσ(k+1),...,hσ(m+1)∆
m+1−k∆k

hσ(1),...,hσ(k)
f(x) = 0, (7)

where σ ∈ S{1, . . . ,m+ 1}.
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Let us consider the Fréchet equation ∆m+1
h1,...,hm+1

f(x) = 0 locally at 1. If
m = 0 then f is constant in a neighborhood of 1 and if m = 1 we have f = T+C,
where C is a real constant and T is an homomorphism. For larger m, one could
expect the solutions to be the local polynomials of degree at most m, i.e.

f =
m∑
j=0

Tj ◦ Dj (8)

in a neighborhood of 1, where the maps Tj : Gj → R are symmetric and
multiadditive. Unfortunately, this is not true in a general setting; a simple
counterexample can be obtained with the Heisenberg group (see Section 4).
However, in the case m = 2, it is easy to show that the right-abelian solutions
are of the form (8). The main result of [17] claims that it is indeed the case for
any m.
Theorem 3. Assuming that f is right-abelian, if ∆m+1

h1,...,hm+1
f(x) = 0 for

x, h1, . . . , hm+1 in a neighborhood of 1, then there exist symmetric multiaddi-
tive maps Tj : Gj → R (j ∈ {0, . . . ,m}) such that

f =
m∑
j=0

(Tj ◦ Dj),

in a neighborhood of 1. Moreover, these maps T0, T1, . . . , Tm are unique if they
are seen as germs of functions at the identity.
Proof. This result can be proved by induction on m ∈ N0; assume that the
property is satisfied for any k ∈ {0, . . . ,m − 1} with m ≥ 2. It is clear that
∆m
h1,...,hm

f is constant for h1, . . . , hm in a neighborhood of 1. Set

Tm(h1, . . . , hm) = 1
m!∆

m
h1,...,hmf(1).

We have

∆m
h1,...,hjh′j ,...,hm

f(1)−∆m
h1,...,hj ,...,hmf(1)−∆m

h1,...,h′j ,...,hm
f(1)

= ∆m+1
h1,...,hj ,h′j ,...,hm

f(1) = 0,

which shows that Tm is multiadditive. Moreover, it is symmetric since f is
right-abelian.

Finally, set g = f − Tm ◦ Dm to obtain

∆m
h1,...,hmg(x) = ∆m

h1,...,hmf(x)−m!Tm(h1, . . . , hm) = 0,

thanks to Proposition 2. The conclusion follows by induction.

With the same proof, we get the continuous version.
Theorem 4. If ∆m+1

h1,...,hm+1
f(x) = 0 for x, h1, . . . , hm+1 in a neighborhood of 1

and f : G→ R is right-abelian and continuous in a neighborhood of 1, then there
exist symmetric multiadditive continuous maps Tj : Gj → R (j ∈ {0, . . . ,m})
such that

f =
m∑
j=0

(Tj ◦ Dj)

in a neighborhood of 1. Moreover, these maps T0, T1, . . . , Tm are unique if they
are seen as germs of continuous functions at the identity.
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Remark 1. In the case of Lie groups or measurable functions with respect to a
Haar measure, it is clear that if the solution of the local Fréchet equation f is
smooth or measurable, then the maps T0, . . . , Tm are also smooth or measurable.

3 The case of Lie groups
Let us now study the Fréchet equation in a Lie group G. Unless otherwise
stated, in this section G will stand for a n-dimensional connected Lie group.

For Lie groups, Theorem 4 as an essential consequence.

Proposition 3. If the right-abelian function f is a smooth solution of the local
Fréchet equation on a Lie group G, then [LX , LY ](f) vanishes in a neighborhood
of 1 for any X,Y ∈ g.

Proof. It is well known that f is a sum of smooth monomials. So, we are reduced
to the case f = Tm ◦ Dm, where Tm : Gm → R is a smooth multiadditive
symmetric map. The result being classical for m = 1, let us treat the case
m > 1. We have

LXLY (f)(1) = d

dt

d

ds
Tm(exp(tX) exp(sY ), . . . , exp(tX) exp(sY ))|s=0,t=0.

Let us show that the last expression is equal to LY LXf(1). This results from
the following equality,

Tm(exp(tX) exp(sY ), . . . , exp(tX) exp(sY ))
= Tm(exp(sY ) exp(tX), . . . , exp(sY ) exp(tX)),

as Tm is multiadditive and these two are homogeneous polynomials of degree m
with respect to the variables t and s. We thus have

LXLY (f)(1)− LY LX(f)(1) = 0.

Since L∗xf is also a solution of the local equation for x close to 1 and LXLY
commutes with pullbacks of left translation by left invariance, we get

LXLY (f)(x) = L∗xLXLY (f)(1) = LXLY (L∗xf)(1)
= LY LX(L∗xf)(1) = LY LX(f)(x),

if x is in a neighborhood of 1.

Let us briefly consider the restricted Fréchet equation on the diagonal:

∆m+1
h f(x) = 0,

where h and x both lie in a neighborhood of 1 (let us recall that ∆m
h = ∆m

h,...,h).
In such a case, we have

∆m
h f(x) =

m∑
j=0

(−1)m−j
(
m

j

)
f(xhj).
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Let us also remember that if f : R → R is smooth in a neighborhood of x0 and
if ∆m+1

h f(x) is vanishing for any x in a neighborhood U of x0 and any h in a
neighborhood of 0, since we have

dm+1

dxm+1 f(x) = lim
h→0

∆m+1
h f(x)
hm+1 = 0,

then f is polynomial of degree lower or equal to m in U . Using this result, we
obtain the Taylor series of the solution.

Proposition 4. If f : G→ R is smooth in a neighborhood of 1 and if ∆m+1
h f(x)

vanishes for any x and any h both in a neighborhood of 1, then

f(x exp(X)) = f(x) +
m∑
j=1

LjXf(x)
j! ,

for any X in a neighborhood of 0 and any x in a neighborhood of 1.

Proof. Let us assume that the last equation is true for x and h lying in the
neighborhood U of 1 in such a way that exp is a diffeomorphism between a
convex neighborhood V of 0 in g and U . Given X ∈ V , define

γ(t) = f(exp(tX)),

for t ∈ R. Since V is open and convex, U contains exp([−ε, 1 + ε]X) for some
ε > 0. Given s, t ∈]− ε, 1 + ε[, we thus have

∆m+1
s γ(t) =

m+1∑
k=0

(−1)m+1−k
(
m+ 1
k

)
f(exp((t+ ks)X))

=
m+1∑
k=0

(−1)m+1−k
(
m+ 1
k

)
f(exp(tX) exp(sX)k)

= ∆m+1
exp(sX)f(exp(tX)) = 0.

Therefore, we can write

f(exp(tX)) = γ(t) =
m∑
k=0

akt
k,

for any t ∈]−ε, 1+ε[, which gives the first coefficient a0 of the Taylor expansion:
γ(0) = f(1).

The other coefficients ak can be obtained by differentiating γ at 0. Let us
recall that for any smooth function g on G and any left-invariant vector field
X, we have the relation

LkXg(x exp(tX)) = dk

dtk
g(x exp(tX)),

which gives

k!ak = dk

dtk
γ(0) = LkXf(1).

To conclude, it suffices to consider the translated functions f ◦ Lx.
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Let us return to the general Fréchet equation.

Proposition 5. Let G be a connected and simply connected Lie group and let f :
G→ R be a smooth function in a neighborhood of 1 for which ∆m+1

h1,...,hm+1
f(x)

vanishes for each x and h1, . . . , hm+1 in a neighborhood of 1. Then, in a neigh-
borhood of 1, we have

f =
∑
|α|≤m

aαf
α1
1 · · · f

αk
k ,

where aα ∈ R, k = dim HomLie(g,R) ≤ n, f1, . . . , fk ∈ HomGr(G,R) and
where the multi-index α runs over Nk.

Proof. Obviously,

HomLie(g,R) = {f ∈ g∗ : f |[g,g] = 0} = [g, g]⊥

is a subspace of g∗, which is a finite dimensional vector space. Let us fix a basis
dx1, . . . , dxk of [g, g]⊥. Of course, the dual basis ∂1, . . . , ∂k viewed as a set of
vectors of g spans a supplement space of [g, g], i.e. we have

g = [g, g]⊕ 〈∂1, . . . , ∂k〉.

That being said, let us fix a basis ∂k+1, . . . , ∂n of [g, g] and denote the dual basis
by dxk+1, . . . , dxn, so that we have

g∗ = [g, g]⊥ ⊕ 〈dxk+1, . . . , dxn〉.

By Proposition 4, we get

f ◦ exp = f(1) +
m∑
j=1

∑
i1,...,ij

Li1...ijf(1)
j! dxi1 · · · dxij .

Since ∂k+1, . . . , ∂n span [g, g] and [X,Y ](f) vanishes in a neighborhood of 1 for
all X,Y ∈ g by Proposition 3, we deduce that Lif vanishes in a neighborhood
of 1 for every i ∈ {k + 1, . . . , n}. Hence, the previous formula can be rewritten

f ◦ exp = f(1) +
m∑
j=1

∑
i1,...,ij≤k

Li1...ijf(1)
j! dxi1 · · · dxij .

From Lie’s theorem, there exists unique maps f1, . . . , fk in HomGr(G,R) such
that dx1 = d1f1, . . . , dx

k = d1fk, G being simply connected. Since fj ◦ exp =
d1f , we get

f ◦ exp = f(1) +
m∑
j=1

∑
i1,...,ij≤k

Li1...ijf(1) fi1 ◦ exp · · · fij ◦ exp,

which is sufficient to conclude.

Now, let us weaken the smoothness assumption on f . We first need a classical
results transposed in the setting of the Lie groups.
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Lemma 3. Let G be a connected Lie group equipped with a left Haar measure;
if f : G → R is bounded almost everywhere in a neighborhood of 1 and if
∆m+1
h f(x) = 0 for x and h in a neighborhood of 1, then f is bounded in a

neighborhood of 1.

Proof. Let d be a right-invariant distance on G; there exists ε > 0 such that
∆m+1
h f(x) vanishes for every x, h ∈ Bd(1, ε) and a negligible subsetN of Bd(1, ε)

for which |f(x)| ≤ C if x ∈ Bd(1, ε) \N . Using Fréchet equation, we have

|f(x)| =
∣∣∣ m∑
j=0

(−1)j
(
m+ 1
j

)
f(xhm−j+1)

∣∣∣ ≤ 2m+1 sup
y∈{xhj :j∈{1,...,m+1}}

|f(y)|,

for x, h ∈ Bd(1, ε).
Let us prove that f is bounded on Bd(1, ε

m+2 ). Let x ∈ Bd(1, ε
m+2 ) and set

Aj = {h ∈ Bd(1,
ε

m+ 2) : xhj ∈ Bd(1, ε) \N},

for j ∈ {1, . . . ,m+ 1}. The power function pj : x 7→ xj being a diffeomorphism
between two neighborhoods of 1, let us denote by rj the local inverse of pj ; by
lowering ε if needed, we may assume that it is a diffeomorphism for all j on
Bd(1, ε). That being said, let us remark that A1 ⊂ (A1 \ Aj) ∪ Aj and that
A1 \Aj is negligible since

A1\Aj ⊂ rj(x−1N ∩Bd(1, ε)) ∩Bd
(

1, ε

m+ 2

)
,

the set rj(x−1N ∩Bd(1, ε)) being itself Haar-negligible. We thus have

A1 =
m+1⋂
j=1

Aj ∪
m+1⋃
j=1

(A1 \Aj),

which implies that A1 is equal to ∩m+1
j=1 Aj almost everywhere. Now, ∩m+1

j=1 Aj is
not empty; if it was not the case, A1 would be negligible, which is impossible
since

A1 =
(
Bd

(
1, ε

m+ 2

)
∩ x−1Bd(1, ε)

)
\ x−1N

and nonempty open sets are not negligible for the Haar measure on Lie groups.
Now, by choosing h ∈ ∩m+1

j=1 Aj , we get |f(x)| ≤ 2m+1C, which concludes the
proof since x is arbitrary in Bd(1, ε

m+2 ).

The next lemma can be seen as an adaptation of Theorem 1 from [12] in the
case of multiplicative notations.

Lemma 4. If f : G→ R is bounded in a neighborhood of 1 and if ∆m+1
h f(x) = 0

for x and h in a neighborhood of 1, then f is continuous in a neighborhood of 1.

Proof. Let d be a right-invariant distance on G inducing the same topology
of manifold. Choose η > 0 such that ∆m+1

h f(x) = 0 and |f(x)| is bounded
by a constant if d(x, 1) < η and d(h, 1) < η. Next, let ε > 0 be such that
ε < η/(m+ 1) and set δ = η − (m+ 1)ε. Since |f | is bounded on Bd(1, η), the
relations

d(xhk, 1) ≤ d(1, h) + d(h, h2) + · · ·+ d(hk−1, hk) + d(hk, xhk) < δ + kε ≤ η

11



imply the existence of a constant C > 0 for which |∆k
hf(x)| ≤ C for all k ∈

{0, . . . ,m+ 1}, d(x, 1) < δ and d(h, 1) < ε.
Given x ∈ Bd(1, δ), let us prove that f is continuous at x. Let r ∈ N and

assume that d(h, 1) < ε/r. It is easy to see that

f(xhq) =
q∑
j=0

∆j
hf(x)
j! (q)j ,

where (q)j denote the falling factorial. The end of the proof is similar to the
proof of Theorem 1 in [12].

The following result is also an adaptation of Theorem 2 from [12].

Lemma 5. If f : G→ R is continuous in a neighborhood of 1 and if ∆m+1
h f(x)

vanishes for any x and any h in a neighborhood of 1, then f is smooth in a
neighborhood of 1.

Proof. Let X1, . . . , Xn be a basis of left-invariant vector fields and consider
the Lebesgue measure on g seen as Rn using this basis. We need to prove that
f ◦exp is smooth in a neighborhood of 0. First, define H as the Baker-Campbell-
Hausdorff series near the origin:

H(X,Y ) = log(exp(X) exp(Y ));

we have H : U2 → g, where U is a sufficiently small neighborhood of 0 in g.
Of course, H is smooth (even analytic) in a neighborhood of (0, 0). We may
assume that F = f ◦ exp is continuous on U and that ∆m+1

h f(x) vanishes for
x, h ∈ exp(U). We can also replace the usual differences ∆h with centered
differences δh defined by

δhf(x) = f(xh)− f(xh−1);

indeed, the relation
δmh = (R∗h−1)m∆m

h2

implies that that the so-obtained Fréchet equation remains equivalent to the
usual one in a sufficiently small neighborhood of 1. Since, at the level of Lie
algebras, we have

∆m+1
Y F (X) =

m+1∑
j=0

(−1)m+1−j
(
m+ 1
j

)
F (H(X, jY )),

we can assume that the Fréchet equation at the level of Lie algebras is satisfied
for X,Y ∈ U .

That being done, it is well-known that there exists a function Φ ∈ D(g) such
that

∫
Φ(X)DX = 1 and F = F |g ∗ Φ on a neighborhood of 0 in g, where

F |g : g → R is the extension of F which takes the value 0 outside U (such a
construction can be obtained from Remark 2 in [12] for example). Since F |g ∗Φ
is smooth, so is f in a neighborhood of 1.

Using the universal covering group, Proposition 5 may be generalized to
obtain Theorem 1.

12



Proof of Theorem 1. Let U denote the universal covering group of G and let U
be a neighborhood of 1 for which ∆m+1

h1,...,hm+1
f(x) vanishes if x, h1, . . . , hm+1 ∈

U in such a way that the covering map p : U → G gives a diffeomorphism
between a neighborhood V of 1 in U and U . Define f̃ = f ◦ p; since p is a local
homomorphism, we have

∆m+1
h1,...,hm+1

f̃(x) = ∆m+1
p(h1),...,p(hm+1)f(p(x)) = 0,

for all x, h1, . . . , hm+1 ∈ V . Since U is known to be simply connected, thanks
to the previous results, we can write

f̃ =
∑
|α|≤m

aαf̃1
α1 · · · f̃k

αk
,

where f̃1, . . . , f̃k ∈ HomGr(G,R). Of course, since U and G are isomorphic as
Lie groups in a neighborhood of the identity, they have the same Lie algebra.
That being said, it suffices to consider f̃ ◦ (p|V )−1 to get the first part of the
theorem.

Let us now check that such functions are always solutions of the equation.
To do so, we proceed by induction on the order m of the equation. The case
m = 0 is trivial, since it is a constant function in a neighborhood of 1. Let
us take m ≥ 1; we have to check that the equation is satisfied for a monomial
f = fα1

1 · · · f
αk
k . We may assume that αk ≥ 1 and gather all the terms fj with

j < k to write f = gfk. We have

∆hf(x) = ∆hg(x)fk(x) + g(xh)fk(h),

which shows that the difference operator decreases the total degree α1 +· · ·+αk.
As a consequence, we get ∆m+1

h1,...,hm+1
f(x) = 0 locally in a neighborhood of 1.

We can extend this problem to homogeneous spaces as follows. Given x ∈ G
and an element p of a manifold M , let us denote the action of x on p by xp. In
this setting, the difference operators is given by

∆hf(x) = f(hx)− f(x),

for h ∈ G and x ∈M . The difference operator of order m is once again naturally
given by

∆m
h1,...,hm = ∆hm ◦ · · · ◦∆h1 .

As usual, Gx stands for the isotropy subgroup of G at x. With these notations,
we obtain the following generalization of Theorem 1.

Proposition 6. Let G be a connected Lie group that acts smoothly and transi-
tively on a smooth manifold M ; if f : M → R is a right-abelian function that is
bounded on a neighborhood of x0 in M such that ∆m+1

h1,...,hm+1
f(x) = 0 for x in

a neighborhood of x0 in M and h1, . . . , hm+1 in a neighborhood of 1 in G, then,
for any h in a neighborhood of 1 in G, we have

f(hx0) =
∑
|α|≤m

aαf
α1
1 (h) · · · fαkk (h),

with aα ∈ R, k = dim HomLie(g,R) and where f1, . . . , fk ∈ Homloc
Gr (G,R)

vanish on a neighborhood of 1 in Gx0 .

13



Proof. Let π : G → G/Gx0 be the canonical projection; it is well-known that
the map

T : [u] ∈ G/Gx0 7→ ux0 ∈M

is an equivariant diffeomorphism. Let U be an open neighborhood of x0 in M
and V be an open neighborhood of 1 in G such that ∆m+1

h1,...,hm+1
f(x) = 0 for all

x ∈ U and all h1, . . . , hm+1 ∈ V . If we set

f̃ = (f ◦ T ) ◦ π,

f̃ : G→ R is a map satisfying

∆m+1
h1,...,hm+1

f̃(u) = ∆m+1
h1,...,hm+1

f(ux0) = 0,

for h ∈ V and u ∈ π−1(T−1(U)). Thanks to Theorem 1, we can write

f̃(h) =
∑
|α|≤m

aαf
α1
1 (h) · · · fαkk (h),

where f1, . . . , fk belong to Homloc
Gr (G,R), for h in a neighborhood of 1. One

may assume that f1, . . . , fk is a basis of Homloc
Gr (G,R), since it is isomorphic to

HomLie(g,R) through the exponential map. We can choose it so that f1, ..., fl
(l ≤ k) is a basis of the subspace

{f ∈ Homloc
Gr (G,R) : f |Gx0

= 0 in a neighborhood of 1}.

Now, as in Proposition 5, let ∂1, . . . , ∂n be a basis of g in such a way that
d1f1, . . . , d1fk are projections with respect to the k first components of X =∑n
i=1 X

i∂i. The solution may be expressed as

f(hx0) =
∑
|α|≤m

aαf
α1
1 (h) · · · fαkk (h).

In this setting, two elements h, h′ ∈ G in a neighborhood of 1 satisfy hx0 = h′x0
if and only if one has h′ = hx for an element x ∈ Gx0 . Therefore, if h is near 1
in G and x is near 1 in Gx0 , we must have fj(h) = fj(hx) for j ∈ {1, . . . , l}. As
a consequence, the following equality must be satisfied:∑

|α|≤m

aαf
α1
1 (h) · · · fαkk (h) =

∑
|α|≤m

aαf
α1
1 (hx) · · · fαkk (hx).

In other words, we must have∑
|α|≤m

aαf
α1
1 (h) · · · fαll (h)[fαl+1

l+1 (h) · · · fαkk (h)− fαl+1
l+1 (hx) · · · fαkk (hx)] = 0,

for h in a neighborhood of 1 in G and x in a neighborhood of 1 in Gx0 . Using
the exponential map exp : g→ G, we get∑

|α|≤m

aα(X1)α1 · · · (X l)αl

[(X l+1)αl+1 · · · (Xk)αk − (X l+1 + Y l+1)αl+1 · · · (Xk + Y k)αk ] = 0,
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for (X1, ..., Xk) near 0 in Rk and (Y l+1, ..., Y k) near 0 in Rk−l; this may be seen
as a polynomial in R2k−l. Naturally, we have the equality of each homogeneous
polynomials∑

|α|=d

aα(X1)α1 · · · (X l)αl

[(X l+1)αl+1 · · · (Xk)αk − (X l+1 + Y l+1)αl+1 · · · (Xk + Y k)αk ] = 0,

in a neighborhood of 0 in R2k−l. Let α be a multi-index such that |α| = d and
αj 6= 0 for a j ≥ l+1; by applying the partial derivative ∂α1

X1 · · · ∂αlXl∂
αl+1
Y l+1 · · · ∂αkY k

to the equation, we get aα = 0, which leads to the conclusion.

4 Applications and examples
Let us make some remarks and give some examples. We still consider the right-
abelian solutions of the Fréchet equation.

Since R does not contain any non-trivial compact subgroup, we have the
following property.

Corollary 2. If G is compact, there no global right-abelian solution of the
Fréchet equation other than the constants.

However, there can be local solutions, as attested by the following example.
Example 1. Consider the unit circle S1. Obviously, Homloc

Gr (S1,R) is one di-
mensional and generated by the germ of the argument function at 1, so that a
solution is given in a neighborhood of 1 by

f(z) =
m∑
j=0

ajargj(z).

On the other hand, S3 seen as a Lie group with quaternion product does
not have any local solution that is not constant.

Let us now consider the case where G is semisimple. Its commutator subal-
gebra [g, g] being simply g, we have the following result.

Corollary 3. If G is semisimple, there is no local right-abelian solution of the
Fréchet equation that is not constant.

Classical examples of semisimple Lie groups are the special linear group, the
orthogonal group and the symplectic group.

That begin said, ifG is solvable, the derived series must be strictly decreasing
and [g, g] is a proper subalgebra of g; as a consequence, we get the existence of
non-trivial local solution in that case.

Corollary 4. If G is solvable, there is at least one local solution of Fréchet
equation that is not constant.

Example 2. The Heisenberg group is defined as G = Rn × Rn × R with the
group operation given by

(x, y, t) ∗ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + x′ · y).
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It is easy to check that the dimension of HomLie(g,R) is 2n and that it is
generated by linear forms that does not depend on the variable t. Therefore,
local solutions are given by polynomials that are constant with respect to their
last variable t.

Of course, G need not to be solvable to accept non-trivial solutions; an
example is given by GL(n,R).
Example 3. Consider G = GL(n,R); since [gl(n,R), gl(n,R)] = sl(n,R), we
know that HomLie(gl(n,R),R) is one dimensional. It is generated by the trace
function. Applying the exponential, we get that local solutions of the equation
of order m+ 1 are given by

f(M) =
m∑
j=0

aj ln(det(M))j ,

if M is in a neighborhood of the identity matrix.
Finally, let us raise the question of the existence of solutions that are not

right-abelian.

Proposition 7. If G is a nilpotent Lie group with step one, there exists a
solution of (3) with m = 3 in a neighborhood of 1 that is not right-abelian.

Proof. Since the group operation is expressed in the Lie algebra by the Baker-
Campbell-Hausdorff formula truncated at first order commutators, we have

H(X,Y ) = X + Y + 1
2[X,Y ].

For convenience, let us write XY instead of H(X,Y ). Since [g, g] ( g, we can
find a linear functional f on g that does not vanish identically on [g, g]. For
such an f , we have

∆2
Y1,Y2

f(X) = f(XY1Y2)− f(XY1)− f(XY2) + f(X)

= f(X + Y1 + Y2 + 1
2[Y1, Y2] + 1

2 [X,Y1 + Y2 + 1
2[Y1, Y2]])

− f(X + Y1 + 1
2[X,Y1])− f(X + Y2 + 1

2[X,Y2]) + f(X)

= 1
2f([Y1, Y2]),

so that ∆3
Y1,Y2,Y3

f(X) = 0 everywhere on g. Moreover, we directly get

f(XY1Y2) = f(X) + f(Y1) + f(Y2) + 1
2f([Y1, Y2]) + 1

2f([X,Y1]) + 1
2f([X,Y2]).

Therefore, we have

f(XY1Y2)− f(XY2Y1) = f([Y1, Y2]),

which does not vanish for all Y1, Y2 since f does not vanish identically on the
commutator subspace.

An example of nilpotent group with step one is given by the Heisenberg
group.
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