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The complete flutter analysis of a structure requires the repeated analysis of the aeroelastic response of the
structure for various wind velocities. In a spectral approach, each of these analyses is based on the integration of
the power spectral density of the aeroelastic response. Traditional integration methods struggle to efficiently
estimate these integrals because of the marked peakedness of the function in the neighborhood of the poles of the
system. In this paper, we have derived an extension of the Background/Resonant decomposition (which is
commonly applied under the quasi-steady assumption), to aeroelastic analysis, where the stiffness and damping of
the coupled system changes with frequency. Both the background and resonant components take a more general
form than in the well known case. They remain simple, however, and offer therefore a straightforward under-
standing of the response. The proposed formulation is illustrated with several examples of torsional flutter, where
the critical state corresponds either to torsional galloping either to divergence. The study is limited to single
degree-of-freedom systems but constitute the cornerstone of an extension to multi degree-of-freedom systems,
where such an approximation becomes very interesting in terms of computational efficiency.
1. Introduction

Last few decades have seen large progress in long span bridge engi-
neering, inviting civil engineers to design constantly more slender
structures, with innovative shapes. Among all the tasks in the design of
such long span bridges, flutter is recognized as a concerning issue.

The first modeling of bridge flutter was inspired by the works on the
flat plate (Theodorsen, 1935) to study the behavior of airfoils in aero-
nautics. Few decades later, research migrated to civil engineering
(Scanlan and Tomo, 1971) and reached a canonical formulation (Scan-
lan, 1993), applicable to the complex profiles encountered in bridge
engineering (Sarkar et al., 1992, 2009). Scanlan’s notation relates to the
self-excited forces, where the lift force, the drag force and the pitching
moment are expressed by means of the so-called flutter derivatives, which
are obtained experimentally in a wind tunnel or by means of numerical
simulations. These quantities can be used to compute the aeroelastic
response of large bridges, which covers both the determination of the
critical wind velocity (e.g. (Miyata and Yamada, 1990)) and the response
to buffeting including the unsteady aerodynamics. At a final stage of a
bridge design, it is indeed important to have a detailed computation of
the bridge response, including structural modes shapes, computed with
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the finite element method or simple analytical expressions, as well as
their evolution with the mean wind velocity (Jain et al., 1996; Katsuchi
et al., 1998; Chen et al., 2000; Chen and Kareem, 2008). At the opposite,
simple models are also necessary to assess and understand the dynamical
behavior of structures under wind loading. The Background/Resonant
(B/R) decomposition for the quasi-steady response to gusty winds
(Davenport, 1962) is an example of a simple but commonly used
approach to assess and understand the response of structures to buffeting.
The simplicity of such models is appreciated especially in the preliminary
design stage or in a probabilistic context where these operations have to
be repeated a large amount of times (Cheng et al., 2005; Tommaso et al.,
2014). As to flutter, the most popular of these simple models is the
pitch-plunge model (Bisplinghoff and Ashley, 2013; Dimitriadis, 2017;
Amandolese et al., 2013), where the structure is reduced to a two
degree-of-freedom system and is subjected to both a lift force and a
pitching moment, whereas the drag force is not considered. This model is
easier to understand (Chen, 2007) but can be further simplified to a
single degree-of-freedom model, in cases where the response takes place
in only one mode. This later situation is the simplest case where diver-
gence and galloping can be observed (Simiu and Scanlan, 1996; H�emon,
2006).
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This review of the literature, and similar more involved state-of-the-
art reviews (Abbas et al., 2017; Diana et al., 2019), depicts the available
methods for the flutter analysis of a bridge deck subjected to aero-
dynamic and buffeting loads. The aeroelastic analysis is conducted either
in the time domain through the simulation of wind realizations, either in
the frequency domain in the form of a spectral analysis. In both cases, the
design quantity of interest is the variance of the response in several
modes or at several locations along the deck. In the time domain analysis,
the variance is simply obtained by a statistical processing of time series.
In the spectral analysis, the variance is the result of the integration of the
corresponding power spectral density. In the literature, this operation is
achieved by means of standard integration procedures where a fine fre-
quency resolution must be set to properly capture the sharp resonance
peaks. This operation is similar to the determination of the variance of
the response under buffeting loading only, which is known to benefit
from the (B/R) decomposition (Davenport, 1962). In its current and
original formulation, this decomposition is only valid, though, for
structures with fixed natural frequency and damping ratio. This paper
explores the possibility to extend this well-established decomposition to
the spectral analysis of a simple aeroelastic system. The proposed
approach is based on the general theory of the Multiple Timescale
Spectral Analysis (Deno€el, 2015), which generalizes the concept to much
broader domains of application (e.g. (Deno€el and Deg�ee, 2009; Deno€el,
2009; Deno€el, 2011)).

In this paper, we will limit the analysis to the response of a single
degree-of-freedom system in the frequency domain. This is the first step
toward the construction of a complete, rapid and insightful analysis of
large structural models which could be studied in amodal basis. On top of
the proposed solution derived in this paper, an extension of the modal
coupling (Deno€el, 2009) would be necessary. This aspect is unfortunately
not covered in this paper. It is organized as follows. Section 2 presents the
mathematical problem that is solved with the Multiple Timescale Spec-
tral Analysis. Section 3 derives the ad hoc solution while some illustrative
examples are given in Section 4.

2. Problem statement

2.1. Governing equations

The dynamics of a single degree-of-freedom system subjected to
buffeting and aerodynamic loads is governed by

ms€qðtÞ þ cs _qðtÞ þ ksqðtÞ ¼ fbuðtÞ þ faeðtÞ; (1)

where ms, cs and ks are the mass, viscosity and stiffness of the structural
system, and where t is the time. The loading consists of a buffeting
loading fbuðtÞ which is here assumed to be characterized as a Gaussian
stochastic process (Simiu and Scanlan, 1996) and the aerodynamic
loading faeðtÞ, which takes the form

faeðtÞ ¼ Lcae ½ _qðtÞ� þ Lkae ½qðtÞ�; (2)

where Lcae ½ �� and Lkae ½ �� represent linear time invariant operators. They
are usually expressed in the time domain by means of indicial functions
(Sarkar et al., 1992; Tubino, 2005). By gathering them on the lefthand
side, the governing equation reads

ms€qðtÞ þ cs _qðtÞ � Lcae ½ _qðtÞ� þ ksqðtÞ � Lkae ½qðtÞ� ¼ fbuðtÞ (3)

The frequency domain formulation is equivalent since operatorsLcae ½ ��
and Lkae ½ �� are linear. In the frequency domain, the governing equation
becomes�� msω2 þ iω cðωÞ þ kðωÞ �QðωÞ ¼ FbuðωÞ; (4)

where cðωÞ ¼ cs � caeðωÞ and kðωÞ ¼ ks � kaeðωÞ gather both the struc-
tural and aerodynamic viscosity and stiffness. It is obtained by a side-by-
2

side Fourier transform of (3). It is readily seen that caeðωÞ and kaeðωÞ
correspond to the frequency response functions associated with the linear
operators Lcae ½ �� and Lkae ½ ��. They depend on the frequency as a conse-
quence of the unsteadiness of the aerodynamic forces (Kareem and
Tamura, 2013). Some specific cases such as the flat plate model devel-
oped in the works of Theodorsen (1935) are discussed in Section 4.2.
Other examples will include the Scanlan’s coefficients.These coefficients
are supposed to be known, typically from wind tunnel measurement or
computational fluid dynamics simulations. This Section is meant to be
more general; so symbols caeðωÞ and kaeðωÞ are kept throughout the
derivation.

The mean wind loading is treated separately in a static analysis. The
buffeting loading fbuðtÞ is therefore considered to be zero-mean. Since it
is assumed to be a Gaussian process, it is completely characterized by its
power spectral density Sf ;buðωÞ. The power spectral density of the
response q(t) is thus obtained by

SqðωÞ ¼ jHðωÞj 2Sf ;buðωÞ; (5)

where

HðωÞ ¼ �� msω2 þ iω cðωÞ þ kðωÞ ��1 (6)

is the frequency response function of the aeroelastic system. The variance
of the response is finally obtained by integration of (5)

σ2
q ¼

Z þ∞

�∞
SqðωÞdω: (7)

2.2. Structural analysis under buffeting and flutter

In many wind engineering applications (as seen in the illustrations
presented in Section 4), caeðωÞ and kaeðωÞ are expressed as a function of
the reduced frequency K ¼ ωB/U where B is a characteristic size of the
structural element (a bridge deck) and U is the average wind velocity. In
this paper, it is implicitly assumed that both caeðω;U;BÞ and kaeðω;U;BÞ
are functions of the wind velocity too, although this is not explicitly
written in order to lighten the notations.

As a consequence, the variance of the response (7) can be computed
for several values of the wind velocity. However, the analysis of a
structure under buffeting loads and in the framework of the quasi-steady
assumption is usually performed for the design wind speed only (EN,
2009) and very little care is given to smaller values of the wind velocity
since, in that case, the standard deviation of the response σq is propor-
tional to the wind velocity (for constant turbulence intensity) (Simiu and
Scanlan, 1996), see Fig. 1-a; so the worst case is certainly captured when
the wind speed is the design wind speed.

The unsteady formulation of the aerodynamic forces, see (2), might
lead to aeroelastic instabilities such as galloping or divergence, both of
which are covered by the more general terminology of flutter (H�emon,
2006; Bisplinghoff and Ashley, 2013). Galloping occurs when the wind
velocity is such that the aerodynamic damping cancels the structural
damping, so that the total damping ξ is null at the natural circular fre-
quency ω of the aeroelastic system. The corresponding critical wind ve-
locity Ugal. is obtained by solving

cðωÞ ¼ cs � cae
�
ω
�
Ugal:

� � ¼ 0; (8)

where ω
�
Ugal:

�
is the natural frequency of the aeroelastic system, see

details next. Divergence occurs when the aerodynamic stiffness cancels
the structural stiffness, so that the total stiffness, henceforth the natural
frequency of the aeroelastic system, vanishes. The corresponding critical
wind velocity is obtained by solving

kðωÞ ¼ ks � kaeðωðUdiv:Þ Þ ¼ 0; (9)



Fig. 1. Illustration of background/resonant (B/R) method applied to flutter analysis. (a) Effect of wind speed on the displacement standard deviation and associated
limit cases (b) Background/resonant decomposition of a displacement PSD.
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where ωðUdiv:Þ ¼ 0 is the natural frequency of the aeroelastic system
corresponding to wind velocity Udiv..

The integral defined in (7) does not converge in the sense of Riemann
for U ¼ Ugal. since there is a non-integrable singularity located at ω ¼
ω
�
Ugal:

�
and it does not converge either for U ¼ Udiv. since there is a non-

integrable singularity located at ω¼ 0. A usual flutter analysis consists in
solving an eigen value problem to determine the critical wind velocities.
The smallest of the critical wind velocities gives the flutter onset
instability.

Beside the response to quasi-steady buffeting and the determination
of the critical wind velocity as an eigen value problem, which are rep-
resented in Fig. 1-a with dashed lines, a third type of analysis includes
both the buffeting and unsteady wind forces at the same time, see (1). In
that case, the transition from the quasi-steady to the unsteady response is
determined (Scanlan and Jones, 1990). To reproduce the complete flutter
response requires to repeat the computation of the integral (7) for various
values of the wind velocity. The added value of the complete flutter
response is that it provides the magnitude of the structural response for
wind velocities that go beyond the domain of validity of the quasi-steady
domain, and which correspond to about 50%–80% of the flutter speed.
Indeed, in typical design codes it is required that the critical flutter ve-
locity is at least 1.25 times larger that the design wind speed, e.g. (EN,
2009). The knowledge of the response in this intermediate regime allows
to classify the flutter into soft or hard flutter categories (Zhang, 2007).
This is an important information for the designers.

In summary, the determination of the complete flutter response of a
structure, as considered in this paper, is a mathematical problem that
consists in solving a dynamical system with frequency-dependent stiff-
ness and viscosity for a repeated number of wind velocities in the range
[0, Ucr].
2.3. Motivation and proposed approach

The numerical evaluation of (7), complicated by the presence of two
sharp resonance peaks, must be performed with a high frequency reso-
lution. Also the integration range cannot be pushed to infinity but must
be sufficiently large to properly capture both the background and reso-
nant components. Therefore, the calculation of the variance (7) using
conventional integration techniques (Press et al., 2007) requires many
integration points and becomes particularly unsuitable for complex
models where the computational cost of every integration point is sig-
nificant. Furthermore, the derivation of alternative and lighter methods
for the evaluation of (7) becomes of primary interest as soon as the
variance must be computed a large number of times, such as in a com-
plete flutter analysis.

In this paper, we seek to develop a multiple timescale approximation
(Hinch, 1991) of the integral, in the manner of the (B/R) decomposition
3

(Davenport, 1962). The main difference is that the viscosity and stiffness
of the aeroelastic system vary with the frequency, while they are sup-
posed to be constant in the original formulation. The principle relies on
the semi-analytical integration of two components, background and
resonant, which are identified as the two main contributions to the in-
tegral. Fig. 1-b illustrates the decomposition for two different wind ve-
locities. As the wind velocity increases, the natural frequency might shift
off, the damping ratio might also drop; these are the new features that are
captured by the formulation proposed in the following Section and that
are absent from the original (B/R) decomposition. It is also desired to
accommodate the possible variation of the aerodynamic viscosity and
stiffness across the resonance peak, since cðωÞ and kðωÞ are functions of
the frequency in the aeroelastic problem. This is an important specificity
of the considered problem, which differs from the original (B/R)
decomposition, where cðωÞ and kðωÞ were assumed to be constant.

3. Multiple Timescale Spectral Analysis

3.1. Assumptions

The approximate solution is based on the following assumptions:

(i) the timescales of the loading and of the system are significantly
different. In other words, a distinction is made between the slow
dynamics represented by the buffeting loading, and fast dynamics
represented by the natural vibrations of the aeroelastic system.
The centroid of the power spectral density of the buffeting load
shall be substantially lower (5–10 times lower) than the natural
frequency of the aeroelastic system;

(ii) the structural damping ratio is small, smaller or of the same order
of magnitude as 5%–10%; the quality of the approximation
worsens as the damping ratio grows beyond these values;

(iii) the frequency dependent stiffness and damping kðωÞ and cðωÞ vary
smoothly and moderately in the neighborhood of the resonance
peak of the aeroelastic system. The exact meaning of this
assumption will be made clearer after introduction of the
dimensionless formulation.

Assumptions (i) and (ii) are the same as in the classical (B/R)
decomposition, while assumption (iii) is specific to the current problem.
Under these conditions, the general framework of the Multiple Timescale
Spectral Analysis can be specialized to get simple solutions. In order to
make these assumptions explicit, we define the dimensionless aeroelastic
stiffness and viscosity as

KðωÞ :¼ kðωÞ
ks

¼ 1� kaeðωÞ
ks

CðωÞ :¼ cðωÞ
cs

¼ 1� caeðωÞ
cs

(10)
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which are frequency dependent and are not necessarily small; in fact the
aerodynamic loading can significantly affect the natural frequencies. We
also assume that the structural damping ratio ξs is a small positive
number,

ξs :¼
cs

2
ffiffiffiffiffiffiffiffiffi
ksms

p ≪ 1: (11)

This is the small parameter of the problem that will be used in the
subsequent analysis. It is here explicitly introduced in order to formalize
Assumption (i). With these notations, the frequency response function of
the aeroelastic system becomes

HðωÞ ¼ 1
ks

�
� ω2

ω2
s

þ 2iξs
ω
ωs

CðωÞ þ KðωÞ
��1

; (12)

where ωs :¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ks=ms

p
is the natural circular frequency of the structure in

wind-off conditions.

3.2. The background component

The Background component corresponds to the contribution of the
variance which is located in the very low frequency range, in the
neighborhood of the centroid of the power spectral density of the
buffeting load, see Fig. 1-b. In this area, ω ≪ ωs, the frequency
response function of the aeroelastic system is locally approximated by
ĤðωÞ ¼ ðksKðωÞ Þ�1, which is obtained by neglecting the dynamics in
the system (i.e. quasi-static response). The first contribution to the
power spectral density of the response is therefore given by

Sq;BðωÞ ¼ Sf ;buðωÞ
ðksKðωÞ Þ2 (13)

and the corresponding variance is expressed as a function of the filtered
variance of the buffeting load

σ2
q;B ¼ 1

k2s

Z þ∞

�∞

Sf ;buðωÞ
K2ðωÞ dω: (14)

In this expression, 1=KðωÞ can be seen as a frequency response
function filtering out the frequency content of the buffeting loading.
Since the timescales in KðωÞ and Sf ;buðωÞ might be similar, it is not
possible to further simplify this expression. It constitutes the background
component of the response. Notice that under the quasi-steady assump-
tion, KðωÞ → 1 and (14) degenerates into the usual background
component.

3.3. The resonant component

In the variance of the response, defined in (7), the background
component is trivially added and subtracted. This yields

σ2
q ¼ σ2

q;B þ
Z þ∞

�∞

�
SqðωÞ � Sq;BðωÞ

�
dω: (15)

The resonant component is then readily identified, as the main
component in the residue Sq;1ðωÞ :¼ SqðωÞ� Sq;BðωÞ, which is also written

Sq;1ðωÞ ¼
 
jHðωÞj2 � 1

ðksKðωÞ Þ2
!
Sf ;buðωÞ (16)

Indeed, the main contribution to this residue amounts from the two
resonance peaks of the aeroelastic system located in �ω. Assuming small
damping (Assumption (ii)), the resonance frequency of the aeroelastic
system is defined by

�ω2

ω2
s

þKðωÞ ¼ 0; (17)
4

which is the pole of the frequency response function HðωÞ for negligible
damping ratio, see (12). Dropping higher order terms, the resonance
frequency is therefore defined by KðωÞ ¼ ω2=ω2

s . This equation is not
difficult to solve; it is nothing but a nonlinear eigenvalue problem. In this
SDOF case, it turns into a nonlinear algebraic equation. The unicity of the
solution is not guaranteed, multiple poles might arise. Solutions can be
built by continuation as detailed next. We can also notice that ω is the
solution of a problem that is independent of ξs. It is therefore independent
of the perturbation analysis.

Considering now that ω is known (for a given wind velocity), a
stretched coordinate η is introduced to zoom on the resonance peak in the
neighborhood of ω ¼ þ ω. This is formally written

ω ¼ ωð1þ ξsηÞ; (18)

where η ¼Oð1Þ. Assuming now that K and C are smooth functions in the
neighborhood of ω (Assumption (iii)), they can be expanded as

KðωÞ ¼ KðωÞ þ ξs ηω∂ωKðωÞ þ O�ξ2s�; (19)

CðωÞ ¼ CðωÞ þ ξs η ω∂ωCðωÞ þ O�ξ2s�; (20)

which can be truncated at order ξs provided higher order derivatives are
small enough to keep the asymptoticness of this series
(ξisω

i
∂
i
ωKðωÞ ≪ KðωÞ).

Substituting (18), (19) and (20) into the frequency response function
(12) leads to

H½ωðηÞ� ¼ 1
ks

	
� ω2

ω2
s

ð1þ ξsηÞ2 þ 2iξs
ω
ωs

ð1þ ξsηÞðCðωÞ þ ξsη ω∂ωCðωÞ Þ

þKðωÞ þ ξsη ω∂ωKðωÞ þ O�ξ2s � 
�1

(21)

or, collecting the likewise powers of ξs together,

H½ωðηÞ�¼ 1
ks

	�
KðωÞ�ω2

ω2
s

�
þ
�
�2η

ω2

ω2
s

þ2i
ω
ωs

CðωÞþω∂ωKðωÞη
�
ξsþ

þ
�
�η2

ω2

ω2
s

þ2i
ω
ωs

ðCðωÞþω∂ωCðωÞÞη
�
ξ2s þþOðξ3s Þ


�1

:

(22)

Remembering the definition (17) of ω, it is readily seen that the first
term drops so that the leading term in the brackets is in ξs. It is then
decided to truncate the series at order ξs, invoking Assumption (ii) again.
The frequency response function is therefore expressed, at leading order,

HðωðηÞÞ ¼ 1
2ξsks

	�
� ω2

ω2
s

þ 1
2
ω∂ωKðωÞ

�
ηþ i

ω
ωs

CðωÞ

�1

: (23)

This expression recalls the formulation for a classical single degree-of-
freedom system (see Example 1). It captures the order of magnitude of
the resonance peak, 1

2ksξs
and, at the same time, accounts for the

frequency-dependent nature of the stiffness and viscosity. The asymptotic
analysis that has been performed so far assumes that all quantities other
than ξs are of order 1. As seen in (23), the frequency response function of
the aeroelastic system is expressed as a function of the aerodynamic
stiffness KðωÞ which enters in the definition of ω, the aerodynamic vis-
cosity CðωÞ and the gradient of the aerodynamic stiffness ∂ωKðωÞ in the
neighborhood of the resonance peak. This is precisely to account for the
possible non negligible variation of the aerodynamic stiffness across the
width of the resonance peak. At leading order, and assuming that
∂ωCðωÞe1, this expression also shows that the gradient in the viscosity
∂ωCðωÞ is actually repelled to a higher order; this is a consequence of the
assumption of small damping ratio. Nevertheless if ∂ωCðωÞ was much
larger than 1, which is a case we have not encountered in the applications
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that have been studied so far, it could be possible to enrich the proposed
approximation. This approach is summarized in Appendix A, where both
the derivatives of KðωÞ and CðωÞ are included in the approximation.

The substitution of (23) (which is of order 1/ξs) into (16) indicates
that the term 1=ðksKðωÞ Þ2 can be neglected, so that the residue is given
by

Ŝq;1ðωðηÞ Þ ¼
Sf ;buðωðηÞ Þ
ð2ksξsÞ2

1�
ω2

ω2
s
� 1

2ω∂ωKðωÞ
�2

η2 þ
�

ω
ωs
CðωÞ

�2: (24)

It is also usual to assume that the power spectral density of the buf-
feting loading does not vary too fast in the neighborhood of the reso-
nance peak—other solutions are available otherwise—, i.e. Sf ;buðωðηÞ Þ ¼
Sf ;buðωÞþ OðξsÞ. In this case, this term is seen as a constant with respect
to integration along ω. The resonant component is obtained by multi-
plying Ŝq;1ðωðηÞ Þ by 2 in order to take into account the two resonance
peaks located at ω ¼ �ω, and integrating along frequencies

σ2
q;R ¼ 2

Z þ∞

0
Ŝq;1ðωðηÞ Þξsωdη: (25)

This integral accepts a closed form expression since the PSD of the
loading is replaced by Sf ;buðωÞ. After substitution of (24) into (25) and
some standard calculus, the resonant component is finally given by

σ2
q;R ¼ Sf ;buðωÞ

k2s

πωs

2ξsCðωÞ
1����ω2

ω2
s
� ω∂ωKðωÞ

2

���� : (26)

Returning to original variables, the resonant contribution is expressed
under a generalized form of the well known resonant contribution for
systems with constant mechanical properties,

σ2
q;R ¼ Sf ;buðωÞ

k2s

πωs

2ξs

cs
cs � caeðωÞ

ks����ks � kaeðωÞ þ 1
2ω∂ωkaeðωÞ

���� : (27)

The last two factors are indeed equal to 1 in the absence of aero-
dynamic stiffness and viscosity. When these quantities are not null, the
damping ratio of the system is affected and is not equal to the structural
damping ratio. This justifies the introduction of a new damping ratio that
includes the aeroelastic contribution

ξ :¼ cs � caeðωÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðks � kaeðωÞ Þms

p : (28)

The substitution in (27) ultimately yields

σ2
q;R ¼ Sf ;buðωÞ

ðks � kaeðωÞ Þ2
πω

2ξ
1

1þ 1
2

ω∂ωkaeðωÞ
ks�kaeðωÞ

which makes it even more obvious that this is a generalization of the
well-known (B/R), to systems with smoothly varying mechanical prop-
erties, while the smoothly varying buffeting spectra is handled in the
same convenient manner as in the original decomposition.

3.4. Summary with dimensional quantities and practical implementation

The addition of the background component to the resonant one pro-
vides

σ2
q ¼ σ2

q;B þ Sf ;buðωÞ
ðks � kaeðωÞ Þ2

πω

2ξ
1

1þ 1
2

ω∂ωkaeðωÞ
ks�kaeðωÞ

; (29)

where in the dimensional version, the eigenvalue of the aeroelastic sys-
tem is computed by
5

ks � kaeðωÞ � msω2 ¼ ordðξsÞ: (30)
In practice, the flutter analysis is repeated for several increasing
values of the wind speed {U(n)}, n 2 N, starting from U(0) ¼ 0 m/s and
until a critical state is reached. For each increment in this sequence, a
simple iterative method, based on the power method, can be used to
compute ωðUðnÞÞ. Starting from the first guess ωð0Þ ¼ ω

�
Uðn�1Þ�, or ωð0Þ ¼

ωs when n ¼ 0, just a couple of iterations can be performed at each
increment of wind speed in order to converge to the new natural fre-
quency. The iterative scheme is as simple as

ωðiþ1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks � kaeðωðiÞÞ

ms

s
: (31)

where kaeðωðiÞÞ is the aerodynamic stiffness corresponding to the fre-
quency ωðiÞ and wind velocity U(n). This operation is repeated a couple of
times until a desired convergence criterion is reached and
limi→þ∞ωðiþ1Þ ¼ ωðUðnÞÞ. At this stage, it is recalled that the analysis is
performed for U � Udiv. so that ks � kaeðωðiÞÞ is indeed positive.

In the pitch-plunge model (Bisplinghoff and Ashley, 2013), the
aerodynamic forces per unit length are expressed as

�
LseðωÞ
MseðωÞ

�
¼ q
�
ωB
U

�2�
1 0
0 B

�"
H*

1iþ H*
4 H*

2iþ H*
3

A*
1iþ A*

4 A*
2iþ A*

3

#�
ZðωÞ
BΘðωÞ



(32)

where q ¼ 1
2 ρU

2, H*
i and A*

i for i ¼ {1, .., 4} are the flutter derivatives of
the deck cross section according to the Scanlan formulation, U is the
average wind velocity, B is the width of the deck and ρ is the density of
the air. According to Davenport’s model (Davenport, 1962), the buffeting
forces are defined by

�
LbuðωÞ
MbuðωÞ

�
¼ qB

U

24 2πAðωÞ
π
2
BAðωÞ

35WðωÞ; (33)

where A(ω) is the real function called admittance, that weights the quasi-
steady values of buffeting forces in the frequency domain andW(ω) is the
Fourier transform of the vertical wind velocity w(t). This formulation and
these notations are similar to common practice in the field, see e.g.
(Diana et al., 2019). In this paper, a single degree-of-freedom model is
considered. Keeping only the rotational degree-of-freedom, the equation
of motion governing stall flutter is obtained�� ω2Is þ 2ξIsωsðiωÞ þ Isω2

s

�
ΘðωÞ ¼ MseðωÞ þMbuðωÞ; (34)

where Is is the mass moment of inertia per unit length and such that the
aeroelastic pitching moment and the buffeting pitching moment are
reduced to

MseðωÞ ¼ qB2

�
ωB
U

�2�
A*
2iþ A*

3

�
ΘðωÞ;

MbuðωÞ ¼ qB
U

�π
2
BAðωÞ

�
WðωÞ

(35)

On account that MseðωÞ ¼ ðiωcaeðωÞ þ kaeðωÞ ÞΘðωÞ, comparison with
(4) shows that

kaeðωÞ ¼ qB2

�
ωB
U

�2

A*
3ðωÞ;

caeðωÞ ¼ qB2B
U

�
ωB
U

�
A*
2ðωÞ

(36)

These latter equations will serve as common basis for all the following
illustrations. In these illustrations, the proposed extension of the B/R
decomposition will be used to compute the standard deviation of the
torsional response; it will also be compared to an accurate result obtained



Table 1
Structural properties of the structures considered in Illustrations 1 and 2.

Golden Gate Tacoma Storebaelt

Moment of Inertia Is [kg/m] 4.4 ⋅ 106 177.73 ⋅ 103 2.47 ⋅ 106

Natural frequency fs [Hz] 0.1916 0.20 0.278
Damping Ratio ξs [%] 0.5 0.5 0.3
Deck width B [m] 27.43 12.0 31
Aeroelastic Model Bluff body Bluff body Flat Plate
Type of instability Galloping Galloping Divergence
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by numerical integration of the power spectral density of the response.

4. Illustrations

4.1. Illustration 1 - application to bluff bodies

For this first illustration, the B/R decomposition is applied to the
Golden Gate and TacomaNarrows bridges. For both structures, the flutter
derivatives A*

2ðωÞ and A*
3ðωÞ shown in Fig. 2 as well as other useful data

summarized in Table 1 are considered. These values are taken from
(Canor et al., 2015; Foucriat and Cremona, 2002; Larsen, 2000; Larsen,
1998). The aerodynamic stiffness and viscosity kaeðωÞ and caeðωÞ are
obtained with (36) and spline interpolation.

To ensure a safe behavior against flutter, the variance of the torsional
displacement must be calculated for a sufficiently wide range of wind
velocities U. The results obtained for the Golden Gate Bridge are shown
in Fig. 3. The power spectral density of the torsional response is shown in
Fig. 3-a for several values of U. The exact power spectral density is
compared to the power spectral density corresponding to the B/R
decomposition (in a log scale). The agreement is very good where the
power spectral densities are large. This is also confirmed on Fig. 3-b
showing the variance of the torsional response., the proposed method
shows a perfect superposition with the reference curve obtained from
numerical integration, until the critical wind velocity Ucr � 24 m/s,
represented by the dashed line and evaluated with (8). The background
(B) contribution to the displacement standard deviation is very low and a
quite accurate expression can already be obtained from the resonant
component (R) alone. This is justified by the fact that this first illustration
corresponds to a torsional galloping, as clearly illustrated from the power
spectral densities: the frequency is not affected by the wind velocity but
the damping ratio drops to zero when approaching the critical wind
velocity. The relative error on the numerically integrated curve does not
exceed 1% as illustrated by 3-e. Also, the magnitude of the aeroelastic
damping and stiffness gradients ∂ωKðωÞ and ∂ωCðωÞ, plotted as a function
of U in 3-c, validates the truncation of the series expansions (19 and 20).
Finally, it is observed in Fig. 3-d that the structure indeed fails from a
galloping instability, since the damping becomes negative at the critical
velocity Ucr. The value obtained for the critical velocity is corroborated
by (Canor et al., 2015), and matches well the vertical asymptote of the
standard deviation of the torsional displacement.

The second example, the first Tacoma Narrows bridge, is widely
known for its unstable flutter behavior (Larsen, 2000). The results ob-
tained for this second example are shown in Fig. 4. Globally, the struc-
tural behavior is very similar to the one previously discussed, but the
critical speed is significantly lower. The instability corresponds again to a
torsional galloping. It takes place at a wind velocity of 11.5 m/s, which is
Fig. 2. Flutter derivatives A*
2ðωÞ and A*

3ðωÞ of the structures considered in Il-
lustrations 1 and 2.
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consistently obtained either with formula (8) giving the critical wind
velocity, either by reproducing the complete flutter response σθ(U), or
when the damping ratio ξðUÞ estimated with the proposed method rea-
ches zero. It is also consistent with the values provided in (Larsen, 1998).
More importantly, the complete flutter response is again accurately
captured by the proposed extension of the B/R decomposition; yet, the
resonant part of the response is seen to be the most important.

4.2. Illustration 2 - application to the flat plate model

The next example is borrowed from the recent benchmark about
flutter analysis of bridges (Diana et al., 2019). In that benchmark, a
pitch/plunge model of the Storebaelt bridge is studied with the actual
structural properties of the bridge and with the aerodynamic properties
of a flat plate (Theodorsen, 1935). In this paper, we further reduce this
study to the sole torsional dynamics. The aeroelastic deck section is
idealized by a flat plate, a simplification which is known to be useful in
the prediction of more complex geometries (Caracoglia and Jones, 2003).

The flutter derivatives are expressed as functions of FðωÞ and GðωÞ,
respectively the real and imaginary part of Theodorsen’s circulation
complex function CðωÞ. This function considers the non-stationary
contribution through the fluid-structure interaction. The function is
approximated by the analytical formula suggested by (Jones, 1940), that
involves a combination of exponential functions. This approximation is
used in the following developments.

The flutter derivatives A*
2ðωÞ and A*

3ðωÞ read (Diana et al., 2019)

A*
2 ðωÞ ¼ �π

8
U
ωB

�
1� FðωÞ � 4U

ωB
GðωÞ

�
;

A*
3 ðωÞ ¼ π

2

�
U
ωB

�2�
FðωÞ � ωB

4U
GðωÞ

� (37)

so that the aeroelastic stiffness and damping obtained by (36) read

kae ¼ qB2π
2

�
FðωÞ � ωB

4U
GðωÞ

�
cae ¼ �q

B3

U
π
8

�
1� FðωÞ � 4U

ωB
GðωÞ

� (38)

Before tackling the analysis, it is possible to predict the type of
instability based on the knowledge of the flutter derivatives. As shown in
Fig. 2, the damping-related flutter derivative A*

2 is negative, whereas the
stiffness-related flutter derivative A*

3 is positive. In other terms, the
aeroelastic loading provides additional damping to the structure, while it
decreases the total aeroelastic stiffness. Accordingly, the bridge heads
towards a divergence instability.

This is confirmed by Fig. 5-d, showing a natural frequency decreasing
with the wind velocity. Fig. 5-d also reveals a marked grow of the total
damping ratio ξ for increasing velocity, reaching more than 20% for wind
velocities larger than 80 m/s, going therefore beyond the scope of
assumption (i). Even so, the proposed analytical solution remains in good
agreement with numerical results for small to intermediate values of
velocity U, as shown in Fig. 5-b. As a matter of fact, the power spectral
densities and standard deviations are well approximated, with acceptable
errors (<10%) up to a wind velocity of 80 m/s. In the proposed method,



Fig. 3. Results obtained from background/resonant methods applied to the first illustration (Golden Gate Bridge). (a) PSD and their approximations for different wind
velocities. (b) Scaled standard deviations obtained from background component (B), resonant components (R), and the sum of them (B)þ(R). (c) Evolution of scaled
aeroelastic stiffness and damping gradients with respect to avg. wind velocity. (d) Damping ratio at resonance with respect to avg. wind velocity. (e) Error on σθ with
respect to avg. wind velocity.

Fig. 4. Results obtained from background/resonant methods applied to the first illustration (Tacoma Narrows bridge). (a) PSD and their approximations for different
wind velocities. (b) Scaled standard deviations obtained from background component (B), resonant components (R), and the sum of them (B)þ(R). (c) Evolution of
scaled aeroelastic stiffness and damping gradients with respect to avg. wind velocity. (d) Damping ratio at resonance with respect to avg. wind velocity. (e) Error on σθ
with respect to avg. wind velocity.
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the order of magnitude of the error corresponds to the total damping
ratio ξ; in this example, the total damping ratio reaches 20% around 80
m/s which matches the order of magnitude of the error of 10% (the
proposed method is therefore more relevant when the instability occurs
7

in galloping-type rather than divergence-type instability). Beyond this
point, a lack of precision shows up right before the vertical asymptote
defining the critical velocity, where a larger discrepancy appears with
respect to the numerical solution. Given the magnitude of the damping in
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this range of velocity, the eigenvalue problem (30) needs to be recon-
sidered by including the damping ratio at leading order.
4.3. Illustration 3 - torsional galloping of a bridge deck section of the Third
Bosphorus bridge during lifting operations

This application presents a real torsional SDOF model behavior.
During the Third Bosphorus bridge deck building operations, each
segment of the deck was positioned by lifting from a floating platform to
the deck level, at a height of 75 m above sea level, see Fig. 6-a. This
operation involves a 825 t load to be lifted and last sufficiently long for
the deck segment to be submitted to turbulent winds and possible
aeroelastic instability (Andrianne and de Ville de Goyet, 2016). This
system is particularly compliant in torsion along the vertical axis, as the
strandjacks are relatively close to each other. In these circumstances, the
deck segment is highly sensitive to aeroelastic instabilities and, if no
precaution is taken, torsional galloping could be observed with angular
displacements larger than 30� in most severe configurations.

Each deck segment is characterized by a massms ¼ 825 t, a width B¼
58.4 m, and a lengthD¼ 14m, see Fig. 6-a. The strandjacks are separated
by 6 m 	 13.5 m, and the modal parameters are shown in Table 2. The
stiffness in torsion is calculated by

kθ ¼ msgd2

L
;

where g is the acceleration of gravity, L 2{0, 100} m is the length of the
lifting cables and d ¼ 7.4 m the distance from the strandjacks to the
center of rotation of the segment. This stiffness is computed from the
pendulum-like stiffness msg/L of a single cable; for a unit rotation of the
deck, θ ¼ 1, the displacement of the anchorages is equal to d which gives
after multiplication by the pendulum-like stiffness and the lever arm d,
the torsional moment corresponding to a unit rotation. The Scanlan
Fig. 5. Results obtained from background/resonant methods applied to the first illus
velocities. (b) Scaled standard deviations obtained from background component (B),
stiffness and damping gradients evolution with respect to avg. wind velocity. (d) Dam
respect to avg. wind velocity.
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derivatives have been determined by experimental testing at the Uni-
versity of Li�ege (Andrianne and de Ville de Goyet, 2016); this study has
revealed that the wind velocity does not affect the eigen frequency and
thus, the stiffness. The derivative A*

3 is therefore negligible. The struc-
tural properties are summarized in Table 2, and the only remaining
flutter derivative of interest, A*

2, is shown in Fig. 6-b as a function of the
reduced frequency U/fB ¼ 2πU/ωB. Following the quasi-steady theory,
the buffeting forces are described by

Fb ¼
�
1
2
ρUB

dCM

dβ

�2

SwðωÞ; (39)

where dCM/dβ ¼ �0.02 is the derivative of the moment coefficient with
respect to the torsional coordinate β. This value has been determined
with stationary tests on a rigid bridge deck segment mounted on a high
frequency force balance at the University of Li�ege; it is also consistent
with the torsional coefficients measured on cantilever bridges under
construction (Pindado et al., 2005).

The analysis is repeated for several values of wind velocity up to
critical state as shown in Fig. 7. The superimposed power spectral den-
sities of Fig. 7-a are fully centered on 0.18 Hz, showing that no frequency
shifting occurs with increasing incoming wind speed, due to the negli-
gible aeroelastic stiffness. Therefore this is an example of pure torsional
galloping. Because the scaled damping gradient ∂ωCðωÞξsω is of order
10�3, its contribution to the transfer function is of order 10�6 and can
clearly be neglected in front of OðξsÞ terms, as it was assumed in (23).
Again, the background resonant decomposition provides an excellent
estimation of the standard deviation of the torsional coordinate, with a
relative error constantly lower than 0.3%. The vertical asymptote in the
neighborhood of the critical regime takes place around 12 m/s, which is
also the velocity at which the aeroelastic damping equals the structural
damping, see Fig. 7-d; this is also consistent with available results in the
literature (Andrianne and de Ville de Goyet, 2016).
tration (Great Belt Bridge). (a) PSD and their approximations for different wind
resonant component (R), and from combinations of them. (c) Scaled aeroelastic
ping ratio at resonance with respect to avg. wind velocity. (e) Error on σθ with



Fig. 6. (a) View of the deck segment during lifting operation, (b) Flutter derivatives A*
2ðωÞ and A*

3ðωÞ of the Third Bosphorus bridge deck segment (both experimental
data and fitting are taken from (Andrianne and de Ville de Goyet, 2016)).

Table 2
Modal parameters for the segment deck during lifting operation.

Segment BB3

Cable length L [m] 100
Torsional radius d [m] 7.39
Segment mass ms [kg] 8.25 ⋅ 105

Eigen Frequency fs [m] 0.031
Damping Ratio ξs [%] 0.2
Type of instability Galloping
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5. Conclusion

The complete flutter analysis of a structure requires the repeated
analysis of the aeroelastic response of the structure for various wind
velocities. Each of these analyses is based on the integration of the power
spectral density of the aeroelastic response. Traditional integration
Fig. 7. Results obtained from background/resonant methods applied to the third illu
different wind velocities. (b) Scaled standard deviations obtained from background
Evolution of scaled aeroelastic stiffness and damping gradients with respect to avg. w
(e) Error on σθ with respect to avg. wind velocity.
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methods struggle to efficiently estimate these integrals because of the
marked peakedness of the function in the neighborhood of the poles of
the system. In this paper, we have derived an extension of the Back-
ground/Resonant decomposition (which is commonly applied under the
quasi-steady assumption), to aeroelastic analysis, where the stiffness and
damping of the coupled system change with frequency.

Assuming significantly different timescales in the buffeting loading
and in the natural frequencies of the aeroelastic system, a small damping
ratio ξs, and smoothly varying aeroelastic stiffness and damping, we have
derived a closed form expression for the variance of the response as a sum
of a Background and a Resonant components. This result has been ob-
tained by specializing the more general framework known as Multiple
Timescale Spectral Analysis. It is shown that the background component
takes a slightly different form than usual, since the energy of the buf-
feting loading is lowpass filtered and not just translated in a quasi-static
manner. Also the resonant component assumes a form that is very similar
to the classical decomposition, with the differences that the quantities
stration (Bosphorus Bridge deck segment). (a) PSD and their approximations for
component (B), resonant components (R), and the sum of them (B)þ(R). (c)
ind velocity. (d) Damping ratio at resonance with respect to avg. wind velocity.
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related to the natural frequency of the structural system are moved to the
natural frequency of the aeroelastic system and that there is an additional
coefficient in the expression, taking care of the possible non negligible
change of the aeroelastic stiffness in the neighborhood of the natural
frequency of the aeroelastic system.

The proposed method is tested on three realistic examples. It has
shown accurate results with an error lower than 1% in most cases.
Torsional galloping is accurately captured since it meets the assumptions
of the model; torsional divergence of the flat plate is also well repre-
sented but until approximately 90% of the critical wind velocity since the
damping ratio is too large beyond that point.

This extension of the background/resonant decomposition to SDOF
aeroelastic systems with frequency dependent stiffness and viscosity is
successful. It might seem at this stage of minor interest since the domain
of application does not require heavy calculation power. However, it
shall constitute a major cornerstone of the extension of the method to
MDOF systems for which the computation load remains critical.
10
Analytical solution, although approximate at some point, also offer a
better understanding of the different contributions to the integral.
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Appendix

The derivation of the first order approximation for H(ω) was obtained in (23) truncating (22) at leading order. If it is clear that ω=ω and CðωÞ ¼ 1�
caeðωÞ=cs are of order Oð1Þ, the magnitude of ∂ωCðωÞ is less easily predicted, and some applications could potentially embed a large damping gradient,
especially if they are subjected to galloping instabilities, where the damping could vary rapidly. This section details this uncovered particular case of a
large ∂ωCðωÞ. Restarting from (22) and remembering the definition (17) of ω

H½ωðηÞ� ¼ 1
ks

	�
� 2η

ω2

ω2
s

þ 2i
ω
ωs

CðωÞ þ ω∂ωKðωÞ η
�
ξs þ

�
� η2

ω2

ω2
s

þ 2i
ω
ωs

ðCðωÞ þ ω∂ωCðωÞ Þη
�
ξ2s þþOðξ3s Þ


�1

:

Assuming now that ∂ωCðωÞ is of order O
�

1
ξs

�
, and truncating at leading order,

HðωðηÞÞ ¼ 1
2ξsks

	�
� ω2

ω2
s

þ 1
2
ω∂ωKðωÞ

�
ηþ i

ω
ωs

η ω∂ωCðωÞξs

�1

: (40)

This expression generalizes (23) to large damping gradient. Since H(0) is still asymptotic to 1=ksKðωÞ, the background component remains un-
changed, and the resonant component only deserves further study.

In (24), the residue is approached by

Ŝq;1ðωðηÞ Þ ¼ 1

ð2ksξsÞ2
1

αη2 þ βηþ γ
Sf ;buðωðηÞ Þ (41)

with

α ¼
�
ω2

ω2
s

� 1
2
ω∂ωKðωÞ

�2

þ ξ2s

�
ω
ωs

�2

ðω∂ωCðωÞÞ2;

β ¼ 2ξs

�
ω
ωs

�2

CðωÞω∂ωCðωÞ

γ ¼
�
ω
ωs

CðωÞ
�2

:

Again, we assume that the power spectral density of the buffeting loading does not vary too fast in the neighborhood of the resonance peak such that
Sf ;buðωðηÞ Þ ¼ Sf ;buðωÞþ OðξsÞ. In this case, this term is seen as a constant with respect to integration along ω. The resonance component associated with
the resonance peak in the positive range of frequencies therefore reads

σ2
q;R ¼ ω Sf ;buðωÞ

2ξsk
2
s

Z þ∞

�∞

dη
αη2 þ βηþ γ

¼ ω Sf ;buðωÞ
2ξsk

2
s

�
2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4αγ � β2
p �

(42)

which constitutes the extension of the resonant component to high damping gradient structures. Accordingly, the superposition of the background and
resonant components gives an estimate of the variance of the response

σ2
q ¼ σ2

q;B þ
ω Sf ;buðωÞ
2ξsk

2
s

�
2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4αγ � β2
p �

(43)
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To illustrate the gain in accuracy brought with this additional term, the results of the first (B)þ(R1) and the second (B)þ(R2) methods are compared
for the Golden Gate application in Fig. 8, showing a perfect superimposition. It is seen in Fig. 3-c that the scaled damping gradient remains very low,
indicating that the gain in accuracy is highly limited.

Fig. 8. Scaled standard deviations obtained from background component (B), resonant components (R), and the sum of them (B)þ(R). (R1) assumes that the damping
gradient is negligible, while (R2) drops this assumption.
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