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ABSTRACT

In this paper the effect of a discontinuity in the mean molecular weight, u, in stellar models is ex-
amined. The case when such a discontinuity occurs in the envelope (r/R < % and mr] >~ M) is first con-

- sidered. And it is shown that, in general, a discontinuity in p produces convective instability in a small

zone past the place where the discontinuity occurs. The resulting turbulence will cause mixing, and the

- star will rapidly adjust itself to a neighboring stable state, in which the interior region of higher u and
_ the exterior region of lower u are separated by 4 transition region in which u varies according to the law

w o« P75 Tt is further shown that the time required for such a readjustment is very small, compared

. to the time in which a discontinuity in u can be established.

The case in which the discontinuity in u occurs in the deep interior is next examined. It appears that,
even here, a pure discontinuity of u will, in general, be smoothed out and a transition zone of variable

. u established. The law of variation of u in this transition zone follows the law u o« m(r) P75, Owing to

the presence of the factor m(r), the importance of the transition zone is greater when the change in u oc-
curs in the deep interior.

Finally, stellar models are constructed which consist of convective cores and radiative envelopes with
assigned mean molecular weights u; and u., respectively, separated by transition zones of variable u

" (also in radiative equilibrium). It is shown that these models satisfy all the conditions of the-problem

- and, further, that they do not differ greatly in their physical properties from models constructed with

' point-source envelopes fitted directly to convective cores without regard to the continuity of the lumi-

. nosity at the interface. However, up to a certain point their interpretation as a sequence of evolution is
easier.

1. Introduction.—Stellar models in which the mean molecular weight, u, takes differ-
ent values in different parts of the star have been discussed on a number of occasions in
recent years. The most important physical context in which the problem arises is in -con-

nection with the expected increase in the mean molecular weight in the convective re-

gions in the interior, consequent to the gradual impoverishment of hydrogen by the con-
tinued operation of the carbon cycle.! F. Hoyle and R. A. Lyttleton? have also considered
the possibility that accretion of interstellar hydrogen might lead to a discontinuity of u
in the outer parts of a star also. Particularly in this latter case, these authors conclude
from a discussion of the conditions to be satisfied at an interface, where p jumps discon-
tinuously from a value p. in the outer part to a value y; in the interior, that the ratio
w:i/ ne cannot exceed a certain limiting value (~1.53); and they further infer from this
that when u;/u. exceeds this critical value, developments of a dynamical nature must
take place, with large-scale currents setting in; they even envisage the possibility of non-
static atmospheres arising in this way. However, a detailed examination of this problem
undertaken in §§ 3-5 reveals that these conclusions are without any real foundations.

Again it appears that there are also numerous misunderstandings regarding the prob-
lem considered by Schonberg and Chandrasekhar (op. cif). The discontinuity in u as- -
sumed by these writers at the place r,, where the radiative gradient becomes unstable, is
a simplification of a mathematical nature which cannot, of course, be realized in prac-
tice. It is apparent that, even if a discontinuity should be artificially introduced at a
given instant, we should expect that the “corners” will be smoothed by mixing at the

1 M. Schonberg and S. Chandrasekhar, 4. J., 96, 161, 1942; see also M. Harrison, 4. J., 100, 343
1944; 103, 193, 1945; 105, 322, 1947.
2 M.N., 102, 218, 1942.
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interface. Indeed, it might even be argued by some that large-scale currents of the nature
expected in rotating stars will prevent any appreciable inhomogeneities from arising in
the chemical composition of a star. However, we shall not consider this latter
possibility and shall restrict ourselves to those processes of mixing which may be ex-
pected in a star in hydrostatic equilibrium. There are, then, two types of processes to be
considered: mixing (or sedimentation) consequent to thermal or similar diffusion and
mixing by turbulent eddies when these exist in virtue of a prevailing superadiabatic
gradient. It would seem that the former, as an agency in bringing about or smoothing
existing differences of chemical composition, is very inefficient.? We are, therefore, left
with mixing only in regions where convection exists or in regions where convection is set
up in consequence of a difference of u in neighboring regions; in the latter case, we may
expect the mixing to cease, once an appropriate redistribution has been effected. And,
since turbulent eddies are known from meteorological experience to be very efficient as
an agency for mixing, we shall restrict ourselves to this mechanism alone in our further
considerations. One consequence which follows on these assumptions is that p will have a
constant value in the (Cowling) convective core and that the variation of u outside this
region must be steep. This is the justification for the assumption of a discontinuous u|
made in the investigation we have referred to. However, we shall show in this paper how
it is possible to avoid the strictly nonphysical assumption of a mathematical discontinu-
ity in p by deriving the variation of u which will result in the outer radiative regions in
consequence of turbulence having once existed.

2. Preliminary considerations.—It is well known that, for stars of normal masses,
radiation pressure as a factor in the equation of hydrostatic equilibrium can be ignored,
and the equations of the problem are

dP Gm(r)p '
&__Gnie (1)
ar ~ 3«xp L(1n). 2)
dr ~ 16wacT® 2 '
or
dlogT 3kop(1—X2) L(r) P* (3)
dlogP  16wacGR m(r) T35
where we have used Kramer’s law of opacity, .
k=ko(1l— X2) pT—35, (37

In the foregoing equations, X is the abundance of hydrogen To the same order of ap-
proximation, the mean molecular weight is given by

2
=< 4
FTTR3x ()
Further, we have
T
_ el (5)
"
and !
dL (r) =4mperidr , . (6)
where € is the rate of generation of energy and
dm (r) =4wpridr. (7)

8 S. Chapman, M.N., 82, 292, 1922,
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In a region where u is a constant, the condition of convective stability resulting from
the requirement that a small parcel of matter displaced adiabatically upward (down-

‘ward) becomes heavier (lighter) than the surrounding medium is

dlogT . 2

dlogP ™5’ (8)

if the ratio of specific heats, v, is taken to be £, as for a monatomic gas.

In a region where u varies (owing to a real spatial difference in chemical composition
and not to the variation of physical conditions), we must take into account the fact that u

‘remains constant during the displacement of a small element, and the condition of sta-

bility becomes
dlogT .2, dlogu

dlogP 5 dlogP’ )

Now, if u varies from a value p, in the outer part to a value p; = p, + Ap in the inner

'part across a spherical shell of thickness Ar between the two parts, then in this region of

varying u, equations (1)—(7) will continue to be valid, whatever the value of the ratio

-Ap/Ar. Equations (1) and (7) require that Am(r) and AP be proportional to Ar, while

from equation (5) it follows that one of the ratios Ap/Ar or AT/Ar must be of the same
order of magnitude as Au/Ar. L. Gratton* argues in favor of taking A7/Ar proportional
to Au/Ar. But, by equation (2), this would make L(r) depend, in that region, on the

“steepness of the variation of u, which is physically inadmissible; and AT, like Am(r) and
AP, should be proportional to Ar. Passing to the limit of a discontinuity in u, we obtain

the usual boundary conditions, namely, that m(r), P, and T are continuous across the

‘interface, while p has a discontinuity related to that of u by

P _Hi (10)

These are the boundary conditions used by Schénberg and others in their investigations.
As AT and AP are proportional to Az, while Ay is independent of it, condition (9)

shows that such a region of variation of p will become extremely stable with respect to

convection as Ar decreases.

By equation (6) L(r) also should be continuous across the interface. It is this condition
that Hoyle and Lyttleton? have taken explicitly into account in their investigation of the
external layers of a star. Recently,* they have extended their discussion to the deep in-
terior, considering especially the case in which the discontinuity of u occurs at the bound-
ary of the convective core. They consider that, since, by definition, convection should
stop at the boundary of the core, the transfer of energy on both sides of the interface
should be governed by equation (2), and the continuity of L(r) at the interface would re-
quire, according to equation (3), that

e+ 1), (1= X2) = (mat1) ps (1 - X7, (11)
where we have introduced the effective polytropic index #,
_ d log P
(n+1) g T (12)

4 Dr. Gratton’s original paper is not accessible to the author, but, through the kindness of Dr. Chan-
drasekhar, the author has seen some correspondence in which Dr. Gratton has stated his argument.
Similarly, the author has also had the opportunity of seeing a manuscript of a paper by Hoyle and
Lyttleton on the same subject
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Hoyle and Lyttleton point out that condition (11) is incompatible with thé procedure
generally adopted in fixing the boundary.of the convective core (#; = §) where the
radiative solution for the point-source envelope becomes unstable (#, = %), except in
the case in which there is no change of composition across the interface (u; = u). Fur-
thermore, condition (11) implies a limitation for the possible variation of u, just as in the
external layers. Thus, when u; is different from u., Hoyle and Lyttleton propose to re-
place the condition of ‘the continuity of # across the interface by condition (11), whenever
it can be satisfied. However, we shall show (§§ 5, 6) that condition (11), even when it is
satisfied for #; = §, does not, in itself, tell us anythmg as to the existence or otherwise
of a convective region past the interface. Also, the limit formally set by equation (11)
on the magnitude of the variation of u can be violated in the interior of the star just as in
the external layers without endangering its equilibrium. In fact, we shall show (§§ 3, 6),
contrary to the views expressed by Hoyle and Lyttleton, that for any assigned value of
wi/ pe equilibrium configurations can be found which will be compatible with all the condi-
tions of the problem, including the condition of the continuity of L(r) and the stability
criteria (8) and (9). But it may be said, even here, that these detailed considerations
confirm what may indeed be expected, on general grounds—that a satisfactory first ap-
proximation is obtained by insuring the continuity of # across the interface and ignoring
condition (11). Thus a stellar model, constructed with the usual boundary conditions of
continuity of » and discontinuity of p at the interface, where u is discontinuous, will vio-
late condition (11). The consequence of this violation is that more energy is leaving the
external side of the interface than is brought to its internal side by radiation alone. But it
is well known that, in the convective parts of the star, turbulence is very effective as a
means for transporting energy,® so that only a very slight superadiabatic gradient ex-
tending to the surface of the convective core would be sufhcient to compensate for this.
Thus, if we suppose, for example, that the two kinds of material composing the external
and the internal regions cannot mix at all (or that they are separated by a perfectly
conducting membrane of negligible mass), a finite pressure, p., due to turbulence will be
applied to the base of the external part, and it should be taken into account in the equa-
tions of fit. However, just like the very slight degree of superadiabasy necessary, this
pressure will be very small compared to P, so that the external solution to be chosen
will not be very different from the one corresponding to the ordinary fitting or, on the
other picture, the membrane between the two parts need sustain only very small stresses.

In reality, some mixing will take place at the interface, and we shall see how it leads
to a stable state free of any difficulties arising from condition (11).

3. The solution for a discontinuity of u in the external layers—In the external layers of
a star, M and L can be considered as constants, and equations (1) and (3) reduce to

dP GM
27= “‘—rTP . . (13)
and 1dT P2 1dP
— = — X2 .
Far - =X ersp g (14)
where 3 I .
Ko .
C—lemcGERH' : (15)

If we use equation (14), the conditions of stability (8) and (9) become, respectively,

C(I"Xz)#ngs (16)
and P2 4l 2
e og H
c@ X)'uT35 dlogP T an

5Cf., e.g., Cowling, M.N., 96, 51-52, 1935.
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First, we shall assume that a discontinuity of u occurs at r = 7, (say).
The solution for 7 in the external part (. < 7 < K) is well known® and can be written
in the form

_ GMyu, 1 1
To= a5 L=l (18)
. The other variables are related to T by
\ . 1 :
— 2 2 — 8.5

C(l—X2)pupPl= 425T (19)

Pe _ Te 4.25 De _ (Te 3.26
() ma 2=(2) 29

Obviously, condition (16) is satisfied, and the radiative equilibrium is stable in that re-

gion.

In the inner part, close enough to the interface, L and M can still be considered as con-
stant, and the solution can still be obtained by integrating equation (14). After deter-

‘mining the constant of integration by the continuity of P and 7" at the interface, which
. requires that P, and T satisfy equation (19), we have

ca-x BB -G (-1 RR)

- Introducing the value of P%/ T§‘5 from equation (21) in equation (14) and replacing

dP/dr by its value (13), we obtain

ar_ _ 1 GMm (T)( X)m)J o
dr _ 4.25 QRrZ (I_Xz)#
When we write \
. r, 1 1 GMp; u; Ry, _ (_1—- ,M> ,
Y=Fw "TTw TR W mR-rn P=U (22%)

equation (22) becomes

ﬂ=a<1+§§_—gk. (23)

To obtain the exact solution of equation (23) is rather cumbersome, but, as we shall need
it only in the immediate vicinity of the interface, where y is very close to 1, we can use a
suitable approximation. Thus, if we wish to evaluate y as a function of x, we can inte-
grate equation (23) by the method of successive approximations. In the second approxi-
mation we find

T; 1+“‘ Rr, (l_i>
R—r.\r 7,

Tlc
| 1 ‘ (24)
+7'5(1+’3) gl_[(1-|-5)&_&_(1_l>_|_1]2
re\tr 71,

On the other hand 1f we wish to evaluate x as a function of ¥, it is more convenient to
write y = 1 4 z in equation (23); and, limiting ourselves to the second-order terms in
the development of (1 + 2)%5, we find

dz

4% = BT =85, 7403752 (25)

& Ci. S. Chandrasekhar, Introduction to the Study of Stellar Structure, p. 300.
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Finally, we may explicitly note that, in the solution of the problem that we have pre-
sented, p has a discontinuity at » = 7, in accordance with equation (10).

We have now all that is necessary to study the stability of the radiative solution in
the neighborhood of the interface. Since we have integrated equations (13) and (14) ex-
actly, the continuity of L at the interface has, of course, been insured.

We have already seen that the radiative equilibrium is stable in the external part of
the star. To investigate its stability in the internal part, near the interface, we introduce
the value of P?/T%-® given by equation (21), into condition (16), and we find

T. \8.5 1-X2 2 -
ic 1_?: <_—
ws[-(7) (=il 26)
At the interface, T'; = T, and condition (26) for stability reduces to
1 (1—=X%p\_2
YL 2.
s —Ra)<3 (27)

and when this is taken with the equality sign, it is equivalent to condition (11) of Hoyle
and Lyttleton. Now if the values of u;and u, are such that

He - ’
X) <~.~ 0.588 (277

the radiative equilibrium will be unstable on the internal side of the interface. However,
as we leave the interface, (7';./7T;)%° decreases so rapidly that, after we have gone only a
little distance, condition (26) will again be satisfied. We can, accordingly, expect that the
extent of the unstable region resulting from the violation of equation (27) will be very
small indeed.

On the other hand, as we have already seen, a discontinuity of u (with u; > p) is
going to provide a very effective barrier to convection. Thus we must expect that the
energy available for convection on the internal side of the interface will soon be used up
by the mixing of two narrow regions on both 51des of the interface.

As an example, let us take p. = 1, X, = §, and p; = 2, X; = 0, and suppose that
the discontinuity of u occurs at r, = 0 9R. In that case, using condition (26) and equa-
tions (21) and (5), we find that the unstable region extends to the point where P, T and
p have the values

Pi=1.1616P,,; T:=1.0706T;,; and pi=1.0850p,,. (28)
Introducing into equation (25) the numerical value of 8 corresponding to this case and
integrating, we get

re— 1t =0.01812 2= (R 7o) (29)

so that the extent of the unstable region is of the order of 1-2 per cent of the external
region. In the particular case considered (r, = 0.9R),

=0.89834R . (30)

To compute the mass Am; of the unstable region, we can assume that p is constant in
it and equal to ps, so that, using equations (18), (20), and (10), we can write the ratio of
Am; to the mass M, of the external part as

Am,_ 325 (g5 — %)
B (sc ) 3700, &) (31)
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where £ = /R and f(0, &) is the function tabulated by S. Chandrasekhar.” In our exam-
ple, with the value 0.000014 of (0, 0.9) given by S. Chandrasekhar, formula (31) gives
Am;/M, = 0.153.

The solutions T'/T e, P/P.., and p/p.. in the vicinity of the interface are represented
in Figure 1 (full curves).

4. Energy available in the unstable region and resulting motion and mzxmg.——Con51der,
next, an element of matter of unit mass situated at the base of the unstable region. If a

P/Pec; T/Tec ’ /" _P/fec

12,0

|

|
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Fic. 1.—Distribution of the physical conditions at a discontinuity of x in the stable (dotfed curves)
and unstable states (full curves).

small adiabatic displacement outward is given to it, its speed outward will increase all
through the unstable region. Neglecting friction, we can express its kinetic energy, on
reaching the interface, in the form

Pic p/pw) (Pw) (Z:)P(ﬁ;)’ (32)
LORHG NS )

2 =

(&1

where

- 70p.¢it.,p. 302"
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For the exaniple studied in § 3, the values of the different constant ratios in equation
(33) have been given, and the values of p;/pi. and P;/P;, can be obtained from the solu-
tions given there or can be taken directly from Figure 1. Evaluating the 1ntegral we find
that

£92=0.000405 p’°=2.7 X10=*(n4kT.,), (34)
where # is the number of the particles contained in the element considered. Equation
(34) shows that the available energy in the unstable region is very small, compared to
the internal energy of that region, which is itself a small quantity. It is, therefore, diffi-
cult to see how any large-scale motion can result from the instability in the small region
bordering on 7.

An elementary computation also shows that the time required by a small element to
go across the unstable region is of the order of

(35)

\/
where p is the mean density, in grams, of the star con51dered

Now a rising element of gas will arrive at the interface with a finite kinetic energy of
the order of magnitude given by expression (34). Using the corresponding equation (32)
and the relation (20) between p. and P,, it is easy to determine the pressure P? corre-
sponding to the level £ in the external part where that kinetic energy will be used up.
We find P} = 0.9996 P, and £° = 0.90001. If we denote by Am,. the mass of the layer
comprised between £, and £9, its ratio to the mass Am; of the unstable region is of the
order of

Ame pec E £C
Am" p10 EC E*
If we now consider a downward motion, a small element initially at the internal side

of the interface will stop somewhere between the points £* and £, where the following
relations hold, respectively,

=0.0027, (36)

1477 21 dP;
T dr 3P dr - (37)

\5/2
st:(zils) . (38)

From our discussion in the preceding paragraph it follows that, when p is assumed to
change discontinuously at a point in violation of condition (27), turbulence in a small re-
gion surrounding that point will immediately result. This resulting turbulence will lead
to a small amount of mixing of the internal and the external parts. And if, as we shall
show, a neighboring stable state can be reached in consequence of this turbulence, it is
not really relevant to our problem to describe in detail the exact changes which will lead
to that stable state. However, in a general way, it i$ apparent that the first step will be a
mixing of two regions whose masses are of the order of Am, and Am; with the formation
of an intermediate region of mass aAm, + dAm; and mean molecular weight

alm,
Hom = 31— ;;_1 bAmig’

and

where ¢ and b are two constants of order unity. In the example considered, u» = 1.995
if @ = & = 1. The radiative solutions for these regions, characterized, respectively, by
Wi, tmy and u,, can be obtained and the radiative instability at each interface examined.
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It will again be seen that, in the intermediate part, there will be a small region around
the points defined by the corresponding relations (38) and (37) which will be little affect-

- ed by mixing at this stage, and the extent of the region affected in the internal part will
- again be determined by the same analogous relations. The changes in u which will result
- from the corresponding mixing can be estimated as before, and the process can be con-

tinued a step further. In this manner a stable state can be reached, and the time required

" to attain it can be estimated as follows:

At a given stage the time required for a single “turnover” of the unstable regions may

" be taken to be of the same order as that given by equation (35). A hundred such turn-

overs would probably be more than sufficient to mix the relevant regions thoroughly. If a
thousand such steps are necessary to bring the regions to a stable state, a total time of the

order of 1/ V'p years will be required. For all reasonable values of p this is such a short
time, as compared to the time required for the building-up of an appreciable discontinu-
ity of u (either by exhaustion of hydrogen, by nuclear reactions, or by accretion of inter-
stellar hydrogen) that we can safely consider that the readjustment takes place practi-
cally instantaneously!

5. Final state of equilibrium.~—What we have said in § 4 of the detailed manner in
which a stable state will be reached is sufficient to show that at each step there will be a
number of small regions (equal to the number of discontinuities of u), each little affected
by the subsequent mixing and comprised between points £* and &,, where the relations
corresponding to (37) and (38) are satisfied. As the number of discontinuities in u in-
creases, these two points, £* and &,, in each region of constant u will tend to come closer
and closer. At the limit, where the variation of u can be considered as continuous, rela-
tions (37) and (38) will hold at each point, so that, if we denote by a suffix ¢ the values of
the variables in that region, we have '

7. dr 3P, dr (39)
and
P T 5/2
=) (40)

where the suffix ¢ here refers to the values of the variables at the exterior limit of the re-
gion of variable p.

If we assume that this intermediate region of variable y is also in radiative equilibrium,
equation (14) should hold in it; and, comparing it with equation (39), we obtain

PP 2
C(1 =X m=gg5=5, (41)
or, using equation (40),
TN bl AL
(1 Xt) Mt—-—s—c‘,}z E:) . (42)

With equation (41), condition (17) for the stability of the radiative equilibrium in that
region reduces to
d log u, S

dlogP =

(43)

But, according to equation (42), u,, in fact, increases with P, so that condition (43) is
satisfied and our assumption about the stability of radiative equilibrium in that region
is confirmed. This transition region of variable x will be limited by the fact that when p,
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has been reduced to a certain value, u, such that equation (27) with u; = u, is verified
with the sign of equality, the discontinuity of u is no longer able to render the radiative
equilibrium unstable. If y, = 1, X, = %, we find that u, and X, must have the values
X = 0.1031 and ps = 1.528. These are, of course, equivalent to the limiting values of
Hoyle and Lyttleton.

When u, varies from its value 1.528 to its value 2, (1 — X?) varies from 0.99 to 1; and
in a first approximation we can neglect this factor, so that equation (42) immediately
gives the variation of p in the form

- (44)

Mt Pt>7/5
Hic te )

v

From equations (5) and (40), we obtain

Pic _<Pw> , (45)

The integration of equation (13) then gives

1= (5 7)- (46)

The solution allowing for the variation of the factor (1 — X3%) in this transition region
can, of course, be obtained by eliminating X ; between equations (4) and (42) and then
proceedlng as above. But we shall not consider such refinements here.

In the external part (4 = u.), the solution is the same as before, and it is, of course,
stable.

In the internal part (u = ), integrating equation (14) and takmg into account the
fact that all the variables must be contmuous at the interface, »*, where the variation
of u. ceases, we obtain

P} T
C—XYu =t 1+o7<T) : (47)
The gradient of temperature in this region can be expressed in the form
dT; GM (T* 8. -
im0 (7)) I @
Using the value of P%/T%® given by equation (47), the criterion of stability (16) can be
written
2 1.4 T"f 8.5 2
it I ol <z
-5 11-(7) |5 (49)

and we see that this condition is just satisfied with the sign of equality at the interface. As
we go further inside, (T7/7T;)%% decreases, and the requirement (49) will be met with the
sign of inequality. Thus we can picture the star in its final state as being composed of the
three parts we have described, all of which are in stable radiative equilibrium.

It may be noted that when u. and p; are given, the extent of the intermediate region,
where u varies continuously, is determinate, for, u. being known, equation (27) taken
with the sign of equality can be solved for w;, and, by equations (44) and (46), we have

Q_~ Pio 1_£(_2)
= ( ) TR\ "% (50)

since T';. must be equal to 7. and its value can be obtained from equation (18).
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Thus, if we choose the values of u;, ., and 7., the solution is completely determined in
the envelope, and the problem of fitting it to a central part without singularity can be’
‘solved in the usual way. We shall not concern ourselves here with the actual mass-
luminosity radius relation appropriate for these models, except to point out that the
relevant relation will be practically the same whether we consider the change in u as
- taking place discontinuously and ignore the effect of the small convective unstable re-
gion just interior to the interface, or whether we treat it more rigorously with the intro-
~duction of a transition region of variable u. We shall illustrate this numerically for the
example we have considered.
Suppose that the general problem has been solved for the case in which u has been as-
‘sumed to change discontinuously from its value p. to u; at ., = 0.9R and that the con-
figuration has a mass M, luminosity L, and radius R. The effect of the instability in the
,small region interior to 7, will, of course, be that the star will rapidly evolve toward the
'state with a transition region of variable y as we have already described. During such an
‘adjustment, the total mass will, of course, remain constant; and, to the extent that the
energy sources are in the deep interior, the luminosity will also remain constant. What
will happen then is that the radius will change slightly. To estimate the extent of this
change in R which will result from the redistribution of u, we shall consider a second con-
figuration with the same luminosity, in which the inner limit 7* of the transition region
is at the same place at which the convectively unstable region in the first configuration
' ends. We shall further assume that the temperatures in the two configurations are also
the same at the two points mentioned. Under these conditions, the solutions interior to
r* in the two configurations will be identical. And if the problem for the interior on the
- approximate assumption of a discontinuous p has been solved for the first configuration,
the problem can be considered as solved for the second configuration as well. On the other
- hand, for » > r* we can express the temperature T in the two configurations considered in
~terms of the radius r and the parameter 7*. And, since »* and 7* have been assumed to
be the same, we can eliminate the temperature from the relations appropriate for the
two models applied at the end of the external regions (u = 1). In this way we obtain a
relation between the radii R and R’ of the two configurations and the value 7. = 0.9R
and r,, which defines the outer extent of the transition region in the second configuration.
Equation (50) provides another relation, so that we can solve for both 7, and R’. We
get '
r.=10.90084R  and ’=0.99973R.

The last relation shows that, for all practical purposes, R can be considered as unchanged.

- If we should now integrate equation (7) from 7* outward in both configurations, we
should find that the masses of the external parts are not quite the same. But, remember-
ing the order of magnitude of the external mass and comparing the new distribution of
density (dashed curve in Fig. 1) with the old one, it is evident that the difference, as com-
pared to the total mass, cannot be greater than one part in 10°. In other words, the masses
will be the same to a precision even higher than that in which the numerical integrations
are generally carried out for the interior!

Thus, contrary to what Hoyle and Lyttleton have said, with a discontinuity of u in
the external layers not satisfying condition (27), we can always construct a stable state
of equilibrium very near the one obtained by ignoring this condition altogether. And, as

~ we have further seen, the final stable state will be reached in a relatively short time by
turbulent mixing of a very narrow zone, which has the effect essentially only of “smooth-
ing” the discontinuity. No large-scale motions of the kind imagined by Hoyle and Lyttle-
ton can intervene.

So far we have treated only one example, where u; = 2 and u. = 1, but it is apparent
that the conclusions will remain valid for all reasonable discontinuity of u. When the
pressure of radiation is not negligible, the algebra becomes somewhat more complicated,
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but, unless it becomes a very large part of the total pressure it does not introduce any
further novel features.

6. Discontinuity of p in the interior of the star —We shall limit ourselves again to the
case in which the pressure of radiation is negligible. But, in contrast to our earlier discus-
sion, we must allow for the variation of m(r), and an analytical treatment becomes im-
possible. However, the use of an effective polytropic index, as defined by equation (12),.
and of the homology invariant variables,?

drpr® dlog m(7)
m(r) dlog ()

U= (51)

and

simplifies the discussion considerably. The use of these variables is suggested since, in
the fitting-together of two solutions, the continuity of U and V automatically implies the
continuity of m(r), P, and T across the interface. If different values of u are assumed in
the different regions, then it is the continuity of U/u and V/u across the interface which
should be required. Since the generation of energy is strongly concentrated toward the
center, the distribution of physical conditions in an extensive region of the star from the
surface inward is given by a point-source solution. For a given total mass M, we have a
whole family of such solutions, which can be arranged and discussed in the (U, V)-plane
very much in the same way as the polytropic solutions corresponding to a given index #».°

The differential equations for the variations of U, V, and » along a point-source solu-
tion can be obtained easily from definitions (12), (51), and (52) and from equations (3)
and (7). They are

dlog U S n S_, dlog u
d log r—s_U_§ +1° 2" dlogP’ (53)
dlog V 1 5., dlog u
dlogr—U+2n+1V fvdlogP’ (54)
and
dlog(n+1) 5(65 dlog p(1— X?)
" dlogr - >V+ 14 d log P (53)
If u is constant, these equations reduce to '
dlog U _ S n
‘ dlogr_s_U_§n+1V’ (56)
dlogV - 5§ 1 »
dlogr—U+§n+1V_1’ | (57)
and
dlog(n+1) 5/(6.5—2n
dogr =~ VT2 )V' (58)

Suppose that we go toward the center of a star along one of the point-source solutions

~ labeled by a Q and that we arrive at a point 7., where u jumps from its value u, to a value

8 Cf. Chandrasekhar, op. cit., p. 352.

91 am indebted to Dr. S. Chandrasekhar for allowing me the use of his tabulation of the functions
U and V for a whole family of point-source solutions. In Dr. Chandrasekhar’s tabulations the point-
source solutions have all been conveniently reduced in a standard system of nondimensional variables
(cf. Mrs Hamson, 4p. J., 103, 193, 1946, particularly eqs. [23]-{27]).
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pi. At this point the effective polytropic index will have a certain value #. and, by con-
. dition (11) of Hoyle and Lyttleton, we can determine the value of #,. Let us assume,
first, that the discontinuity of u and the value of #. are such that #»; = §. Now suppose

that the conditions of fit to a polytropic solution E;/, are satisfied at . (i.e., that in the

[U, V]-plane, the point of co-ordinates u; U./p. p; V./um. lies on Ejjp). There is
-no loss of generality in making this assumption, since it is always possible to
-find such a point 7. on any of the point-source solutions. However, the fact that #; is
~equal to 4 just on the internal side of the interface does not mean that this is the
f startmg pomt of a convective region.

To examine the stability of the radiative gradient in the region interior to ., we let
n = n; = § in equation (58) and obtain for the variation of # just past the 1nterface

the equation
d log (n +1)

dTog 7 =U—-%V. (59)

. Thus, if the representation of the point 7. in the (U, V)-plane falls above the line

2U—-TV =0, (60)

n increases again above its value § as we leave the interface toward the interior, and the

- radiative gradient continues to be stable. It may be noted, however, that the radiative .

solution which we should use to extend our solution past the discontinuity of u need not
belong to the usual point-source solutions, since in this case P, p, and T need not tend
simultaneously to zero at some value of 7.

It is now seen that line (60) lies very close to the locus of the points on the radiative
solutions where 7 becomes equal to 4. Since it is only between the line (60) and the
locus of the points # = 4 (u; > pe) that condition (11) of Hoyle and Lyttleton can

- lead to a fitting with a convective core, it is evident that the models obtained in this way

cannot differ very much from the one fitted at the points » = $. However, condition
(11) has the further consequence that, since on any. of the point-source solutions #, will
remain very close to § in the region where the fit to a convective core is possible, the

. only permissible discontinuities of u at the interface with a convective core are going to

be very small (cf. eq. [11]). In fact, all the resulting models would be very close to Cow-
ling’s solution (u; = w.).

We have considered the case in which the discontinuity of u is such that #, according
to condition (11) is just equal to $. But, since #, has its maximum value (3.25) in the

- external layers, »; will always be smaller than §,say, (§ — ¢), no matter where the

discontinuity takes place, provided that u,/u, > 1.53. The variation of #» on the internal
side of the interface will then be given by -

dlog (n+1) 17.5410e
~dTog =U 5§79, V.. (61)
As e increases, the region of the (U, V)-plane, where dn/dr is negative, increases also; and,
although #; becomes smaller than § just at the interface, it will start increasing after
that, and in many cases radiative equilibrium will soon re-establish itself. The situation
is therefore very similar to what we have described under analogous conditions in the
stellar envelope (r/R > }). We may accordingly expect that, in our present context also,
there will be a rapid readjustment to a transition region, in which u will vary. To deter-
mine the law of variation of u in the resulting transition region we argue as follows:
For any given point, 7., the maximum discontinuity in u which is compatible with the
stability of the radiative gradient (»; = %) just past the interface will be given by con-
dition (11) with the equality sign. If u remains constant after crossing the interface and
if we should be above line (60), #; will start increasing again for decreasing r. Indeed, ac-
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cording to equations (58), (51), and (52), the increase in #; which will take place when y
decreases by Ar will be given by :

$an= (U=3.57) 2 =Alog m(r) +3alogP." (62)

At r = r, — Ar, therefore, n; = $ 4+ An; > 4, and we can again have a small dis-
continuity of u of amount Ay, which will reduce #. = § 4+ An; to § again, according
to condition (11). Using condition (11), we obtain the following relation between An;
and Ap

8K _ tan | : (63)

if we neglect the factor (1 — X?); as we have already seen in our earlier discussion in
§§ 4 and 5, the factor (1 — X?) has only a very small influence on the final results. Using
relation (62), we find that equation (63) becomes

BB _ Alog m (r) +2ATogP. (64)

We can repeat this process until we have reached the pre assigned value u,; for the core.
Making the various steps Ar smaller and smaller, we shall obtain, in the limit A = 0, a
region throughout which

ni=%. (63)

Further in this region, p will vary continuously accordingly to the law
w=Cim (r)Ps. (66)
According to equation (65), we also have
T =CyP25. (67)

Apart from the factor m(r) (the variation of which cannot be neglected in our present
context), relations (66) and (67) are the same as those obtained in § 5 (egs. [40] and [44])
by considering in detail the process of mixing.

The differential equations (53) and (54) for U and V in the transition region of varia-
ble u are therefore (cf. eq. [66])

dlog U

dlog r =3—-5V (68)
and dlog V |

G008 Y _op_sv—

Thoey =2U—4V—1. (69)

Comblmng these two equations, we have
v _ v 2U0-5V—1

iU U~ 3-5v (70)
The general nature of the solutions of equation (70) can be readily pictured by draw-
ing the system of isoclinical curves in the (U, V)-plane, along which dV/dU is constant.
These isoclinical curves are a series of hyperbolas and are shown in Figure 2. The short
lines (of constant slope) drawn across each curve represent the directions in which the
solutions of equation (70) will cross this curve. From the arrangement of the isoclinical
- curves in Figure 2, it is seen that the solution-curves of equation (70) spiral around the
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point U = 1.25 and V' = 0.6; at this point both the numerator and the denominator of
the quantity on the right-hand side of equation (70) vanish. This singular point of equa-~

- tion (70) corresponds to the following singular solution of equations (1)-(7) when rela-
- tions (66).and (67) are satisfied:

P=Cyr32, p=Cor~ 74, T =Cyr35,
u=Cyr-11/20 and m(r) =Cyr/4;

4+

F1G6. 2.—General run of the spiral solutions in a region where u varies continuously according to the
law u < m(r)P7/5,

here Cy, Cs, etc., are constants. All the other solutions asymptotically tend to this singu-
lar solution as we approach the surface (r — o, m[r] — ), and along them the radius
increases in the direction indicated by the arrows.

Along any one of the spiral solutions we have (cf. eq. [66])

dlog u
d log P

Thus p increases with decreasing r above line (60); while below this line p decreases with
decreasing r. According to the criterion of stability (9) and equation (67), we conclude

—U-1V. ' (71)
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that the radiative gradient will be unstable below the line (60), and therefore these por-
tions of the spiral solutions should not be used in physical models.

We shall now show how, with the help of the solutions sketched in Figure 2, we can
construct stellar models in which u is assigned certain values for the,envelope (u = w,)
and the core (u = p,) with possible transition zones in which u is variable according to
law (66). Suppose, now, that the region of u = . (point-source solution) extends down
tor = r,, where U = U.and V = V,. At this point (U,, V.), u can jump to a value u,
given by condition (11) with »; = $. If that point is above the line (60), u can then
continue to increase according to equation (66). We must now follow, in the sense of de-
creasing r, the spiral solution starting at the point ((u¢/pelU., [ms/pelV ), until u reaches
its value u;, say, at the point (U*, V*). As we continue the solution further, 4 must re-
main constant. If the point (U*, V¥) is still above line (60), then we must continue with
a radiative solution which ultimately will become unstable deeper in the star, owing to
the concentration of energy sources. When this occurs, the solution should be continued
by an Ej3/, solution, and the conditions of fit there will permit us to fix the point-source
solution to be used in the external part of the star.

TABLE 1
Harrrson*
ilue(ue=1) ut/ue me/M re/R me/M re/R
me/M re/R

Cowling 1...|......... 0.150 0.171 | ...... ... ........ 0.150 0.171

1.055.....|......... .168 AT L .143 161

1.147.. ... 1.144 .189 .164 0.206 0.170 L131 .146

1.248.....| 1.206 .181 .150 .230 .165 .119 .132

1.483.....| 1.276 154 117 .240 143 .095 .108

1.8....... 1.315 .123 .086 .230 116 .083 .091

2.0....... 1.320 0.104 0.072 0.214 0.103 0.081 0.087

*Ap. J., 100, 343, 1944.

The case of immediate physical interest is, however, one in which the convective core
starts just at the end of the transition region of variable u, since it is in the convective
core that the principal change in the chemical composition occurs. Further in the con-
vective core p must be uniform on account of mixing. In this case, since # must decrease
at the end of the zone of transition, the point (U*, V*), where u reaches its value p;,
must lie under or on line (60). On the other hand, we have seen that we can use the spiral
solutions only above this line. Thus the only spiral solution which will lead to a convec-
tive core starting at the end of the zone of transition is the one which intersects Es,, at
the same point as the straight line (60). It can be shown that at this point the spiral
solution and Ess have the same tangent. This particular spiral solution is shown in Fig-
ure 2. Using this solution .S, tangential to Ess, we constructed a few models composed of
a point-source envelope followed by a region of transition which ends in a convective
core. For a given change of u(u., u;) we must find on one of the point-source solutions a
point U., V., n., such that its co-ordinates, multiplied by u./u. (where u, is given by
condition [11] of Hoyle and Lyttleton with #n. = #., n; = $), represent a point on the
spiral solution .So. Furthermore, as we go along that solution (decreasing ), u increases
from its value uy, and it should just reach the value u; at the point of contact with Ej,,.
In general, for given u, and u;, we shall have to interpolate between the various point-
source solutions. It is, therefore, more convenient to start from a particular point-source
solution and determine the corresponding variation of p which permits us to fit it to a
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convective core with a transition zone. It is in this way that the results given in Table 1
were obtained. The mass and radius of the convective core are denoted by m. and . and
those of the convective core, plus the zone of transition, by m, and 7,. It will be noted
that the second model has no zone of transition, and it corresponds to the case where the
condition of Hoyle and Lyttleton leads directly to a solution. In fact, the corresponding
discontinuity of u is already close to the maximum compatible with this condition alone.

In the last two columns we have given the masses and radii of the convective cores de-

-rived by Schonberg and Chandrasekhar (op. cit) and Mrs. Harrison'® in their discussion

of the “generalized Cowling model.” As we have already stated, in the discussions carried
out by these writers u, was assumed to jump discontinuously from u,. to u, at the surface
of the convective core, with a corresponding discontinuity of density. It will be seen that
the general sense of the evolution derived by these writers is in general agreement with
our more rigorous treatment of the same problem.

Finally, we may note that for the model u;/u, = 2, we find L = 2.78L (Cowling’s
model) and R = 2.57R (Cowling’s model). They are somewhat greater than those ob-
tained by M. Schonberg and S. Chandrasekhar, who found L = 1.41L (Cowling’s model)
and R = 1.65R (Cowling’s model). The central condensation is also greater, and the
ratio p./p becomes equal to 390 instead of 179. But the differences between the two
models become less for smaller ratios of u;/pe.

It is seen from Table 1 that if we wish to regard these models as a sequence of evolu-
tion, the mass of the convective core starts by increasing. But, as soon as the chemical .
composition has been altered appreciably, its mass decreases rapidly, while the mass
m, varies more slowly and goes on increasing for some time. We can imagine that by tur-
bulent mixing at the interface, material which has lost part of its hydrogen in the convec-
tive core is continually being drawn into more external regions. However, as the ex-
haustion of hydrogen in the internal region proceeds, it is seen that we reach a stage
when u;/ . is of the order of 1.5, at which the mass m, reaches a maximum. At this point,
the fraction of the total hydrogen content of the star which has been used is still small, of
the order of 15 per cent if we start with u; = p. = 1. However, since the mass of the ex-
ternal part (M — m,), where u = u, = 1, cannot increase, there are difficulties in follow-
ing the evolution beyond this stage. But it should be remembered that there are many -
other points which remain to be investigated in this connection. In particular, for these
models due to the special position of the center and the vanishing of the gravitational
acceleration here, even a slight amount of dissipation may be sufficient to create a small
finite zone where the exhausted hydrogen is not replenished fast enough. If that should be
the case, we may expect that an isothermal core will start forming at the center even be-
fore the hydrogen is fully exhausted in the whole convective core. And, once the forma-
tion of an isothermal core has been initiated, it will grow continually at the expense of
the convective region owing to the fringe in radiative equilibrium which will always sur-
round it. We shall not, however, continue this discussion here.!

It is a pleasure to acknowledge the many interesting discussions which I had with Dr.
Chandrasekhar in the course of this investigation.

10 4p. 7., 100, 343, 1944,

1 In this connection see M. Harrison, 4. J., 105, 322, 1947, where the solutions of the ‘“‘generalized
Cowling model,” together with solutions of models with isothermal cores, are displayed. It should, how-
ever, be remarked that the existence of the transition zone is not included in this discussion.
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