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Abstract: Some remarks are formulated concerning the influence of nuclear equilibrium on dynamical
stability and the implications, for the general stellar stability problem, of neutrino emission by mechanisms
related to the direct electron-neutrino interaction. In particular, it is shown that models in which thermonu-
clear energy generation is balanced mainly by the emission of neutrinos, while secularly stable, would be
vibrationally unstable. Finally, it is suggested that the complete differential system being of a higher order
than the third, there might exist significant time-scales distinct from the usual three associated with the
discussion of stellar stability.

1. When I started getting interested in astrophysics, general texts on the subject
were far less numerous than to-day and among those existing at the time, Rosseland’s
books were fascinating guides for my first steps.

Their well balanced blending of modern physics and physical hydrodynamics had
a special charm of its own. The generality of the points of view adopted left one with
an impression of dominating the subject and, at the same time, it opened new possibilities
of approach or new avenues of research. Here and there, special sections or synthetic
comments provided a bird’s-eye view of a whole field and, to this day, I remember, with
some kind of nostalgia, the enthousiasm aroused by some of the prefaces with their philo-
sophical undertones and their poetical appeal.

When, full of expectations and good intentions, I arrived in Oslo in 1939 , Rosseland
directed me to the problem of the Cepheids and stellar oscillations which, for all these
years, has remained at the centre of my interests and has claimed a good deal of my total
activity. Among the first papers that I read on the subject were two from Rosseland [1]
himself, opening the series of publications of the University Observatory in Oslo and devoted
to oscillating fluid globes and to the stability of gaseous stars. Starting with a striking
example concerning the effects of radon on acoustic waves, the latter contains the first
derivation, on the basis of the perturbation method, of the coefficient of vibrational stability
(or generalized damping coefficient) for radial pulsations.

If the numerical results were vitiated by the lack of information on stellar energy
sources and by some of the approximations, on the other hand, and apart from the method
which has kept its interest, some of the remarks and comments in this paper especially
concerning the behaviour of the external layers and their effects could still be read with
profit to-day. '
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Rosseland continued to be interested in the vibrational stability of the stars and es-
pecially in the effects, in this respect, of nuclear energy generation. In fact, just about as
I arrived in Oslo, a paper by Rosseland and Randers [2] was coming out of the press in
which, for the first time, the effects of phase-delays in energy generation, mentioned but
summarily by Eddington, were submitted to a quantitative discussion fixing the pattern
followed since then. It seemed particularly fitting to recall this because the present paper
will also be essentially concerned with some aspects of the same problem and an attempt
at generalizing its approach.

2. To avoid too much algebra, we shall limit ourselves to the case of purely radial
perturbations of a hydrostatic model (or quasi-hydrostatic model evolving at a very slow
rate) in radiative equilibrium throughout.

In that case, if 7 represents the relative displacement (d7/r), the fundamental linear
equations for the Lagrangian perturbations denoted by 6. . ., are:

a) Conservation of mass

do 1 0

L Ry %
M 5 )
b) Conservation of momentum
0%n lop p o (0p oplop
@ T e e Av Ay

in which we have already eliminated the perturbation of the gravitational acceleration.
c) Conservation of thermal energy

o6p  I'ip d6g 1 06N 66(1—pB)p

3)
dEs ., 8L
= —(Is—1)p [ajt—ju 8¢, + de, + Bﬁ]
with
O p=ti =5

~ pet+pr P

Here, we have kept for the rate of energy generation, its general expression — (dEs/dt) ,
Es denoting the subatomic energy. As far as the emission of neutrinos is concerned we
have distinguished the losses &', associated with the neutrinos emitted directly in the
p-decay processes occuring in the chain of thermonuclear reactions and the losses ¢,
corresponding to the various mechanisms suggested on the basis of a direct electron-
neutrino interaction. The third term in the left-hand member corresponds to the variation
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of the total number N of particles per unit mass due to nuclear processes. Here, ionization
is treated as complete and Iy and I's are the usual generalized adiabatic coefficients for
a mixture of a monatomic gas and radiation.

Equation (3) can also be written

00T  (I's—1)T ddg (3/2) B T 00N
ot o & TG E+120=pHN o
(5) ,

—— o [ () + 00+ o ]

where C, is the generalized specific heat at constant volume for a monatomic gas and
radiation.
For the usual thermonuclear reactions, we may write directly

dEs .
& T T

(6)

where the rate of energy generation ey is a function of g and 7' . Furthermore, in this case,
the variation of NV is very small and given by
1 dN _é&N

if ey is the total energy liberated by the transformation of 1 gm of reactant (say H or He*)
and a, a constant of the order of unity (4 H — He%: a = 5/4; 3 He* - C'2: a = 1/6) .

On the other hand, when T and p reach high enough values some kind of statistical
equilibrium tends to get established between the different nuclear species and the variations
of N are no longer negligible as the equilibrium gets displaced.

3. In the presence of a nuclear statistical equilibrium, Es itself must be considered
as a function of p and T and it is then easier to group the corresponding terms in the left
hand members of equations (3) and (5). Developing 6N and 6Es in terms of dg and dp
or dp and 6T, these equations become:

o8p  I'n*p ddp * 00L
® 9p 1% 20 _(rye o[, + 2L
and
08T  (I'*—1)T ddg _ f’ﬁL
with ()Es
w0 & 16 —128—15p82+ 6 (1 —pf)N,,p— (4 — 35)NkT( )
1* =
12—1058—68(1—p) Ny, , + B(4— 3/3)(NkT)(a§>S)
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a1 Iy 1_4——3,8—1.5ﬂNQ,T——(ﬁg/NkT)(aEs/ag)T
3 ~ 12— 1058+ 1.5 Nr, , + (B/Nk) (0Es[oT),
3 8(1— B) 2 [0Es
* —_ J A —_—
(2 O =aNE[LF =P N g (50)
__(0log N __ (0log V) _ (0olog N
Neo=(Flogg), ¥7e = (Glogp) ,» V7o = Glog) > oo
If we write

4—3p)+BNrp,,=9
the following relations are easily verified

®Np,,=Nr,,;PN,p=4—3B)N,r—BNr,,

(13) ‘D(ais)pzé(ais)cp_(ais)9%6(1+Ne.T)
oFE E T 3 OF
o), ), 5 M3 Ver—wir (),

which will allow to pass from one pair of independent variables (say p and g) to the other
(say pand 7).

Passed the iron-peak, (0Es/0T), and Nr,, are positive while (0Es/dgp)r and N, r
are negative and since in absolute values they all tend to be large especially the first two,
it is obvious that I';* and I's* may become close to unity. If this is realized in a large enough
core the mean s will be smaller than 4/3 and the star will experience a strong dynamical
instability.

This is of course well-known from direct energy considerations since it was first advo-
cated by Hoyle [3] in his theory of supernovae. In recent years, many attempts [4] have
been made at following in detail the resulting collapse and the subsequent explosion after
some mechanism connected with the conservation of angular momentum or the nuclear
reactions in the external layers allow the latter to bounce back. Of course, these advanced
stages with their strong non-linear effects can only be studied with large computers and
even then the introduction of some simplifying ad-hoc assumptions seems generally to
be needed. The safest attack might still be through the building up of reasonable stellar
models including the effects (especially as regards convection) of the exact run of the
I'*s inside them as they approach these very advanced and critical phases of stellar evolu-
tion. These models would also provide the necessary information for a critical linear ana-
lysis by means of the relevant equations (1) to (9) of the instabilities present and their
exact modes of action setting a firm basis for a concerted attack on the complete non-linear
problem.
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As regards stability, the situation is probably particularly complex in the region where
the elements of the iron group are being built as it must correspond to a case somewhat
intermediate between that corresponding to thermonuclear reactions proper and a true
statistical equilibrium. It is likely that, in these circumstances, an appreciable part of the
variation of the energy liberated during a perturbation is in phase not with the perturba-
tions dp and 67 themselves but rather with their time-derivatives. Let us assume then
that, at least for that part of Eg, say E’s , we can write

dE’s = y dN

where y can be treated as a constant mean value in a limited range of conditions. Then
using the relations (13) and taking into account the fact that y/k7T must still be fairly large
with respect to 1, the definitions (10) and (11) yield

54 2(x/kT)Nr, o
Ii* ~ 5% ~
! 8 3+ 2(y/kT) Nz, ,

Since, in this range, for dT' > 0, dEs and dN are negative, x is positive and Nr, , negative
and we could get all kinds of critical values for the I'*’s including values greater than 5/3
if | (x/kT) Nr, , | can be smaller than 3/2.

The other part of the energy liberated, in phase with the perturbation, should naturally
be included in ey and its high sensitivity to ¢ and 7" coupled with the effects of the distribu-
tion of the /™*’s , on the run of the pulsational amplitude # through the star might also lead
to a rather strong vibrational instability.

Of course, the emission of neutrinos might modify appreciably the results especially
if the direct electron-neutrino interaction is definitely confirmed.

4. A detailed investigation of the effects of energy losses through neutrino emission
on stellar stability would certainly be very welcome. In this respect, one might perhaps
distinguish two main cases depending on whether the neutrino losses are so large as to
overwhelm completely any energy generation or, although large, are still compensated
at each instant by energy liberated inside the star so that the latter still evolves through
a series of quasi-static models.

Let us consider the second case first which can be tackled by the usual method. After
eliminating dp and dp from (1), (2) and (3), we are left with the following equation

g oy (T ) 0 G (6T =4} =
(14)
= L2 [ 1 (e 30— 28]

which, with
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(15) : 1= §(r) etot
becomes

—otre— AL (Tpr D)+ ELIB T — 7)) =

(16)
1 dry,,, déL
=g @ (T2 — e sy — 00, — )|
For rapid quasi-adiabatic pulsations, the second member of (16) can be treated as a
small perturbing term and if &, and o, denote one of the eigensolution of the adiabatic

problem, the usual procedure yields immediately for the corresponding correction ¢’ to gq

, 1 NeT, doL
(17) o :_foaz—hf(‘ﬂa (e — oz, ——d—m—)adm

0

M
jazfﬂ&azdm
0

where the subscript @ recalls that all quantities have to be evaluated for the adiabatic
solution. Depending on whether the coefficient of vibrational stability ¢’ is positive or
negative the oscillation will be damped or amplified and the star will be vibrationally
stable or unstable.

As long as ¢, is small compared to L, one of the fundamental characteristics of the
integrand in (17) is that dex (as ew itself) is appreciable only in a small central region while
the whole star, and especially the external part, contributes to d 6L/dm . Furthermore,
for the fundamental mode, the only one which we shall consider here, &4, (60/0)a , (6T/T)a
increase strongly in absolute value towards the surface (unless the mass becomes very
large) so that the stabilizing conduction term — (d dL/dm) has a large weight in the integral
as compared to the distabilizing energy generating term dex . The result is that the oscilla-
tions of usual stellar models of ordinary masses are strongly damped.

However if L(r) becomes negligibly small compared to ¢, as in the recent models dis-
cussed by Reeves [5], the same is true of dL and the expression of ¢’ reduces to

with

M
1 oT
18 S f—— den — 0¢,)q d
(18) o T T (), (e — be,)a dm

In the relevant ranges of temperatures and densities, we may use for ¢, formulae of

the type
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0 6T
(19) e =(e)oem T*, 8, =&, (m =2+ n =)
with
m=0 ,n=2_§8 (photoneutrino)
m = —1,23 > n> 11 (pair-annihilation)

depending on the dominant mechanism of neutrino production. On the other hand, as
far as the relevant thermonuclear reactions are concerned, if we write

0 ar
@) e = (ex)o 0 17, de = (o2 4+ » )
we have:
Carbon fusion u=1 30> »>20
Neon photodisintegration u=20 80 > » >33
Oxygen fusion u=1 45> »> 35

With the help of (19) and (20) and noting that here

M M

faNdm:fsvdm

0 0
(18) may be written

M
f EN dam
o

o = =S o= (Y 1+ s — 1) — () L1, 0+ n (@ — 1]

where we have denoted by one bar or two bars the averages taken with respect to ey or ¢,
respectively. Considering the dependence of ey and ¢, on ¢ and T', the two bar average
will effectively extend over a somewhat larger central core however, both ¢y and ¢, becoming

negligible at fairly short distances from the centre | dg/¢ | will only be very slightly larger
than | dg/g | . Since, on the contrary # is always considerably larger thanz, ¢’ is negative
and Reeves’s models are vibrationally unstable.

In fact, if 7" = 1/¢’ denotes the e-folding time of the amplitude and 7 the life-time of
the stage associated with one of the thermonuclear reaction considered, one has in a first
approximation

v 23Ii—4) GM2 1 1

7 9 (I3—1) R aMey2+(I3—1)(3—n)

© Det Norske Videnskaps-Akademi i Oslo * Provided by the NASA Astrophysics Data System



.9..187L

1964ApNr . . .

194 P. LEDOUX Vol. IX

where ey is the energy liberable per gram of reactant (C12, 016, Ne2%) and alM , the total
potential fuel which is always a good fraction of the total mass. Using Reeves’s figures,
one finds that, in general, 7’ is still a small fraction of 7 (10~2 to 10-3) at least for stars
which are not too massive. There would thus be ample time for a considerable increase
of the amplitude and probably, shedding of material.

However, Reeves’s models are very rough and a detailed study on the basis of actual
models would be of interest.

In the first case, when ¢, is largely dominant, we can neglect dex and d6L/dm in the
second member of (14). But, in these circumstances, I'; and I's may have to.be renlaced
by I''* and I's* which may approach 4/3 and it may be difficult to distinguish between
dominant characteristic time-scales. It might be preferable then to keep to the general
equation (14) from which de, should be eliminated explicitely.

Adopting again a separation of the space and time variables of the type (15) but writing
here s = 70 and using (1) and (19), we get, from (5),

SSI_ 1 d 3§(F3-1)szT——ms,,
T rzdr( ) sCy T+ mne,
and then
ﬁ:_ii(,sg)m'*'n(lj?’—l)
g, r2 dr sCo T+ ne,

If we introduce the latter in (14), we finally get

ne,\2 A4
s4r§+233Cv ré -+ 52 [(CvT) r.f—?r—s]—f—
1d,; B 2ne, A ne\2 A
o +sLwlen —ates) —6d) oot
N 1dB B 1ld(ne)
(CoT2o dr (CoT)2o dr
with
d d d
a=L(rpn £)+r355[(3r1—4>p]
(T3—1)98V T (735)[m+n(T3—1)]

Thus, in this case, the explicit elimination of (dp/g) and (67/T) in Je, raises the order}in
time of the problem by one unit, introducing the possibility of a new significant time-scale
which must be of the order of some average over the star of the cooling time ¢, ~ CyT/e,
by neutrino emission. However a detailed discussion of (21) might reveal some unexpected
aspects of the stability problem, especially if the /”s were approaching 4/3.

© Det Norske Videnskaps-Akademi i Oslo * Provided by the NASA Astrophysics Data System



.9..187L

1964ApNr . . .

No. 20, 1964 SOME GENERAL COMMENTS ON THE PROBLEM OF STELLAR STABILITY 195

5. Finally, I would like to attract the attention on a point which has received little attention
up to now in the usual treatment of the stellar stability problem. Coming back to usual
stellar models with negligible neutrino production, equation (14) becomes

1 — s (a (Cupr o) + 1SS 1B I 92} =
22)
:_; [(Fa—l)Q(éSN'—‘g;’?L‘)]

which must be solved with the boundary conditions

or=0inr=0,p=0inr=R.

The usual procedure, already illustrated to some extent in the first part of section 4 con-
sists essentially in dividing the discussion into three parts:

a) Dynamical stability: the terms on the right-hand side are treated as small and negligible
and, after separating the time by means of (15), the eigenvalues o2 of the adiabatic
problem are determined. If they are all positive (I'1 > 4/3), the star is said to be dy-
namically stable.

b) Vibrational stability: the evaluation of the corrections due to the small non-adiabatic
terms on the right of (22) yields an expression of type (18) where d¢, is replaced by
d 8L|dm for the coefficient of vibrational stability.

c) Secular stability: a very slow motion determined essentially by the right-hand member
of (22) is also possible during which the third order time derivative may be neglected.
Substituting s to 76, one can also obtain an expression for s which is formally very
similar to (18) but which cannot be evaluated by means of the adiabatic solution &4 .
In fact, we know very little of the adequate solution [6], say &s, except for special
cases in which an homology transformation may be used. A systematic study of this
aspect of the problem would no doubt be very useful especially in connection with
the problem of stellar evolution.

However, in this approach, the problem is really treated as being of the third order in
the time as indeed equation (22) seems to suggest at first sight. But actually dey and dL
should be explicitly eliminated from (22) by means of their general expressions. In our
special case, 6L reduces to

6T) 1 g]

(23) 6L(r)=L(r)[4n+(4+")% 69+dr(T T dr

if the opacity is given by
n=1n9p5 T

13
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On the other hand,

8N—C[zszKwQXi X] ‘i“Zlek
()

where the sums are to be extended to all the capture reactions (Z,j) and the radioactive
disintegrations (k) occuring in the special chain of interest. Q;; and Qy are the energies
released in these respective processes; Ax is independent of the physical conditions while
K5 is a function of T only so that

oKy _ T
Ky  UTT

in which »4; defines the sensitivity of that particular reaction to the temperature. We then
have

bey = C [Z Qu Kijo ﬁi ‘EJ ( O | de  OX 5X1>

X, TX
(Z,7)
(24) X
¥ 60Xy
| + 2, 0ck g Xk]
k

The perturbations of the abundances satisfy general equations of the type

1 06X, 0X; do
A, ot = > Kt N S RIUE Xz SR Aty
(z] Va j i @

n=1,2,...76

if the total number of nuclei participating in the reactions is 7 .

Thus, to eliminate completely dex and 0L from (22) in terms of » we must add to this
equation the system formed of the equations (1), (23), (24), (25) and (5) which can be
rewritten here

T ) 1 déL
(26) c?z(éT) —Is—1) aat( Q) ET(&N_W)

Or, one may prefer to go back to the system of the (6 + ) equations (1), (2), (23), (24),
(25), (26) and (3) which altogether is of the (4 4 ) th order in the time. Thus one must

expect that the solution of the complete problem will introduce extra time-scales distinct
from those characterizing the three classical types of stability recalled above. However
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without a fairly detailed discussion it is difficult to say how significant they may be and
with what types of motion they are associated.

Let us note also that even if Jey has the simple form (20) and the nuclear kinetic
equations are neglected, the explicit elimination of dex and ddL/dm leads already to a fourth
order equation in s, very much as in the second part of Section 5 although the algebra beco-
mes appreciably more complicated.

Manuscript received, January 16th. 1964.
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