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choice has to be made with respect to design specifications in the different domains. Two main challenges

are treated in this paper: the non-convex nature of the optimization problem and the difficulty in mod-
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eling serial machines with flexible components and their embedded controllers. The optimization prob-
lem is treated using the direct design strategy which considers simultaneously structural and control
parameters as variables and adopts non-convex optimization algorithms. Linear time-invariant and
gain-scheduling PID controllers are addressed. This methodology is exploited for the multi-objective
optimization of a pick-and-place assembly robot with a gripper carried by a variable-length flexible

beam. The resulting design tradeoffs between system accuracy and control efforts demonstrate the
advantage of an integrated design approach for mechatronic systems with configuration-dependent

dynamics.
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1. Introduction

An optimal mechatronic design requires that, among the struc-
tural and control parameters, an optimal choice has to be made
with respect to design specifications in the different domains [1].
In spite of the advances in optimal control design, optimal mecha-
tronic design is still an open research area. There are, mainly, two
reasons for that: (i) the difficulty in solving optimization problems
involving structural and control parameters due to their non-con-
vex nature and (ii) the difficulty in modeling mechatronic systems
due to their multidisciplinary nature.

Considering that P represents the structural system plant and K
the control system, the integrated structure and control optimiza-
tion problem can be described by the following optimization
problem:

min - f(L(sp, Si)) M

where s is the vector of structural, s,, and control, sy, variables; Q is
the feasible solution set and f is a measure of the system dynamic
response which depends on the open-loop transfer function
L(s) = P(s,)K(sx). Among other issues, structural and control vari-
ables are multiplied in order to evaluate the open-loop transfer

* Corresponding author. Tel.: +32 16 32 24 80; fax: +32 16 32 29 87.
E-mail address: mairams@gmail.com (M.M. da Silva).

0957-4158/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mechatronics.2009.06.006

function, resulting into a non-convex optimization problem. There
is no computationally tractable approach to solve Eq. (1) due to
the complex and non-convex nature of the optimization [2].
According to [3], there are mainly two numerical strategies to per-
form the integrated structure/controller design: the nested and the
direct strategies.

The nested design strategy combines nonlinear optimization
methods and model-based control design techniques, such as the
ones based on linear matrices inequalities (LMI) and Ricatti
equations. In other words, for each set of structure parameters, a
control, with a general structure, is designed using model-based
control design techniques. The nested design strategy has been
employed for designing a gain-scheduling control to achieve com-
pensation for the varying mass distribution, to suppress structural
bending, vibrations and friction disturbances, and to achieve short-
er motion settling time [4]. Recently, [5] have proposed a general
platform for designing serial and parallel machines based on the
nested design strategy. The main drawback of this strategy is that
the variables are not optimized simultaneously.

The direct design strategy considers simultaneously the control
and structural parameters, using numerical methods, such as non-
convex optimization algorithms or genetic algorithms. It can be
employed when the control structure is known beforehand. An
important drawback of this approach is the excessive computation
time, which grows exponentially with the number of structural
design variables. The direct design strategy has been employed,


http://dx.doi.org/10.1016/j.mechatronics.2009.06.006
mailto:mairams@gmail.com
http://www.sciencedirect.com/science/journal/09574158
http://www.elsevier.com/locate/mechatronics

M.M. da Silva et al./Mechatronics 19 (2009) 1016-1025 1017

among others, for optimizing a two-link planar manipulator and a
PD controller [6], for optimizing the geometry and the control
parameters of a motor-driven four-bar system [7], for optimizing
structural and control parameters aiming cavity noise reduction
[8] and for designing structural and control parameters of a flexible
linkage mechanism for noise attenuation [9]. In contrast with the
control strategies exploited in this paper, most references regard-
ing direct design strategies do not address the design of linear
parameter-varying (LPV) controllers. Because of the non-convex
nature of the direct design strategy, a LPV system can not be de-
scribed as a polytopic system [10]. This is an important drawback
when designing LPV controllers using frequency-domain metrics,
since the infinite set of inequalities imposed by the parameter var-
iation can not be reduced to a finite one. For this reason, time-do-
main metrics are considered in this paper, which demands time-
domain simulation and evaluation of the system under study.

Besides the complex and non-convex nature of the optimization
problem, the integrate structure and control design is a challenge
task due to the difficulty in modeling some mechatronic systems.
This is the case of serial machines with flexible components, such
as Cartesian mechanisms, milling machines and pick-and-place
machines. In these machines, the relative motion between flexible
components leads to time-varying boundary conditions, so that the
eigenfrequencies and mode shapes are not constant but depend on
the spatial configuration. The dynamic modeling of serial machines
has been treated in recent references [11-14]. A substructuring dy-
namic modeling procedure has been applied for the modeling of a
flexible-link planar parallel platform by [12] using Component
Mode Synthesis (CMS) [15]. A similar procedure was employed in
the modeling of a 3-axis milling machine by [11] for several dis-
crete spatial configurations. However, CMS can not be directly em-
ployed to evaluate a serial machine in time-domain, since it is not
possible to represent the flexibilities using a single mode set for
each component due to their time-varying boundary conditions.
Since the most available commercial multibody packages also
use CMS to include flexibility, the modeling of serial machines is
not a straightforward task. Alternatives have been proposed by
[13,14], integrating dedicated software such as commercial finite
element and multibody packages. However, these techniques are
relatively time-consuming.

This paper concerns the integrated design of serial machines
with configuration-dependent dynamics considering the direct de-
sign strategy. Two control strategies are compared: linear time-
invariant (LTI) PID and gain-scheduling PID. To proper simulate
and evaluate serial machines in time-domain, an innovative fea-
ture have been implemented in Oofelie, an open source finite ele-
ment software [16]. This feature, refereed to as sliding joint, is not
available in most commercial multibody packages. It allows the
relative translation motion between flexible bodies. To simulate
and evaluate gain-scheduling controllers, Oofelie capabilities have
been extended to include controllers described by LPV state-space
equations. Based on this mechatronic design tool, able to simulate
serial machines and different controllers in time-domain, a multi-
objective optimization strategy is proposed for the integrated de-
sign of the mechanical structure and the controller. This approach
is very useful to evaluate tradeoffs among conflicting objectives in
mechatronic applications. The selected control design approach
does not directly guarantee stability, which should be accessed
after the control derivation. To cope with this requirement, stabil-
ity analysis is included as a set of constraints in the optimization
problem.

The paper is organized as follows: the general methodology for
the modeling, stability analysis and optimization of mechatronic
systems with configuration-dependent dynamics is described in
Section 2. The integrated design methodology is applied to an
industrial 3-axis pick-and-place assembly robot. Section 3 presents

the case study description, its mechanical modeling, as well as
various control algorithms and stability analysis. In Section 4, the
integrated structure and control optimization is developed. The
results demonstrate the benefits of the mechatronic design
approach. Finally, some conclusions are drawn in Section 5.

2. Modeling and optimization of mechatronic systems
2.1. Modeling

This paper presents a methodology to model and simulate a se-
rial machine system with configuration-dependent dynamics in
time-domain, using nonlinear flexible multibody dynamics. The
approach described in [17], which is a general and systematic tech-
nique for the simulation of articulated systems with rigid and flex-
ible components, is selected. For mechatronic systems, an
extension of those modeling methods is required to deal with the
controller dynamics. One option is to use a coupled modeling ap-
proach, so that a monolithic time integrator can be used, and no
weak coupling assumption is required [18,19]. This strongly cou-
pled formulation has been adopted for the present developments.

According to [17], a flexible multibody system can be described
using absolute nodal coordinates. Hence, each body is represented
by a set of nodes and each node has its own translation and rota-
tion coordinates. The various bodies of the system are intercon-
nected by kinematical joints, which impose restrictions on their
relative motion. If the nodal coordinates are gathered in a vector
q, the joints are thus represented by a set of m nonlinear kinematic
constraints:

®(q,t) =0 @)

According to the Lagrange multiplier technique, the formulation of
the constrained equations of motion requires the introduction a
m x 1 vector of Lagrange multipliers A.

The dynamics of the controller can be represented by a nonlin-
ear state-space model with state variables x, and control signal
output variables y,. In this way, the dynamic equations of a mech-
atronic system consisting of a multibody model and a control sys-
tem (see Fig. 1a), have the general structure:

M(q)q = g(q,q,w,t) - B'2+y, 3)
0=®(q,t) 4)
X = f(X¢, uy, t) (3)
Vi = h(xy, uy, t) (6)

Eq. (3) represents the dynamic equations of the mechanical system,
Eq. (4) the kinematic constraints, Eq. (5) the state equation and Eq.
(6) the output equation. M is the mass matrix, which is not constant
in general, g represents the internal, external and complementary
inertia forces, B = 0®/dq is the matrix of constraint gradients, y,
denotes the actuator forces or torques generated by the control ac-
tion, u, represents the input signals to the controller and w repre-
sents the disturbance, noise and reference signals vector. Egs. (3)-
(6) are coupled equations of motion and can be solved numerically
using an implicit time integration scheme. Typical applications are
described in [18].

Fig. 1a shows a scheme of the augmented plant P,, which in-
cludes the mechanical system P described by Egs. (3) and (4),
and the control system K described by Eqgs. (5) and (6). The nota-
tion is the same one adopted in Egs. (3)-(6). The output system sig-
nal z and control signal inputs u, can be described by combinations
of the disturbance, noise and reference signals, w, the control sig-
nal outputs, y,, and the measurements from the mechanical sys-
tem, which can be positions q, velocities q or accelerations g.
The objective is to design a controller K that minimizes the signal
z. Fig. 1b shows a scheme of the selected control strategy which is
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Fig. 1. (a) Scheme of the augmented plant P,, which includes the mechanical system P, and the control system K and (b) scheme of the augmented plant and the control

system of the case study described in Section 3.3.

described in Section 3.3. In this case, w regards only the reference
signal, r, and z regards the tracking error, r — p, and the force gen-
erated by the controller, g. The gripper position is refereed as to p.

In the case of mechatronic systems with configuration-depen-
dent dynamics, LPV controllers are widely employed [4,5,20].
Using the simulation framework described by Egs. (3)-(6), LPV
controllers can be included adapting the ABCD matrices according
to time-varying parameters 1(¢):

Cll(E)xe(6) + Dy (1(1) (1) @)

<
=
—
—
=
Il

2.2. Stability analysis

When stability is not guaranteed directly by the control design
approach, it needs to be, eventually, accessed. The stability analysis
of LPV systems can be performed with Lyapunov-based theory. Re-
cently, a sufficient condition for the stability of LPV systems has
been provided by [21] taking into account a bound A on the rate
of parameter variation. The system under verification should be
described as a discrete-time LPV system x(i+ 1) = A(l(i))x(i),
where the varying parameter described in continuous-time, 1(t),
is represented in different time steps i by 1(i).

For a given maximal rate of variation A, the parameter space is
divided into v intervals. The size of the intervals is such that in one
discrete-time step, the parameter 1(i) can only jump into the next
interval:

i+ 1) - 1)

<A ®)

where T; is the sample period and i = 0...v. A simplified notation
for the theorem presented in [21], which states a sufficient condi-
tion for stability of an LPV system, is proposed in [22] and described
hereafter. Considering a discrete-time LPV system described by
x(i+ 1) = A(1(i))x(i), if there exist i=1...v positive definite con-
stant matrices P(i), such that the following LMIs are satisfied for
alli=1...vandj=-1,0,1:

AP +)HANG) - P(i) <0

. N . 9)
A(i+1)"P(i +j)A((i+ 1)) — P(i) < O

then the system is uniformly asymptotically stable for all time-
varying realization of the parameter 1, satisfying constraints on
the range and rate of the parameter variation. Due to the notation

simplification, the first LMI of the first interval and the last LMI of
the last interval are not valid and should be removed.

2.3. Multi-objective optimization

The objective of this work is to perform a direct optimization
considering structural and control parameter. As stated in the
Introduction, this is a non-convex and non-linear optimization
(Eq. (1)). Moreover, this optimization problem is usually composed
of distinct objectives, such as minimizing the tracking error and
minimizing the motor effort. The latter characteristic suggests that
multi-objective optimization strategies, which aim to find trade-
offs among several conflicting objectives, should be considered.

In the context of mechatronic systems, the vector s of design
variables may include structural as well as control parameters.
The optimization problem can be stated as

r&lﬂnﬁ(s) i=1,...,nf (10)

where f; (i = 1,..,n;) denotes the set of objective functions, whereas
Q is the feasible solution set defined by the inequality constraints

hi(s) <0 i=1,....m 11

Let us note that the functions f; and h; are typically computed from
simulation results. The objective functions evaluate the dynamic
system performance addressed by the non-convex optimization
problem (Eq. (1)).

An attempt to solve this non-convex, non-linear, multi-objec-
tive and computationally demanding optimization problem can
be performed using stochastic methods, such as evolutionary algo-
rithms. Among evolutionary algorithms, the Non-Dominated Sort-
ing Genetic Algorithm proposed by [23] has been improved by
[24] yielding an algorithm used for multi-objective problems:
NSGA-IL In this refined algorithm, the population is ranked accord-
ing to the individual’s non-domination criterion before the selec-
tion. In other words, an individual is compared with every other
individual in the present population and also with the non-domi-
nated individuals from the previous population to find if it is
dominated. Eventually, a large fitness value is assigned to the
non-dominated solutions. This process is repeated to find the sub-
sequent non-dominated solutions and it stops when all individuals
in the present population are dominated by the non-dominated
individuals from the previous population yielding the Pareto-opti-
mal solutions. The diversity of the population is preserved by a
crowded-comparison approach, which guarantees a good spread
of solutions.
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3. Pick-and-place robot: modeling details and control
algorithms

3.1. Case study

This integrated design methodology is applied to an industrial
3-axis pick-and-place assembly robot with a gripper carried by a
flexible beam (Fig. 2). The fast movements of this machine may ex-
cite the vibrations of the variable-length flexible beam. The Z and
the X-motion are performed by a ACM H-drive system, which is
cartesian robot based on three linear motor motion system, pro-
duced by Philips. The Z-motion is gantry driven by two linear mo-
tors and the X-motion, over the carriage, is also driven by a linear
motor. The vertical Y-motion is actuated by a rotary brushless DC-
motor which drives a vertical flexible beam by a ball screw/nut
combination. The position of the linear motors and the beam
length are measured by optical encoders, and the acceleration at
the gripper in the X-direction is measured by an accelerometer.
The objective is to move the gripper as accurately and fast as pos-
sible along a prescribed trajectory in the working area.

A model has been built to simulate the pick-and-place assembly
robot motion in X- and Y-directions. The Z-motion is not consid-
ered in this work.

3.2. Mechanical model

A flexible multibody model has been built to simulate the pick-
and-place robot motion in X- and Y-directions (see Fig. 2) accord-
ing to Egs. (3) and (4). All components are modeled as rigid bodies,
excepted the flexible beam. The inertia of the sliders of the linear
motors, responsible for the Z-direction motion, is added to the
bodies representing the frames; the gripper is modeled as a con-
centrated mass. Table 1 shows the inertia values for all rigid
bodies.

A specific feature, a sliding joint, has been implemented to en-
able the translational relative motion between flexible bodies. This

linear motors X

carriage

frame flexible beam

gripper

Fig. 2. Pick-and-place machine used as test-case

Table 1
Inertia values of the rigid bodies

Rigid Mass  Moment of inertia (kg mz) Center of gravity (m)
bodies (kg)

Ly Iy I, X y z
Frames 169.0 10x10° 20x10° 1.0x10® +057 053 0.00
Carriage 139 10x10> 1.0x10' 1.0x10* 0.00 0.53  0.00
Linear motor 31.0 - - - 0.00 0.53 0.00
Gripper 1.250 = - - 0.00 0.00 0.00

linear motor

Node J

flexible beam 7

Fig. 3. Scheme of the translational movement between the linear motor and the
flexible beam.

sliding joint is responsible for the translational motion in Y-direc-
tion between the flexible beam and the linear motor (see Fig. 3).
According to the Timoshenko theory, displacements I" and rota-
tions ¥ are treated as independent fields in the beam. In a single
element with two nodes ng and n;, an arbitrary point can be repre-
sented by the adimensional coordinate along the beam # € [0, 1].
For linear shape functions and under the assumption of small rota-
tions, the positions and orientations of this point are expressed in
terms of the nodal coordinates

() =1 -nIo+nly (12)
¥(n) = (1-n)¥ +n¥ (13)

Using again the small rotations assumption, the axis of the
beam and of the sliding joint are close to the y-axis. If the linear
motor is represented by a node J, the sliding joint is thus modeled
by five kinematic constraints between the nodal coordinates
Iy = [Xo Yo Z()]T7 I = [X] Y1 Z]]T7 l"] = [X] y] ZJ]T,‘l’h‘l’z and ‘l’]

D =(1-1mx+nx —x=0 (14)
D, =(1-1n2+nz1-2=0 (15)
D345 = (] - 7])‘]’0 + 7]‘}'1 - ‘Pj =0 (16)

where 7 is computed as 1 = (y, — ¥;)/L, with L, the total length of
the beam element. Fig. 3 shows a scheme of the linear motor (rigid
body) and the flexible beam (flexible body) in two configurations
illustrating their behavior during the translational motion in Y-
direction. The complete derivation of this feature can be found in
[25].

A general scheme of the pick-and-place robot model is shown in
Fig. 4. The actuator force generated by the linear motor, is applied to
the linear motor mass (action) and to the carriage (reaction). The
nominal machine specifications are described hereafter. The spring
stiffness and the damping value between the carriage and the frame
are, respectively, K; = 9.15 x 10° N/m and D; = 1042 N s/m. The
frame suspension is connected to the ground by four connecting
points. The stiffness and the damping of these connections are,
respectively, K, = 5.3 x 10’ N/m and D, = 5204 N s/m. The damp-
ing D; = 100 N s/m represents the connection between the linear
motor and the carriage. The flexible beam has a nominal diameter
of 24 mm. The material properties are: density p, = 7800 kg/m’,
Poisson’s Ratio v = 0.3, damping ratio 0.01 and elasticity modulus
E =2.1x 10" N/m2. The mass and inertia values can be found in
the machine manual. The stiffness values have been adjusted
according to experimental data (Fig. 5).

This flexible multibody model has hundreds degrees-of-free-
dom and its dynamics varies according to the configuration. Thus,
a full description of the dynamic equations can not be directly in-
cluded in this section. For sake of completeness, a reduced model
extracted from the full flexible multibody for a given configuration
(I=0.53 m) is presented in Appendix A. Alternatively, a lumped
model has been proposed by [26]. This lumped model can be
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Fig. 4. Scheme of the flexible multibody model of the X-direction motion of a pick-and-place machine.
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Fig. 5. Comparison between the simulated (- - dashed line) and the experimental FRFs (- full line). (a) Motor position/motor force (b) gripper acceleration/motor force.

employed for the evaluation of the nominal system over the con-
figuration space.

Fig. 5 shows the comparison between simulated and measured
FRFs for four beam lengths (I = 0.53, 0.41, 0.36 and 0.33 m with the
first resonance frequency at 32, 46, 57 and 63 Hz). The curves are in
a good agreement, which confirms the validity of the model.

3.3. Controller

For machines with configuration-dependent dynamics, two
control strategies can be adopted: (1) LTI controllers, that can be
explicitly designed to take into account the dynamic variations
as uncertainties, like robust controllers designed using p-synthesis
or (2) linear time-varying (LTV) controllers, that can adapt accord-
ing to the parameter variations, such as LPV controllers [4] and LPV
gain-scheduling controllers [20].

In this work, a PID control scheme is implemented for control-
ling the X-axis motion using measurements of the motor position.
Both LTI and LPV gain-scheduling PID controllers are described by
the following state-space representation

Xy = [0]x¢ + [~ 110wy (17)

Vi = [-Ki(D))x + [Kp(1) — Kp(1) — Kp(1)]ug (18)

where the input vector u, = [I', Dpowrs Umotor] COllects the reference
input, the motor position and the motor velocity; and the output
vector y, = [g] represents the motor force. The gripper position is
refereed to as p. The performance of the system is measured by
the gripper position accuracy.

As it can be observed in Fig. 5, the relation between the first res-
onance and the beam length is rather linear (I = 0.53, 0.41, 0.36 and
0.33 m with the first resonance frequency at 32, 46, 57 and 63 Hz).
Therefore, linear dependence on [ is selected for the gain-schedul-
ing PID. In this way, the vector of scheduling parameters 1 simply
represents the beam length 1 = [I(t)].

Fig. 1b shows a scheme of the augmented plant P,, which in-
cludes the mechanical system P, and the control system K. In this
case, the signal w represents the reference signal, r; and the signal
z represents the tracking error, r — p, and the actuation force gen-
erated by the controller, g. The control signal inputs u, are
[rspmnmrv ythOf]'

The same strategy can be applied for modeling and controlling
the Z-direction motions, but this design is not considered in this
work. An imposed motion assures that the Y-direction motion fol-
lows the prescribed trajectory.
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3.4. Stability analysis

A state-space description of the machine model, for a given con-
figuration, is obtained by using a model-order reduction technique
[27]. For 1=0.53 m, the state-space model is described in the
Appendix A. This state-space model is then combined, in a feed-
back fashion, with the state-space description of the PID controller
(Egs. (22) and (18)), yielding the closed-loop state-space model of
the system with its embedded controllers for a given configuration.
This procedure should be repeated for each configuration consid-
ered during the stability analysis.

These closed-loop state-space models are then discretized con-
sidering a sampling time of 1/2000 s. The frequency range of inter-
est is from O to 400 Hz, where the first three system resonances are
located. In this way, the sampling rate can guarantee good mea-
surements, if they are eventually performed, in the frequency
range of interest.

In order to guarantee that the system is uniformly asymptoti-
cally stable for a parameter variation between 0.33 and 0.53 m
(the beam length) and bounded rate by 10.0 m/s, the parameter
space should be discretized in v =40 intervals (I(i+ 1) — (i) <
0.005). The feasibility problem described by the LMIs (in Eq. (9))
can be solved using the LMI toolbox available in Matlab [28]. Since
40 intervals should be evaluated, 41 closed-loop state-space mod-
els should be extracted for each configuration considered (between
0.33 and 0.53 m).

4. Integrated structure and control design

In pick-and-place applications, the position error should be kept
below a specified threshold. The diameter of the beam has a direct
influence on the vibration of the effector and is thus considered as
a design variable. The other parameters are associated with the
particular PID control strategy, as described below. The set of vari-
ables is collected in the vector of design variables noted s.

In order to mimic point-to-point movements, a pulse train is
chosen as a reference signal for the optimization problem. As illus-
trated in Fig. 6, the beam length, I(t), evolves during the simulation,
so that the different eigenfrequencies are excited in various config-
urations. For this reference input, the simulation takes about 110 s
CPU time using a Pentium IV, with a processor of 1.4 GHz.

Taking these aspects into account, the minimization of two
objective functions is considered.

€5 1
4.8 . . . .
0 0.2 0.4 0.6 0.8 1
x10™*
10 T T T T
£ |
0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1
Time [s]

Fig. 6. The weighting function {(t), the reference input r(t) and beam length
variation during the simulation I(t).

The first objective function f; represents the weighted squared
error between the gripper position, p(t,s), and the reference signal,
r(t), and is computed according to

o1
fits) =2 | e - pie.s)ae (19)

Ce
where t refers to time, ¢, =4 x 10~ is a constant and {(t) is a
weighting function. The value of constant c. is chosen in such a
way that the values of f; are normalized between 0 and 1. Too large
or too small objective or constraint values can imply in numerical
errors during the optimization procedure. Therefore, it is a common
practice to normalize these values.

The weighting function ((t), shown in Fig. 6, is adopted to
penalize longer settling times. A basic weighting function, {*(t) =
tan(o) x t +1/T — tan(o) = T/2, where t is the time within each step
interval and T represents the total simulation time associated with
the step input (in the present case 0.2 s) and o is the curve steep-
ness. An illustration of this basic weighting function is depicted in
Fig. 7a. An attempt to define such weighting functions is addressed
in [6], but no clear guidelines are proposed. In the way it is pre-
sented here, the angle o can be adjust such that the weighting
function penalizes more large overshoot or longer settling time.
An example illustrates the behavior of this basic weighting func-
tion for a second-order system with bandwidth of 10 Hz and a
damping factor of 0.01. The reference input (a step) and the system
response are shown in Fig. 7b and c, respectively. Fig. 7d and e
show two different weighting functions and the respective
weighted squared errors. The higher «, the lower is the penalty
on the overshoot and the higher is the penalty on the settling time.
For the case study presented in this work, the angle o is chosen to
be 60°, illustrated in Fig. 6, which penalizes longer settling times.

The second objective function f, represents the maximum force
(g) required by the controller during motion, i.e.
f(s) = max \ég(t,s)\

f

where ¢, =500 N is a constant for normalizing f,. The maximum
force delivered by the present motor is 500 N, which motivates
the ¢y value choice. Normally, a linear motor is selected based on
the maximum force required by the controller to perform a desired
motion. Since this is an expensive item, the present motor is kept,
enforcing that the maximum required force is below 500 N. In this
way, the values of f, can only vary between 0 and 1 (normalized
objective), which will be enforced by the constraint h,, defined
below.

The responses evaluated during the optimization, such as the
gripper position and the motor position, are obtained with the sim-
ulation of the flexible multibody with its embedded PID controller
(Egs. (3)-(6)).

Two set of constraints are imposed to avoid infeasible gains
()0 and large actuation forces ( >500 N):

(20)

hi(s):s1 <'s < sy (21)
hy(s): fo < & (22)

where s; and s, assure that the control gains are always positive and
that the structural parameter varies according to the available com-
mercial options (from 0.02 to 0.04 m); and g, is 1 guaranteing a
maximum required force below 500 N.

A set of constraints is imposed to guarantee that the system is
uniformly asymptotically stable for a parameter variations be-
tween 0.33 and 0.53 m and bounded rate by 10.0 m/s:

P(I(i)) > 0
A(1(1))"P(i + j)A(I(i)) — P(i) < 0,

hg(s) : .
A(( + 1)'PG + A + 1)) - P(i) < 0,
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Fig. 7. (a) The basic weighting function {*(t), (b) the step input r(t), (c) system response, (d) two different weighting function and (e) their respective weighted error length

variation I(t).

This constraint is evaluated in discrete-time; where i represents the
time step, [ is the beam length, P(I(i)) are positive definite matrices
and A(l(i)) represented the discretized closed-loop state-space sys-
tem (the reduced plant embedded with the controller).

For multi-objective optimization problems with three and four
variables, described below, the adopted initial population and the
population size are equal to 30 individuals (solutions); whereas
for problems with seven variables, the initial population and the
population size are equal to 40 individuals. Around 25 individuals
are expected to be found on the Pareto-optimal solutions in both
cases. The inverse crossover probability is chosen to be 0.85, which
guarantees the inclusion of new individuals in the optimization
process. Finally, the maximum number of iterations is 30, which
is large enough to observe the algorithm convergence, which
means that all individuals in the present population are dominated
by the non-dominated individuals from the previous population.

Two control strategies and optimization problems are analyzed
as follows:

Case 1 The gains of an LTI PID are optimized simultaneously with
the diameter of the flexible beam. These results are com-
pared with the nominal case (d =24 mm), where only
the controller is optimized.

Case 2 The gains of an LPV gain-scheduling PID are optimized
simultaneously with the diameter of the flexible beam.
Comparisons between the integrated design considering
the LTI PID and the LPV gain-scheduling PID controllers
are reported.

4.1. Case 1: integrated design considering an LTI PID controller

Considering the reference input in Fig. 6, the gains of an LTI PID
controller are optimized. Firstly, the nominal case (d = 24 mm) is
considered resulting in a 3-variable optimization problem

S = {Kp, K[, KD}

Secondly, the gains are optimized simultaneously with the beam
diameter resulting in a 4-variable optimization problem, i.e.

S= {Kp7 KI: KD: d}

The multi-objective optimization problem is stated as

. fi(s)
mn {fz(s)} 24
h] (S)
subject to | hy(s)
hs(s)

Fig. 8 shows the Pareto-optimal solutions and Fig. 9 shows the val-
ues for the design variables associated with each individual on the
Pareto-optimal solutions for both nominal case and integrated de-
sign. It can be observed from Fig. 8, that the inclusion of the struc-
tural variable improves the overall design. For instance, considering
the same f; value (see the squares in Figs. 8 and 9) and increasing
slightly the beam diameter (12.5%), the value of f, is considerably
reduced (from 0.58 to 0.35). This reduction actually means that
the maximum required force by the controller is lower than the
nominal case, i.e. the same level of performance can be achieved
with a smaller motor. On the other hand, considering the same f,
value (see the circles in Figs. 8 and 9) and increasing the beam
diameter, the value of f; is considerably reduced. In general, the

1 * T T T T T T T
Nominal case (LTI PID)
0.9 * *  Integrated design (LTI PID){
08F . |
Ee—=—)

Y— 07 B x.. 7
0.6 »~ J
x % x x~
0.5¢ * xxy xA

0.4 . . . . . . .
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f
2

Fig. 8. Pareto-optimal solutions considering the LTI PID: (o) nominal case and (x)
integrated design.
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optimal integrated solutions have resulted in thicker diameters (see
Fig. 9d). However, since the maximum force required by the system
is related to both beam diameter and PID gains, thicker diameters
are not always yielding higher values of the maximum force (see
the squares in Figs. 8 and 9). Moreover, the design constraint, hy,
is respected in the whole objective space, which means that the
present motor can be kept and the maximum required force is be-
low 500 N.

4.2. Case 2: integrated design considering an LPV gain-scheduling PID
controller

Considering the reference input in Fig. 6, the gains of an LPV
gain-scheduling PID and the beam diameter are optimized simulta-
neously. This optimization problem leads to seven design variables

s = {Kpo, Kp1, Ko, Ki1, Kpo, Kp1, d}

As performed previously (Eq. (24)), both objective functions f; and
f, are considered. Fig. 10 shows the Pareto-optimal solutions for
the aforementioned LTI PID controller (case 1) and for the LPV
gain-scheduling PID controller (case 2). It can be observed that
the LPV gain-scheduling PID can perform slightly better than the
LTI PID, since the solutions of the latter are located below the solu-
tions of the former. The variations of the optimal beam diameter
along the Pareto front are illustrated in Fig. 11. There is no signifi-
cant difference between the solutions set.

It can be observed from Figs. 10 and 11 that the LPV gain-sched-
uling performance and solution sets are rather similar to the per-

1 —— , , : : : :
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07} e ]
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 10. Pareto-optimal solutions of the integrated design considering the LTI PID
and the LPV gain-scheduling PID controllers.
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Fig. 11. Optimal beam diameters: nominal case and integrated design considering
the LTI PID and the LPV gain-scheduling PID controllers.

formance and solution set presented by the LTI PID. The main
reason for this is because the optimal beam diameters are rather
larger than the nominal (see Fig. 11); therefore, less sensitive to
vibrations. In other words, the amplitude of these vibrations are
small over the whole configuration space. Therefore, the perfor-
mance of the LPV gain-scheduling PID controller, considering a lin-
ear interpolation, does not present much improvement when
compared with the LTI PID controller.

The design procedure proposed here allows this kind of analy-
sis, as it enables the evaluation of continuous machine operation
in closed-loop, with different control and structure configurations.
As a result, for the chosen set and range of parameters, it can be
concluded that the use of a thicker beam diameter, if affordable,
can lead to a simpler controller configuration without loss in
accuracy.

5. Conclusions

This paper addresses the integrated design of structural and
control parameters of serial machines with flexible components.
A multi-objective optimization framework has been developed
based on a general simulation tool for flexible multibody systems
embedded with nonlinear controllers.

The methodology is exploited for the optimization of a pick-
and-place assembly robot with a gripper carried by a variable-
length flexible beam. The model involves a sliding joint that
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connects the flexible beam to the rigid frame. The beam diameter
and the gains of LTI and LPV gain-scheduling PID controllers are
optimized according to a direct design strategy.

These results reveal the benefits of the mechatronic design ap-
proach since the active system design tradeoffs are identified. The
qualitative statement that the optimal integrated solutions result
in thicker diameters seems to be predictable. Actually, any thicker
diameter would imply in vibration reduction. However, the quan-
titative results achieved in this framework are not that simple to
foresee. Using the proposed methodology, one can decide which
beam diameter should be selected and predict the closed-loop re-
sponse of such a complex mechatronic system in time-domain. In
this way, not only qualitative behavior, but also quantitative met-
rics, such as overshoot and settling, can be evaluated over the con-
figuration space during the design phase.

For future work, tighter performance requirements could be
achieved using more advanced control strategies, such as robust
and optimal controllers, with the nested design strategy.
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Appendix A

The model-order reduction technique described in [27] has
been applied to the full flexible multibody model, described in Sec-
tion 4.1, for each configuration considered in the stability analysis
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(41 configurations from I = 0.33-0.53 m). This appendix reports the
reduced model for [=0.53 m. The reduced mass and stiffness
matrices are built according to a selected set of modes: 1 rigid-
body mode and 3 kept flexible modes, yielding 4 by 4 matrices. A
state-space model can be derived from the reduced mass and stiff-
ness matrices, the modal matrices and the chosen modal damping
factor. Eventually, the flexible multibody has been reduced from
hundreds degrees-of-freedom to a state-space model with 8 states,
1 input (the motor force) and 2 outputs (the motor position and the
gripper position). Details on the model-reduction technique and its
application on the case study can be found in [5].

The minimal realization state-space model of this reduced mod-
el is given by the following equations:

X, = A,(0.53)X, + B,(0.53)u,

25
¥, = G;(0.53)x, + D,(0.53)u, (25)
where
12x10"% —95x10'" —27x10™ 37x107 ]|
58x107"7 —-69x107"® 42x10"7 -58x107"
24x107% —1.7x10" -52x102® 72x10°
-9.7 18x10°"® 71x10™ -98x107’
8562 -9.0x 10> —-41x10""" 57x10™*
82x10* -85x10° 9.6 53x1073
42 x10° -45x10* 74x10"  -23x1072
31x102 -33x10° 54x10° -1.7x107 |
-15x107" 16x102% -32x10"° 1.0
15x1077 -16x102% 32x10° 1.0
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