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Abstract

We propose a unified econometric strategy to revisit the informational content of interest

rate differentials (IRD) for predicting exchange rates. The novelty of our approach con-

sists in allowing for a time-varying asymmetry component in the conditional distribution

of the depreciation rate, therefore explicitly modeling the link between interest rates and

the likelihood of a depreciation. To assess the economic significance of IRD as a predictor,

we derive a directional forecasting procedure from our model and apply this technique

to daily exchange rates of the Euro and the Swiss Franc. We document in-sample and

out-of-sample performances significantly superior to benchmark models, both in terms of

sign forecasts and trading profits. Overall, we find the dynamic asymmetry component

to be driven by interest rate differentials, but also by general uncertainty and past unex-

pected shocks. These findings empirically confirm currency crash theories for recent time

periods, suggesting that the larger the difference between interest rates, the more likely

the high yield currency appreciates but also exhibit larger depreciation risks.
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1 Introduction

The exact nature of the relationship between short term interest rate differential (IRD) and

currency depreciation remains an ongoing debate: on the one hand, economic theory postulates

that IRD and foreign exchange rates are linked over time via the uncovered interest rate parity

(UIP) rule. In this framework, the currency of the high yield economy is expected to depreciate,

offsetting possible gains derived from a carry trade strategy1. Empirically, however, we observe

the opposite: several studies (among others Gabaix and Maggiori [2015]) report an appreciation

of the high yield currency over long periods of time, which contradicts UIP.

This apparent contradiction is a long-standing question in the finance literature. Early

on, Meese and Rogoff [1983] notice that models based on IRD cannot beat a simple random

walk in predicting future exchange rates, raising the question of its predictive content. Despite

considerable progress in terms of data availability and econometrics techniques for the past 35

years, few has changed in this regard. In a recent review, Rossi [2013] concludes that even if

many predictors and models provide economically significant in-sample forecasts for the mean,

few produce significant out-of-sample forecasts, especially at short time horizon. A similar

conclusion is reached by Hsu et al. [2016], who look at profits made by trading strategies using

various predictors for a large panel of currencies. They observe that, in recent times, currencies

of developed economies have been particularly hard to predict.

Several theoretical reasons are advanced for this lack of performance: most notably the time-

varying predictive content of the fundamentals like IRD [Bacchetta and van Wincoop, 2013,

Berge, 2014, Ismailov and Rossi, 2018], but also the misspecifications of the models traditionally

used to conduct these forecasts [Cheung et al., 2005, Rossi, 2013, Ismailov and Rossi, 2018,

Amat et al., 2018]. Indeed, whereas most models focus on conditional mean forecasts [Husted

et al., 2018], exchange rates exhibit high-order dynamics and extremely weak mean dynamics

[Chung and Hong, 2007, Brunnermeier et al., 2008, Ismailov and Rossi, 2018]. To illustrate this

relation between exchange rates and IRD, we conduct the following analysis: we fit a simple

GARCH(1,1) model on the daily log-rate of change of the USD/EUR exchange rate between

1999 and 2019, and look at the relationship between empirical skewness of the residuals and

IRD. That is, for a defined IRD threshold (e.g. 1.5%), we pool all residuals whose associated

IRD is larger (resp. smaller) than this threshold, and compute the empirical skewness of this

subsample. We repeat this operation for a sequence of thresholds. If the true model has its

random part independent from IRD, then conditional skewness must be zero. Figure 1 shows

the obtained results considering negative and positive thresholds (solid red line). Using residual-

bootstrap confidence intervals where we enforce the independence with IRD, we conclude that

the independence hypothesis has to be rejected. On the contrary, we observe some intriguing

1Carry trade here refers to an investment strategy that consists in borrowing in a low interest rate currency

and investing in another with a higher interest rate over a certain period of time, without hedging exchange

rate risk.
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Figure 1: Solid red: Empirical skewness for residuals of a GARCH(1,1) computed on daily

returns of USD/EUR, conditional on smaller or larger IRD (left: smaller values, right: larger

values, as given by the x-axis). Dashed black: 95% confidence intervals for the empirical

skewness of GARCH(1,1) data simulated independently of the IRD process.

patterns between skewness of the residuals and IRD. In these conditions, tools like vector

autoregressive models are ineffective [Herwartz, 2017] and other strategies such as modelling

conditional skewness should be considered [Chung and Hong, 2007, Brunnermeier et al., 2008,

Anatolyev and Gospodinov, 2010, Liu, 2015].

In light of these concerns, the purpose of the present paper is to detail an improved econo-

metric strategy to revisit the predictive content of IRD for the daily exchange rate depreciation

rate of developed economies. In particular, we avoid establishing a structural link between the

level of future (log) depreciation rates and interest rates. Instead, motivated by Figure 1, we

allow interest rates to convey information on the density of future depreciation rates, and more

precisely on its asymmetry. We focus on the latter component since it is the major factor in

the likelihood of a depreciation. Therefore, this set-up is more parsimonious in its structural

assumptions, and allows to test empirically general assertions such as “is a currency more likely

to appreciate when its interest rate is relatively high?” without too many restrictions. Thus, we

can investigate if IRD predicts the direction of change of exchange rates and if this direction is

consistent with UIP literature. In particular, we are among the first to answer this last question

with a unified and time series approach, instead of relying on “static” or empirical measures of

skewness as in Brunnermeier et al. [2008].

The main feature of our model is a GARCH structure of the variance, associated with a

dynamic non-Gaussian distribution for the innovations. In this model, the asymmetry param-

eter varies over time according to a time series equation augmented with exogenous predictors.

It allows for time-varying skewness (and kurtosis), thus addressing the critiques of neglecting

high-order dependence structures. We detail our approach in Section 2.

We use this methodology to study the depreciation rate of the US Dollar (USD) vis-a-vis
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two major currencies: the Euro (EUR) and the Swiss Franc (CHF). Our choice of currencies is

motivated by the findings of Hsu et al. [2016], who could not find meaningful trading strategies

for these economies. Our goal is thus to investigate if IRD is an important factor in the

dynamic skewness of these currencies, and if economically meaningful forecasts can be derived

from it. We test various specifications of the skewness dynamics, considering also additional

control factors like past innovations, past skewness parameter as well as the VIX, an important

factor suggested in Ranaldo and Söderlind [2010], Menkhoff et al. [2012] and Ismailov and

Rossi [2018]. To assess the economic significance of our findings, we look at the average return

generated by a simple directional trading strategy based on our model, and compare it to several

benchmarks. We also conduct a persistence analysis to assess if our results hold out-of-sample.

A novelty of our analysis is that we do not use our economic performance criteria (directional

accuracy or trading profit) to estimate and select our model, but only statistical ones (i.e. the

log-likelihood). This approach makes our findings a by-product of genuine forecasting ability.

Although motivated primarily by empirical findings, the proposed approach also takes its

roots in theoretical arguments recently put forward in the exchange rate literature. In particu-

lar, Fahri and Gabaix [2016] link the time-varying probability of rare disasters and the exposure

of a country to such disasters to the risk of a depreciation. They argue that relatively risky

countries feature high interest rates because investors need to be compensated for a potential

depreciation in case of a disaster. This suggests that IRD is informative about the likelihood

of a future depreciation, as well as about the anticipation of a currency crash. Thus, whereas

UIP postulates instantaneous realignment pressures when IRD increases, we hypothesize that

a large (absolute) IRD is indicative of a higher risk of a reverting mechanism, i.e. of a future

depreciation of the low-yield currency. We thereby assume the marginal effect of IRD to convey

information on the likelihood of an appreciation or depreciation, instead of on the move itself.

This is implemented by means of a regression structure in the skewness dynamics, rather than

at the mean level, allowing for local deviations in the likelihood of a depreciation. Such a

structure is consistent with the empirical findings of an absence of predictability for IRD in the

classical regression framework, but with the existence of a more general predictive content.

Our main conclusions are the following:

i. IRD, past unexpected shocks and VIX are important factors to model the dynamic skew-

ness of the daily depreciation rate for EUR and CHF.

ii. An increase in IRD is associated with an increasing likelihood of appreciation of the

high-yield currency, but at the price of an increasing risk in a large currency crash.

iii. In terms of sign forecasts, we show a statistically significant predictive performance of

our model over some periods of time for both currencies.

iv. The predictive content of the three mentioned factors is sufficiently strong to generate

significant economic gains when trading with a dynamic skewness model, both in- and
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out-of-sample.

The rest of the paper is structured as follows: in Section 2, we detail the features of the

statistical model, the estimation approach and the interpretation of the model. In Section 3,

we perform the empirical analysis and investigate the economic significance of our results in

Section 3.3. We conclude in Section 4.

2 Methodology

The fundamental feature of our econometric approach is a time-varying asymmetry in the

distribution of the stochastic component, depending on IRD. To do so, we build upon a clas-

sical GARCH model, undoubtedly the work-horse model for daily financial data [Engle, 1982,

Bollerslev, 1986]. In this model, the distribution of the innovations is usually assumed to be

symmetric and time-constant (e.g. Gaussian or t-distributed). Surprisingly, and despite the

consensus on the non-Gaussian, time-varying nature of financial time series, few studies are con-

cerned with dynamic conditional asymmetry. On the contrary, the existing literature focuses

on time-varying volatility [Hansen and Lunde, 2005, Francq and Zakoian, 2010], on the asym-

metric response of volatility [Glosten et al., 1993] or on leptokurtosis in the error distribution

[Bai et al., 2003, Klar et al., 2012].

The idea of time-varying asymmetry of GARCH innovations can be traced back to Hansen

[1994], who introduces the autoregressive conditional distribution (ACD) model. In this model,

the GARCH structure of the volatility is combined with skewed-t innovations where the skew-

ness parameter varies over time. Harvey and Siddique [1999] as well as Jondeau and Rockinger

[2003] build upon this work to introduce variants where the skewness itself varies over time.

More recently, Grigoletto and Lisi [2009] have considered a similar approach with the Pearson-

type IV distribution instead of the skewed-t distribution. Wilhelmsson [2009] proposes a variant

based on the Normal Inverse Gaussian distribution whereas Bali et al. [2008] rely on the skewed

generalized-t distribution, with time-varying kurtosis. For stock indices, dynamic asymmetry

has been studied, e.g. in Hansen [1994], Harvey and Siddique [1999], Jondeau and Rockinger

[2003], Wilhelmsson [2009] and Grigoletto and Lisi [2009]2. On exchange rates, the literature

is especially limited. Looking at time-varying skewness for several currency pairs, Jondeau and

Rockinger [2003] find that its dynamic can be explained by an autoregressive process.

In general, skewed-t, Pearson-type IV and Normal Inverse Gaussian, despite their flexibil-

ity, suffer from cumbersome constraints and numerical issues. In addition, these distributions

are not always tractable and some of their parameters are difficult to interpret or need to be

constrained to ensure the existence of the first four moments. To avoid these shortcomings,

2More recently, Bekaert et al. [2015] have relied on two gamma-distributed innovations to account for non-

Gaussianity in GARCH-type models. Although in effect their approach models time-varying asymmetry, they

focus instead on differencing the effects of negative and positive shocks on the stochastic component of stock

returns.
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we instead consider a GARCH-type model combined with a sinh-arcsinh distribution for the

innovations (SH, Jones and Pewsey [2009]), abbreviated GARCH-SH in the later. Contrary to

the aforementioned distributions, the standardized SH distribution has two parameters (ε and

δ) with interpretable meanings (asymmetry and shape), is centered on the Gaussian distribu-

tion (with ε = 0 and δ = 1) and has the single constraint3 δ > 0. Moreover, it accounts for

heavier and lighter tails than the normal distribution, a feature not possible with the skewed-

t distribution, and has all its moments that exist without additional restrictions. This last

feature is particularly appealing, as the existence of high-order moments is often a needed re-

quirement for inference. In our suggested GARCH-SH approach, we specify the parameter ε

to evolve according to an ARMAX structure, i.e. an autoregressive-moving average structure

complemented by explanatory variables. Thus, we can link the conditional distribution of ex-

change rate returns with relevant financial and economic factors, and account for a dependence

structure beyond the first and second moments. Furthermore, we let the volatility level enter

the mean equation, defining a GARCH-in-Mean model as in Glosten et al. [1993]. Empirically,

the use of the contemporaneous volatility in the mean equation is motivated by Ranaldo and

Söderlind [2010] and Menkhoff et al. [2012], who find a significant relation between the volatility

and the expected depreciation of a currency. We detail the model and its essential features in

the following subsections.

2.1 Model specification and interpretation

We specify the exchange rate model according to the following set of equations: denoting by

St the nominal exchange rate at time t, the log-rate of change Rt = log
(
St/St−1

)
follows a

multiplicative heteroscedastic process of the form

Rt = c+ λσt + rt, (1)

rt = σtzt, (2)

σ2
t = ω + ασ2

t−1 + βr2
t−1, (3)

zt|It−1
iid∼ f(zt; εt, δ|It−1), (4)

εt = g(It−1), (5)

where c is a constant, σ2
t the conditional variance of rt, and zt the innovation at time t with

mean zero and unit variance. It denotes the information set up to time t, composed of all values

of zt and vectors of covariates xt up to time t. The probability density function (pdf) of the

standardized sinh-arcsinh distribution with parameters εt and δ, conditional on It−1 is denoted

by f(z; εt, δ|It−1). Moreover, g(·) is a parametric functions linking the asymmetry parameter

to past information. Expressions for the pdf, the value of the location and scale parameters

in the standardized case as well as formulas for the moments can be found in Appendix A.

3Another constraint, although classical, is the finiteness of the parameters, which is needed to ensure that

the distribution is proper.
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Notice that we assume the parameter δ constant over time. Without loss of generality, we

can easily relax this assumption to obtain a more flexible model, but prefer keeping a low

number of parameters. In addition, since the kurtosis depends on εt as well (see Appendix A),

dynamic kurtosis is automatically implied from our specification. Conditions stated in the same

appendix ensure that E(zt) = 0 and E(z2
t ) = 1, so that σ2

t can be interpreted as the conditional

variance of rt.

As explained in Jones and Pewsey [2009], the SH distribution is conveniently built around

the Gaussian distribution such that, assuming a random variable Y ∼ N(0, 1), we can define

f(z; ε, δ) by the sinh-arcsinh transformation:

Z = sinh

(
sinh−1(Y ) + ε

δ

)
. (6)

Skewness increases with increasing ε for ε ∈ ]−∞,+∞[, where ε > 0 corresponds to positive

skewness. Notice that positive (negative) skewness, for a standardized random variable, implies

that there is more probability mass below (above) zero. The kurtosis decreases with increasing

δ, 0 < δ < +∞, δ < 1 yielding heavier tails than the normal distribution. Thus, the Gaussian

distribution has a central position in the SH distribution. This is an advantage compared to

other distributions, for which the Gaussian distribution is usually a limiting case. Another

advantage of the SH distribution is the existence of all its moments for finite values of the

parameters. This is particularly useful for inference and residuals-based tests.

For εt, we define eq. (5) as a function of past innovations zt−1, lagged values εt−1 as well

as past values of explanatory variables xt−1 (for the sake of exposition, we assume xt−1 to be a

scalar here, but one can easily generalize to xt−1 being a vector). Eq. (5) is expressed in the

following way:

εt = g(It−1) = a0 + a1εt−1 + a2zt−1 + a3xt−1. (7)

This equation can be modified or restricted in several ways. For instance, assuming that all

parameters in (7) take value zero, we are back to the symmetric case. Setting a1 = a2 = a3 = 0

leads to a model without dynamics but including asymmetry, whereas assuming a1 and a3 to

be zero leads to a model where only past innovations impact on the asymmetry. Furthermore,

as explained in Jondeau and Rockinger [2003], a model where a2 = a3 = 0 and a1 6= 0 is not

properly identified: for t sufficiently far from zero, εt equals its stationary value ε∗ = a0/(1−a1).

Since we do not set an additional restriction linking a0 and a1, there exists an infinity of pairs

(a0, a1) solving this equation. In practice, the estimation will converge at random, depending

on the starting value chosen for ε0. Thus, in our application, we assume that at least one of

the other coefficients is always different from zero. In addition, the stability of the process is

fulfilled when |a1| < 1.

From an economic perspective, eq. (7) can be used to study how explanatory variables and

past stochastic components influence the distribution of exchange rate returns. In particular,

we suggest looking at three quantities: the probability of a positive shock (πt), indicative of
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the likelihood of a depreciation of the home currency4. Then, two measures of currency crash

risk, indicating the likelihood of a sudden large depreciation (resp. appreciation) of the home

currency. These measures are denoted ρ+
t and ρ−, respectively. Mathematically, these quantities

are defined by

πt = P(zt > 0), (8)

ρ+
t = P(zt > q+), (9)

ρ−t = P(zt < q−), (10)

where q+ > 0 is large and q− < 0 is small (e.g. an empirical quantile far in the tail of the

distribution). In our empirical study, we use q+ = 2 and q− = −2, values roughly corresponding

to the 98% and 2% quantile of a random shock following a standardized Gaussian distribution.

The effect of a marginal change in one component in eq. (7) on these quantities is deduced

from the sign of the regression coefficients. Table 1 summarizes the various scenarios and

highlights the important connections between the asymmetry parameter (εt), the likelihood of

a depreciation (πt) and the crash risks (ρ+
t and ρ−t ): if the density is positively skewed (i.e. if εt

is positive, Figure 2, solid black line), then an appreciation is more likely than a depreciation

(i.e. πt < 0.5). If the asymmetry parameter becomes more positive (Figure 2, dashed red line),

the density becomes more positively skewed, and an appreciation is even more likely (i.e. πt

becomes smaller). However, the risk of a large depreciation increases (i.e. ρ+
t increases). A

similar reasoning holds for negative asymmetry parameter εt and the risk of a large appreciation

ρ−t .

xt−1 ↗, a3 > 0 xt−1 ↗, a3 < 0 xt−1 ↘, a3 > 0 xt−1 ↘, a3 < 0

εt + - - +
πt - + + -

ρ+t + - - +

ρ−t - + + -

Table 1: Summary of the effect of a change in xt−1 on εt, πt, ρ
+
t and ρ−t .

4Throughout the paper, we use the direct quotation for exchange rates, i.e. we express one unit of the foreign

currency in terms of the home currency.
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Figure 2: Example of SH distributions with δ = 0.85 and εt = 0.1 (black) or εt = 0.7 (dashed

red). Those values imply a skewness around 0.25 and 1.3, respectively. For εt = 0.7, we observe

πt = 0.395 and ρ+
t = 0.05. For εt = 0.1, we observe 0.48 and 0.031 for these two quantities,

respectively. Vertical black (resp. red) line denotes the mean (resp. the 99% quantile).

2.2 Estimation procedure and inference

We estimate the model by means of maximum likelihood procedures. Denoting by Θ the vector

of all parameters in equations (1) to (5), by yT = {Rt}t=1,...,T the time series of observed log-

rate of change and assuming conditional independence, the conditional log-likelihood function

L(Θ; yT ) is given by

L(Θ; yT ) =
1

T

T∑
t=1

log

(
1

σt
f((Rt − c− λσt)/σt; εt, δ|It−1)

)
. (11)

An estimator Θ̂ of Θ is obtained by maximizing numerically (11) with respect to Θ:

Θ̂ = arg max
Θ
L(Θ; yT ), (12)

and subject to the the constraints ω, α, β > 0, α+ β < 1 and δ > 0. We do not set constraints

on the other parameters5. A simulation study of the finite-sample performance of the proposed

estimation method can be found in Appendix B.

Under correct specification of the model and usual stationarity conditions, the Fisher-

Information matrix H(Θ) of (11) at Θ̂ can be used for testing the following null hypothesis:

H0 : θi = 0, (13)

where θi is the ith element of Θ. To do so, we use the Wald-type test statistic

wi = θ̂i/σ̂ii, (14)

5Regarding the choice of a starting value ε0, we use (a0 +
∑
j>2

aj x̄j)/(1 − a1). We check also a posteriori if

the estimated parameters ensure finite values of εt when T → +∞
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where θ̂i is an estimator of θi and σ̂2
ii is the ith diagonal element of H−1(Θ̂). Under H0,

wi
as.∼ N(0, 1). In Appendix B, we perform a simulation study showing that with time series

of reasonable lengths, this approximation gives well-sized and respectably powerful tests. Sim-

ilarly, restrictions in eq. (7) can be tested using likelihood ratio (LR) test statistics of the

type

LR = −2(L(Θ0; yT )− L(Θ1; yT )), (15)

with Θ0 being a restricted version of Θ1. Under the null hypothesis of the restricted model

being the true one, we have the usual result LR
as.∼ χ2

ν , ν being the number of restrictions.

2.3 Directional forecasts, performance measures and testing for su-

perior ability

As noticed by Blaskowitz and Herwartz [2011], in the specific context of exchange rates, mon-

etary authorities and investors are particularly interested in the direction of change of the

market: for monetary authorities, a good anticipation of the direction of exchange rate move-

ments is important for policy implementation, whereas for investors this knowledge helps to

hedge currency risk or devise an investment strategy. With the goal of assessing the economic

significance of a model of exchange rate with high-order dynamic, we focus on producing daily

directional forecasts using the proposed model (both in-sample and out-of-sample), and on

measuring its directional accuracy.

This task is particularly appropriate for the considered model, since time-varying asymme-

try is crucial for good directional forecasts [Liu, 2015]. In the framework of a multiplicative

heteroscedastic model with a zero-mean like GARCH, if the distribution of the innovations is

(dynamically) asymmetric, then tomorrow’s probability of a positive (resp. negative) variation

would be lower (resp. larger) than a negative one. Consequently, knowing the level and sign of

asymmetry enables us to compute a probability of appreciation or depreciation, and to derive

a forecasting strategy. An easy analogy can be made: at each point in time, we are involved

in a coin tossing bet - facing heads or tails - whereas the time-varying probabilities of each

result are not equal. This implies that if we knew these probabilities, we could choose the most

likely outcome. On the contrary, if the conditional distribution is symmetric, there is an equal

probability for each outcome, leaving us with no dominant forecasting strategy.

Under correct specification, we can easily compute, at each point in time, the probability

that the foreign currency appreciates (i.e. that Rt > 0), given the information set at time t−1.

This probability is denoted pt|t−1 and is obtained from

pt|t−1 = 1− P(Rt < 0|It−1), (16)

= 1− P(c+ λσt + σtzt < 0|It−1), (17)

= 1− P(zt < −c/σt − λ|It−1), (18)

= 1− F (−c/σt − λ; εt, δ|It−1), (19)
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where F (·) denotes the SH cumulative distribution function (cdf), see Appendix A. Estimates

of p̂t|t−1, for t = 2, . . . , T, are obtained by plugging Θ̂ in (19). Then, the final directional forecast

is obtained from the following indicator variable:

p̂∗t =

1 if p̂t|t−1 > 0.5,

−1 otherwise.
(20)

where 1 indicates an appreciation of the foreign currency (or a positive variation) and −1 an

appreciation of the home currency (or a negative variation). If p̂t|t−1 is larger than .5, we

forecast an appreciation of the foreign currency. Then, the rational strategy consists in buying

the foreign currency (resp. borrowing the domestic currency) at the beginning of the period,

and in closing the position at the end of the day.

In this framework, though, the direction of change cannot be perfectly forecast except if |εt|
is very large. In that case, the density function is degenerate with almost all its mass above or

below 0. As a result, the sign of the return will be either positive or negative with certainty:

the stronger the asymmetry, the better our ability to make a correct directional forecast.

To translate the directional forecasts into a trading strategy, we use the following rule: if

the likelihood of a depreciation of the home currency is above .5 (i.e. if p̂t|t−1 > .5), the investor

takes a short position or own the foreign currency. On the contrary, if the likelihood of an

appreciation is above .5 (i.e. if p̂t|t−1 < .5), the investor takes a long position in the home

currency, i.e. own USD. In the case of a constant asymmetry and negligible mean dynamics of

the conditional density, the best trading strategy is to be either always in a short position (for

a negative asymmetry) or always in a long one (for a positive asymmetry).

To assess the quality of these forecasts, we use several measures. First, we use the correct

classification rate over h time periods (starting in t+ 1), given by

CR =
1

h

t+h∑
j=t+1

1(sign(Rj) = p̂∗j), (21)

where p̂∗j is given by equation (20), 1(·) denotes an indicator function taking value 1 if the

condition in parentheses is met, and sign(.) denotes the sign function. This criterion measures

the raw performance of a model in a pure classification exercise. To assess the in-sample

performance in term of CR, we use the independence test of Pesaran and Timmermann [2009]

which accounts for serial correlation.

Second, we use the mean return obtained with our directional forecasts over the same period,

and given by

m̂ =
1

h

t+h∑
j=t+1

p̂∗jRj. (22)

Diebold and Mariano [1995], Blaskowitz and Herwartz [2011] and Elliott and Timmermann

[2016] argue that employing a realized economic value is often more sensible than a statistical
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value in evaluating the usefulness of a forecast. In particular, m̂ measures the economic use-

fulness of ”being right”, i.e. it combines the correct prediction with the timing of a success

[Blaskowitz and Herwartz, 2011, 2014]. Hence, if we predict the correct direction of change,

we make a gross profit of Rj, whereas a loss of the same amount is suffered if the prediction

is wrong. Such a criterion is used throughout the financial literature to assess trading rules,

see e.g. Bajgrowicz and Scaillet [2012]. The significance of in-sample performance is assessed

with the stepwise-superior predictive ability (SSPA) test of Hsu et al. [2010] to control for data

snooping issues.

We compare the performance of the GARCH-SH model to the random walk (RW+), inverted

random walk (RW−), always-short (AS) and buy-and-hold (BH) approaches, as well as with

various sub-specifications of the dynamic skewness model. Random walk (resp. inverted random

walk) directional predictions must be understood as predicting tomorrow’s direction of change

using today’s sign (resp. opposite sign) of the return, whereas always-short and buy-and-hold

strategies consist in always predicting an appreciation or a depreciation of the home currency,

respectively.

In Section 3, we also conduct an out-of-sample analysis of the proposed model. In that

cas, the out-of-sample performance is assessed with the Diebold and Mariano [1995] test, the

conditional predictive ability test of Giacomini and White [2006] and the fluctuation test of

Giacomini and Rossi [2010]. The tests proposed by Giacomini and White [2006] and Giacomini

and Rossi [2010] have the advantage of explicitly covering loss functions that are based on

direction-of-change, involve estimated parameters, and allow both the comparison of nested and

non-nested models. Thus, we can apply them on out-of-sample versions of (21) and (22). The

latter test can be seen as testing repeatedly for zero local differences in forecasting performance,

using a rolling window of data containing a fraction τ of the total, or as a sequence of DM tests.

Both tests, however, are only valid in the cases of either a fixed estimation period or a rolling

window estimation period, not in an expanding window context. Therefore, for the evaluation

of the out-of-sample performance, we restrict our attention to the rolling window updating

scheme of the parameters, and conduct a persistence analysis inspired from Bajgrowicz and

Scaillet [2012].

Finally, we also report a series of in-sample and out-of-sample performance measures tra-

ditionally used in the exchange rate and trading rule literature: area under the correct clas-

sification frontier (AUC) and its return-weighted version (AUC∗) of Jordà and Taylor [2012],

gain-loss (G/L) ratio of Bernardo and Ledoit [2000], Sharpe ratio6 and skewness of the daily

profit, maximum drawdown on the compounded profits.

Notice here that these performance measures are not used in any way in the estimation pro-

cedure. Our model is entirely based on either theoretical or empirical considerations regarding

the structure of exchange rate dynamics, but not with the purpose of optimizing directional

6For simplicity, we assume a 0% risk-free rate, making the Sharpe ratio equivalent to the coefficient of

variation.
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forecasts. Thus, the forecasting performance must be seen as a genuine by-product of the

correctness of our model.

3 Empirical study

In the present section, we turn to the study of exchange rate dynamics. We first describe the

data and discuss the specifications of our models in Sections 3.1 and 3.2, respectively. Before

turning to the forecasting exercise in Section 3.3, we discuss the economic interpretation of the

fitted models.

3.1 Data

The data are daily foreign exchange rates in U.S. dollar (USD) per unit of foreign currency for

EUR and CHF. This choice is motivated by the fact that EUR and CHF are two of the most

traded currencies in the world. Moreover, since Hsu et al. [2016]have not been able to find

profitable trading rules for developed countries in recent time periods, it seems interesting to

challenge this conclusion by using more advanced procedure.

Exchange rates are noon buying rates in New York for cable transfers payable and available

from the Board of Governors of the Federal Reserve System. The considered time period

ranges from 6 January 1999 to 25 March 2019. We compute the log-rate of change Rt =

log(St/St−1), where St is the nominal exchange rate at time t. The final samples consist of

5,074 observations.We removed the dates for which exchange rate data were missing.

Interest rates are 3-month London Inter-Bank Offered Rate (LIBOR) for the respective

currencies, following Jordà and Taylor [2012], Ismailov and Rossi [2018] and Du et al. [2018].

All interest rates data have been retrieved from the website of the Federal Reserve of Saint-

Louis. Missing LIBOR data are replaced by the previously observed rate. Ismailov and Rossi

[2018] argue that the predictability of interest rates also depends on the uncertainty prevailing

on financial markets. Therefore, as a robustness check, we consider the VIX as an additional

predictor. VIX data are daily closing prices and are provided by the CBOE. Missing data have

been replaced by the first prior price available (54 occurrences).

The exchange rates time series and the corresponding log-rate of change are plotted in

Figures 3 and 4. The interest rates and the VIX are plotted in Figure 5. Several events such as

negative LIBOR rates, the soar of the VIX, the financial crisis or the removal of the CHF floor

rate might indicate instabilities in the relationship between exchange rates and IRD (see, e.g.,

the discussions in Giacomini and Rossi [2010], Bacchetta and van Wincoop [2013] and Ismailov

and Rossi [2018]). This first observation motivates us to study the performance of the model

over sub-periods of time in Section 3.3.
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Figure 3: (i) Daily exchange rate of EUR against USD, and (ii) log-returns (right) over the

period 6 January 1999 - 25 March 2019.
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Figure 4: (i) Daily exchange rate of CHF against USD, and (ii) log-returns over the period 6

January 1999 - 25 March 2019.
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Figure 5: (i) VIX and (ii) 3-month LIBOR rates (EUR: solid, CHF: dashed-dotted, USD:

dashed). The dashed vertical lines indicate remarkable events: drop of the Dow Jones index by

445 basis points, dotcom bubble crash, liquidity crisis of 2007, banks bailout of 2008, and the

hike of federal fund rate in 2016 (red), establishment and removal of CHF capping (blue).

14



3.2 Model estimation and economic interpretation

We start by fitting model (1)-(5) to the entire dataset and discussing the economic interpre-

tation of our results. To this end, we consider up to 12 specifications of the general skewness

equation given by (7), and focus on the 6 most complex ones (specifications 7 to 12 in Table

2).

Specification number Name Equation

(1) CST εt = a0.

(2) ARX(VIX) εt = a0 + a1εt−1 + a3VIXt−1.

(3) ARX(IRD) εt = a0 + a1εt−1 + a4IRDt−1.

(4) ARX(2) εt = a0 + a1εt−1 + a3IRDt−1 + a4VIXt−1.

(5) MA εt = a0 + a2zt−1.

(6) ARMA εt = a0 + a1εt−1 + a2zt−1.

(7) MAX(VIX) εt = a0 + a2zt−1 + a3VIXt−1.

(8) MAX(IRD) εt = a0 + a2zt−1 + a4IRDt−1.

(9) MAX(2) εt = a0 + a2zt−1 + a3IRDt−1 + a4VIXt−1.

(10) ARMAX(VIX) εt = a0 + a1εt−1 + a2zt−1 + a3VIXt−1.

(11) ARMAX(IRD) εt = a0 + a1εt−1 + a2zt−1 + a4IRDt−1.

(12) ARMAX(2) εt = a0 + a1εt−1 + a2zt−1 + a3IRDt−1 + a4VIXt−1.

Table 2: Tested specifications of the skewness equation.

The variable IRDt is defined as LIBORHome
t − LIBORForeign

t , so that positive (resp. negative)

values correspond to situations where the home currency is the investment (resp. funding)

currency. We always choose USD as the home currency. For the mean equation, we assume a

GARCH-in-Mean process such that

Et(Rt) = c+ λtσt.

In Tables 3 and 4, we report the estimated coefficients of specifications 7 to 12, for the

two currencies. For EUR, using LR tests against simpler nested specifications (Table 5), we

find ARMAX(2) to be superior to all considered alternatives. AIC and BIC also suggest that a

model with IRD as the only predictor is preferable to a model solely driven by the VIX, and that

the autoregressive component is probably not necessary since MAX(IRD) is the best model on

the BIC criterion. Thus, the presence of IRD in the skewness specification seems necessary to

provide a good fit, but it is well complemented by the informational content of the VIX. Looking

at the QQ-plots of the pseudo-residuals for ARMAX(2), we observe an excellent fit (Figure 6,

left panel). Following Rossi and Sekhposyan [2014], we also report the results of Berkowitz

[2001], Doornik and Hansen [2008] and Anderson-Darling specification tests (BK, DH and AD

hereafter). Whereas the test of Berkowitz [2001] focuses on detecting jointly departures from

the expected mean, variance and independence properties of the residuals, Doornik and Hansen
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[2008] and Anderson-Darling tests target skewness, kurtosis and extreme values of the residuals’

distribution. The three tests indicate a good fit of the various SH-GARCH models. Applying

the same tests to the residuals of a Gaussian GARCH-in-mean model, DH and AD tests reject

the hypothesis of a correct specification (Appendix D). Lastly, we repeat the analysis conducted

in the introduction: we compute the empirical skewness of subgroups of residuals obtained from

ARMAX(2) and pooled by IRD levels (Figure 7). We find skewness levels close to zero for every

IRD level. These results suggest that a dynamic asymmetry component is needed to correctly

model the data. In the next section we concentrate on the economic interpretation of the

ARMAX(2) model. Estimated conditional volatility, skewness and kurtosis for this model are

displayed in Figure 9, upper panel.

For CHF, ARMAX(2) is found to be significantly superior to simpler alternatives using

likelihood ratio test, with the exceptions of ARMAX(IRD), MAX(2) and MAX(IRD). However,

in terms of AIC and BIC, MAX(IRD) is found to be superior to all models tested, whereas

the models based solely on the VIX are dominated by their IRD alternatives. These results

again suggest the importance of IRD to model the skewness, but also that, for CHF, the VIX

and an autoregressive component are likely superfluous predictors. QQ-plots of the residuals

for MAX(IRD) are satisfactory (Figure 6, right panel). Repeating the preliminary analysis

based on empirical skewness of the residuals for MAX(IRD), we find skewness levels close to

zero for every IRD level and much smaller than those obtained with a GARCH(1,1) model

(Figure 8). We also conduct BK and AD tests, and we do not reject the null hypothesis. On

the contrary, DH test rejects a correct specification. After a graphical inspection, this results

appears to be strongly driven by a single date, namely the end of CHF ceiling on 15 January

2015. Estimated conditional volatility, skewness and kurtosis for MAX(IRD) can be found in

Figure 9, bottom panel. On 15 January 2015, we observe a dramatic surge of the conditional

skewness and kurtosis, taking respectively values of 476 and 8,679 at that date (for clarity,

the scale of the y-axis is not adjusted for these points). To test for a structural break, we

adapt the CUSUM test of Kulperger and Yu [2005] and Andreou and Ghysels [2002] to our

model 7, and endogenously date a structural break in the second moment on 6 September 2011,

corresponding to the introduction of the CHF ceiling by the Swiss national bank (Figure 10).

Thus, although the fit of the MAX(IRD) model appears reasonably good along most considered

metrics, these results serve as a motivation for studying subperiods of time in our forecasting

exercise.

Regarding the volatility process, the estimated coefficients are in line with common features

of GARCH-type models: a high persistence of the volatility process (close to an integrated

process); stochastic shocks exhibiting excess kurtosis as indicated by δ < 1, and the constant

in the mean equation that is close to zero. Moreover, we observe a negative but insignificant

mean parameter λ for the volatility component. This suggests that, all else equal, an increase

7See Appendix C for technical details.
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in contemporaneous exchange rate volatility, on average, translates into an appreciation of USD

against the foreign currency. These results suggest the existence of a small positive time-varying

premium for investors in dollars and is in line with the observed appreciation of USD during

volatile periods, such as the last financial crisis [Habib and Stracca, 2012].

USD/EUR (1999M1 - 2019M3)

Model ω α β c λ δ a0 a1 a2 IRD VIX

ARMAX(2) 0.000 0.029 0.968 0.000 -0.032 0.772 -0.043 ∗ 0.631 ∗∗∗ 0.042 ∗∗∗ 1.520 ∗ 0.171 ∗

(0.699) (0.177) (0.007) (0.000) (0.052) (0.022) (0.025) (0.184) (0.014) (0.813) (0.101)

ARMAX(IRD) 0.000 0.029 0.968 0.000 -0.054 0.769 -0.007 0.589∗∗∗ 0.042∗∗∗ 1.205∗ -

(0.615) (0.166) (0.006) (0.000) (0.052) (0.022) (0.007) (0.199) (0.014) (0.679) -

ARMAX(VIX) 0.000 0.03 0.968 0.000 -0.025 0.771 -0.025 0.543∗∗∗ 0.045∗∗∗ - 0.10

(0.628) (0.164) (0.006) (0.000) (0.052) (0.022) (0.019) (0.198) (0.014) - (0.079)

MAX(2) 0.000 0.029 0.968 0.000 -0.027 0.772 -0.103∗∗∗ - 0.045∗∗∗ 3.821∗∗∗ 0.401∗∗

(0.435) (0.132) (0.006) (0.000) (0.054) (0.022) (0.038) - (0.014) (1.058) (0.160)

MAX(IRD) 0.000 0.029 0.968 0.000 -0.047 0.770 -0.016 - 0.043∗∗∗ 2.805∗∗∗ -

(0.435) (0.132) (0.004) (0.000) (0.054) (0.022) (0.015) - (0.014) (0.978) -

MAX(VIX) .000 0.029 0.968 0.000 -0.023 0.772 -0.045 - 0.046∗∗∗ - 0.184

(0.435) (0.132) (0.004) (0.000) (.053) (.022) (0.034) - (0.014) - (0.147)

Table 3: For EUR: estimated coefficients for different skewness models. a0, a1, a2 are the

constant, AR and MA parameters in the skewness equation (7), respectively. IRD and VIX

refer to the estimated parameters of the corresponding predictors. Standard errors are put in

parentheses. *, ** and *** denote Wald tests significant at the 10%, 5% and 1% test level.
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Figure 6: QQ-plot of the residuals for (i) ARMAX(2) (EUR), and (ii) MAX(IRD) (CHF), fitted

on the complete period.

3.2.1 Effect of IRD

First, we examine the link between IRD and the conditional distribution of the depreciation

rate, captured by a3. In particular, we look at the marginal effect of a change in IRD on the
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USD/CHF (1999M1 - 2019M3)

Model ω α β c λ δ a0 a1 a2 IRD VIX

ARMAX(2) 0.000 0.037 0.959 0.000 -0.045 0.687 -0.021 -0.227 0.041∗∗∗ 4.304∗∗∗ 0.094

(0.253) (0.098) (0.004) (0.000) (0.048) (0.017) (0.043) (0.218) (0.013) (1.341) (0.161)

ARMAX(IRD) 0.000 0.037 0.960 0.000 -0.049 0.687 0.000 -0.220 0.041∗∗∗ 4.180∗∗∗ -

(0.252) (0.098) (0.04) (0.000) (0.048) (0.017) (0.022) (0.216) (0.013) (1.304) -

ARMAX(VIX) 0.000 0.036 0.960 0.000 -0.032 0.700 0.061 -0.235 0.040∗∗∗ - -0.008

(0.252) (0.098) (0.04) (0.000) (0.047) (0.017) (0.039) (0.211) (0.013) - (0.158)

MAX(2) 0.000 0.037 0.959 0.000 -0.046 0.686 -0.017 - 0.040∗∗∗ 3.524∗∗∗ 0.072

(0.253) (0.098) (0.004) (0.000) (0.048) (0.017) (0.035) - (0.013) (0.901) (0.131)

MAX(IRD) 0.000 0.037 0.959 0.000 -0.050 0.686 -0.000 - 0.040∗∗∗ 3.448∗∗∗ -

(0.253) (0.098) (0.004) (0.000) (0.047) (0.017) (0.018) - (0.013) (0.890) -

MAX(VIX) 0.000 0.037 0.959 0.000 -0.033 0.686 0.050 - 0.039∗∗∗ - -0.012

(0.253) (0.098) (0.004) (0.000) (0.047) (0.017) (0.031) - (0.013) - (0.129)

Table 4: For CHF: estimated coefficients for different skewness models. a0, a1, a2 are the

constant, AR and MA parameters in the skewness equation (7), respectively. IRD and VIX

refer to the estimated parameters of the corresponding predictors. Standard errors are put in

parentheses. *, ** and *** denote Wald tests significant at the 10%, 5% and 1% test level.
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Figure 7: Empirical skewness of USD/EUR residuals, conditional on observing IRD smaller

(resp. larger) than a given IRD level. Solid red: residuals of a GARCH(1,1) model. Dashed

red: residuals of ARMAX(2).
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EUR ARMAX(2) ARMAX(IRD) ARMAX(VIX) MAX(2) MAX(IRD) MAX(VIX)

LLF -19,026.94 -19,022.82 -19,019.48 -19,024.26 -19,020.47 -19,017.16

AIC -38,031.88 -38,025.64 -38,018.96 -38,028.52 -38,022.94 -38,016.32

BIC -37,960.02 -37,960.32 -37,953.64 -37,963.20 -37,964.14 -37,957.53

LR - 8.24∗∗∗ 14.92∗∗∗ 5.36∗∗ 12.94∗∗∗ 19.56∗∗∗

BK 0.702 0.758 0.840 0.252 0.735 0.770

DH 2.885 3.030 3.217 2.758 2.895 3.019

AD 0.353 0.371 0.328 0.369 0.339 0.357

CHF ARMAX(2) ARMAX(IRD) ARMAX(VIX) MAX(2) MAX(IRD) MAX(VIX)

LLF -18,670.06 -18,669.88 -18,662.59 -18,669.52 -18,669.38 -18,661.98

AIC -37,318.11 -37,319.77 -37,305.18 -37,319.05 -37,320.75 -37,305.97

BIC -37,246.26 -37,254.44 -37,239.86 -37,253.73 -37,261.96 -37,247.18

LR - 0.35 14.94∗∗∗ 1.07 1.37 16.15∗∗∗

BK 3.32 3.36 3.06 3.39 3.41 3.13

DH 18.63∗∗∗ 18.74∗∗∗ 16.57∗∗∗ 18.95∗∗∗ 19.04∗∗∗ 16.90∗∗∗

AD 1.08 1.09 1.07 1.12 1.12 1.11

Table 5: Model selection and specification criteria. LLF denotes the value of the negative log-

likelihood function. The line LR displays the likelihood ratio test statistics between ARMAX(2)

and the competing models. The lines labelled BK, DH and AD report the test statistics for

Berkowitz [2001], Doornik and Hansen [2008] and Anderson-Darling tests, respectively. ***

denote tests significant at the 1% level.
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Figure 8: Empirical skewness of USD/CHF residuals, conditional on observing IRD larger than

a given IRD level. Solid red: residuals of a GARCH(1,1) model. Dashed red: residuals of

ARMAX(2). Dashed black: 95% bootstrap confidence intervals for the GARCH(1,1) model.

Contrary to USD/EUR, we observe mainly positive IRD values, thus we do not measure the

empirical skewness of the residuals for IRD values smaller than a given IRD level.
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Figure 9: Conditional variance, skewness and kurtosis for EUR (top) and CHF (bottom).
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Figure 10: CUSUM process over time, CHF, with k = 2 (solid). Dashed red: break date

(6 September 2011) identified with the algorithm of Inclan and Tiao [1994]. Dashed black:

rejection threshold of the test.

probability of a depreciation of USD (measured by πt), and on the crash risk (measured by ρ+
t

and ρ−t , ρ+
t measuring a sudden depreciation and ρ−t a sudden appreciation of USD, see Table 1).

We find a positive and significant effect (at the 10% level for EUR) of IRD for both currencies.

This result implies that an increase in USD (resp. foreign) interest rates is associated with an

increase in the probability of an appreciation (resp. depreciation) of USD. It suggests that a

large and positive IRD opens the possibility for profitable carry trades, whereby USD is the

investment currency. In this set-up, market participants could borrow the foreign currency at

a small rate, buy USD, invest them at a higher rate and still expect an appreciation of USD.

These results fit into the theoretical framework of Fahri and Gabaix [2016], where the currency

of the country with high interest rates appreciates, conditional on no disaster occurring.

At the same time, though, an increase in (positive) IRD has an opposite effect on ρ+
t : it

becomes more likely to observe an extremely positive shock, synonymous with a large depre-

ciation of USD8. This observation is in line with Fahri and Gabaix [2016] and Jurek [2014]

who associate IRD with currency crash risk: the larger the IRD, the stronger the realignment

pressures. Hence, we are more likely to observe a reverting move or a crash on the exchange

rate market. A potential explanation for this effect is the increasing share of market partici-

pants involved in carry trades when IRD are large [Brunnermeier et al., 2008]: the larger the

IRD, the more carry trade investors fear realignments of the exchange rate. As a consequence,

they might unwind their positions in the investment currency, leading to abrupt appreciations

of the funding currency. This result also highlights the potential endogeneity of the reverting

mechanism, as suggested in Fahri and Gabaix [2016]: out of fear, investors turn themselves into

a force of realignment that leads to a crash.

8A similar reasoning holds if the foreign currency is the funding currency, leading to a increase in ρ−t when

IRD becomes more negative.
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Figure 11 shows the empirical connection between IRD and the probabilities πt, ρ
+
t and ρ−t

for EUR and CHF, as unraveled by the models: the larger IRD, the smaller the probability of

an overall depreciation, but the larger the probability of an extreme depreciation.
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Figure 11: Standardized effects of IRD on depreciation and currency crash risks of EUR,

measured by πt, ρ
+
t and ρ−t with q+ = 2 and q− = −2 (from left to right). Estimates are

obtained from the ARMAX(2) model for EUR (top) and MAX(IRD) for CHF (bottom).

3.2.2 Effect of past unexpected shocks

We now look at the effect of past innovations on the asymmetry. We find a2 to be positive

and significant for all specifications and both currencies, with similar magnitudes. Hence, past

positive shocks have a positive effect on the likelihood of an appreciation of USD, but also a

positive effect on large depreciation. In other words, the larger an unexpected depreciation on

one day, the more likely the appreciation on the next day on average but also the higher the

likelihood of a very large depreciation. We suggest that this effect is connected to the existence

of self-fulfilling mechanisms, as found by Habib and Stracca [2012]. According to these authors,

exchange rates fluctuate around some equilibrium value. As a result, unexpected depreciation

is followed by appreciation periods. However, large unexpected depreciation may lead more and

more economic agents to believe into a future depreciation and to short USD, thus increasing
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the risk of a sudden USD crash. If this phenomenon takes place at a time of high volatility,

shocks will be amplified, leading to stronger crashes. Such a mechanism is consistent not only

with clustered volatility, but also with clustered signs or periods of time where several large

crashes in the same direction (depreciation or appreciation) take place.

3.2.3 Effect of uncertainty

Besides IRD, we include the VIX in the model as an additional predictor and proxy for global

uncertainty. The corresponding coefficient a4 is found to be positive for the two currencies,

although much larger for EUR and not significant for CHF. Thus, for high values of the VIX, an

appreciation of USD against EUR becomes more likely. Simultaneously, though, the likelihood

of a currency crash increases as well. An appreciation of USD over other currencies in time of

financial stress (as captured by the VIX) is in line with several findings related to safe heaven

currencies and funding liquidity constraints: Habib and Stracca [2012] find that the larger the

size of the economy, relative to world GDP, the higher the currency excess returns in times

of financial stress. Hui et al. [2011] highlight the role played by the USD funding needs of

European banks during the crisis. However, our results suggest that this appreciation comes

at the price of a larger reversal risk. This is consistent with e.g. Bekaert et al. [2013] who

show that high values of the VIX (in its uncertainty component) forecast short-term laxer

monetary policy in the US, synonymous with high risk taking in that economy. For CHF,

the interpretation is similar, although likelihood ratio tests do not suggest that the VIX is a

significant predictor.

3.2.4 Autoregressive dynamics

Finally, we find a positive and significant autoregressive for EUR. This implies a high persistence

of asymmetries for this currency: when an increase (decrease) of the asymmetry takes place, a

long period of time is needed to return to pre-shock levels. This persistence can be a source

of sign correlation of the returns since, ceteris paribus, it implies time periods of clustered

asymmetry. For CHF, we observe a negative, smaller and insignificant estimated coefficient,

whereas likelihood-ratio tests do not suggest the existence of an autoregressive dynamic. This

result implies less persistence of the asymmetry.

3.2.5 Summary

From our analysis, we draw three main conclusions: first, the larger the difference between

interest rates, the more likely the high-yield currency is to appreciate but also to experience

a currency crash. However, this“local” higher appreciation of the high-yield currency comes

at the price of a larger likelihood of a currency crash risk (i.e. a large depreciation) for the

same currency. Second, we observe that a large unexpected depreciation (resp. appreciation)

makes an appreciation (resp. depreciation) more likely the next day, but is also associated
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with an increase in the likelihood of an extreme depreciation (resp. appreciation), suggesting

the existence of a self-fulfilling mechanism. Finally, an increase in global uncertainty or risk

aversion, as measured by the VIX, is positively associated to a higher likelihood of appreciation

for USD against the EUR, although, again, it comes at the price of an increasing risk of an

extreme depreciation. These three effects combined lead to a crash-risk trade-off: the larger the

probability of an appreciation, the more likely we are to suffer an extreme depreciation (ceteris

paribus). Figure 12 illustrates this result, displaying the risk of an extreme depreciation shock

(ρ−t ) suffered by the foreign currency as a function of the probability of appreciation of the

foreign currency (πt) vis-a-vis the US Dollar. We observe a clear, upward relationship for both

currencies.

Notice that the USD/EUR pair displays the strongest dynamics, with all components of

the skewness equation found to be large and significant. The results of the likelihood-ratio

tests hint at a more parsimonious specification (MAX(IRD)) for CHF. In the next section,

we conduct our forecasting exercise focusing on the ARMAX(2) model for EUR, and on the

MAX(IRD) model for CHF.
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Figure 12: Crash-risk trade-off between the probability of an appreciation (πt) and the proba-

bility of an extreme depreciation (ρ−t ) for the foreign currency.

3.3 Forecasting with dynamic asymmetry

We now investigate the extend to which the proposed modeling approach translates into eco-

nomically and statistically significant forecasts. We aim at answering the following questions:

could an investor have correctly guessed the direction of change of exchange rates, using the

suggested framework? Is the dynamic skewness, and in particular the effect of IRD, sufficiently

strong to be exploited and to yield an investment strategy with positive returns?
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3.3.1 In-sample performance

We first consider the in-sample performance. That is, we fit the different models on the complete

dataset, and use the estimated parameters to generate forecasts of the one-step-ahead predicted

probabilities of an increase in exchange rate i.e. {p̂t|t−1}t=2,...,T . If p̂t|t−1 is above .5, we forecast

a depreciation of USD in t (thus, an appreciation for EUR or CHF).

EUR In-sample performance

We first consider the in-sample performance for EUR. Figure 13, left panel shows the one-

step-ahead predicted probabilities {p̂t|t−1}t=2,...,T obtained with ARMAX(2) (specification (12)).

For ARMAX(2), we observe a correct classification rate of 52.83% over the complete period

(Table 6). Using the test of Pesaran and Timmermann [2009], we reject the null hypothesis

of independence between the realized signs of the variations and our forecasts9. This is also

the case for the ARMAX(IRD), MAX(2), MAX(IRD) and MAX(VIX). Looking at m̂, we

are able to derive an average return10 of 5.45%. On Figure 13, right panel we display the

cumulative wealth obtained by using our directional forecasts. We achieve a performance

which is substantially superior to the naive benchmark strategies, i.e. RW+, RW−, AS and BH

whose performances in equivalent yearly log-returns range between -.22% and .22%. Moreover,

compared to the simpler specifications tested, we also achieve a higher performance on the m̂

criterion. In particular, a model with no dynamic skewness (speficiation (1)) only achieves an

average return of .42%. Applying the SSPA test of Hsu et al. [2010] to test simultaneously the

performance of all alternative models and benchmarks, we find m̂ to be significantly different

from 0 at the 10% test level (p-val. = .083, column Full SSPA, Table 6). ARMAX(2) is

the only model that passes the test (however, at a high confidence level). Since predictive

ability tests are known for their rapid loss of power when the number of alternative models is

large, we repeat the procedure only retaining specifications 9 to 12. ARMAX(2) is now found

having m̂ different from 0 at the 5% test level (column Int. SSPA), whereas no changes are

observed for the other models. Finally, we test one by one if the average difference in profit

of a given model is significantly different from 0 or from the random walk benchmarks. We

reject this hypothesis for ARMAX(2) (columns labeled p-val.). P-values are obtained from the

same bootstrap techniques as the one used in the SSPA test. In Table 7, we report additional

performance indicators. They confirm the good performance of ARMAX(2) in terms of Sharpe

ratio, AUC, gain-loss ratio and maximum drawdown. The main conclusions, therefore, are that

IRD conveys valuable information for forecasting exchange rate depreciation periods. However,

one needs to take into account financial uncertainty to obtain a superior profitability.

9Notice that the overall proportion of positive returns is 49.14%. Therefore, we exhibit a correct classification

rate, compared to a naive strategy that always predicts an appreciation of USD, improved by 52.83/50.86−1 =

3.87%.
10The reported number here is the equivalent yearly rate m̂y = (1 + m̂d)252 − 1.
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USD/EUR (1999M1 - 2019M3)

Specification CR PT09 m̂ Full. SSPA Int. SSPA p-val. ∆m̂ Full. SSPA Int. SSPA p-val.

(12) 52.83% 6.52∗∗ 5.45% 0.083 0.039 0.023 5.22% 0.124 0.074 0.022

(11) 52.49% 3.02∗ 3.49% 0.401 0.257 0.074 3.27% 0.347 0.252 0.094

(10) 51.57% 2.10 1.36% 0.898 0.739 0.295 1.14% 0.746 0.615 0.287

(9) 52.04% 4.15∗∗ 3.40% 0.424 0.275 0.099 3.18% 0.391 0.286 0.110

(8) 52.3% 7.20∗∗∗ 2.17% 0.752 0.551 0.181 1.95% 0.581 0.455 0.193

(7) 51.47% 3.21∗ 2.69% 0.614 0.419 0.093 2.47% 0.34 0.248 0.087

(6) 50.5% 1.92 -1.30% 1.000 - 0.295 -1.51% 0.973 - 0.287

(5) 51.68% 5.01∗∗ 2.52% 0.668 - 0.068 2.29% 0.294 - 0.06

(4) 51.31% 0.18 2.12% 0.763 - 0.261 1.9% 0.700 - 0.259

(3) 51% 0.06 1.39% 0.892 - 0.348 1.17% 0.789 - 0.363

(2) 50.25% 0.01 0.57% 0.973 - 0.459 0.35% 0.881 - 0.464

(1) 49.79% 0.02 0.42% 0.978 - 0.458 0.2% 0.898 - 0.473

RW+/RW− 50.7% 0.00 0.22% 0.983 - 0.467 - - - -

BH/AS 50.1% - 0.19% 0.985 - 0.470 - - - -

Table 6: In-sample forecasting performance for EUR. ∗, ∗∗ and ∗ ∗ ∗ indicate tests significant

at the 10%, 5% or 1% levels, respectively. ∆m̂ refers to the average excess performance over

the random walk benchmark.
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Figure 13: (i) Predicted probability of an appreciation of EUR over time and (ii) Evolution

over time of an initial investment of 1 USD with reinvestment of the proceed.

Now, we clearly see from the right panel of Figure 13 that the performance is particularly

good before the crisis and after the increase in USD interest rates of December 2016: we

average 10.19% and 5.73% over these two periods, respectively, whereas we average -.89% in

the intermediate period11. These two periods exhibit rather large IRD, whereas between 2009

11Exact dates for the computation of the these numbers are the following: 6/01/1999, 23/10/2008, 15/12/2015
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USD/EUR (1999M1 - 2019M3)

Spec. Sharpe Skew. AUC AUC∗ G/L Max Draw.

(12) 0.56 -0.26 0.54 0.51 1.10 0.26

(11) 0.36 -0.20 0.54 0.51 1.06 0.34

(10) 0.14 -0.24 0.52 0.50 1.02 0.33

(9) 0.35 -0.24 0.53 0.51 1.06 0.34

(8) 0.22 -0.27 0.53 0.51 1.04 0.42

(7) 0.28 -0.16 0.52 0.50 1.05 0.36

(6) -0.13 -0.05 0.52 0.49 0.98 0.43

(5) 0.26 -0.15 0.52 0.50 1.04 0.34

(4) 0.22 -0.30 0.52 0.51 1.04 0.51

(3) 0.14 -0.22 0.53 0.52 1.02 0.53

(2) 0.06 -0.11 0.51 0.50 1.01 0.34

(1) 0.04 -0.14 0.51 0.51 1.01 0.38

RW+/RW− 0.02 -0.18 0.52 0.50 1.00 0.30

BH/AS 0.02 -0.11 - - 1.00 0.50

Table 7: In-sample performance measures for the trading rules derived from the different mod-

els.

and 2016, IRD stays very close to 0. Thus, it is not surprising to observe such results since an

absence of differences in interest rates leads to a skewness close to 0, and the exchange rate

behaves more like a random walk. Furthermore, we observe a clear trend in the exchange rate

data (either appreciation or depreciation) during these periods, whereas the intermediate period

is characterized by an absence of clear directionality. We are not able to detect a significant

structural break using the CUSUM test described in Appendix C, but a graphical inspection of

the CUSUM process in Figure 14 shows rather large instabilities. This motivates us to fit the

model to the following three subperiods: 6/01/1999 to 23/10/2008, 24/10/2008 to 15/12/2015,

and 16/12/2015 to 25/03/2019. Estimated parameters can be found in Appendix, Table 20.

Performance indicators are displayed in Table 8. First, we observe that the performance of

ARMAX(2) over the pre-crisis period increases, reaching almost 15% in yearly percentages for

m̂ and 55% for CR. Signs of the regression coefficients are alike, but the marginal effect of

IRD is estimated to be much larger compared to the one obtained on the full sample (3.54

instead of 1.52). Inspecting the other models (Table 8, left panel), we find a similar pattern:

models based on IRD exhibit a better performance than those without IRD, and better results

compared to those obtained on the full sample. During the crisis period (Period 2), on the

contrary, we observe smaller values for m̂. Two exceptions are models (8) and (5) (MAX(IRD)

and MA), exhibiting a profit of around 8% annually (Table 8, middle panel). The last period

is characterized by smaller coefficients of IRD and the VIX, which are not found significant.

and 25/03/2019.
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The economic performance is positive (m̂ = 1.14%) but not significantly different from zero

(Figure 15). Looking at the performance of alternative models (Table 8, right panel), we reach

a similar conclusion: no model delivers a profit significantly different from 0, although most

of them exhibit a positive one. Model (2) (ARX(VIX)) reaches 6% annually, but we cannot

reject the possibility that this result is due to luck. Surely, these differences can be partially

explained by smaller samples sizes for periods 2 and 3 compared to period 1. Overall, these

results point to the direction of a time-varying predictability of IRD, and of a change in its

relationship with exchange rate log-returns over time. This motivates us to use rolling-window

estimation in an out-of-sample forecasting exercise in Section 3.3.2.
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Figure 14: CUSUM process over time, for EUR, with k = 3.

USD/EUR (1999M1 - 2019M3)

1999M1 - 2008M10 (n = 2, 470) 2008M10 - 2015M12 (n = 1, 792) 2015M12 - 2019M3 (n = 814)

Spec. CR PT09 m̂ Full SSPA CR PT09 m̂ Full SSPA CR PT09 m̂ Full SSPA

(12) 54.98% 12.31∗∗∗ 14.50% 0.000 51.25% 0.56 0.64% 0.989 52.09% 0.10 1.14% 0.977

(11) 54.17% 5.75∗∗ 12.36% 0.000 50.87% 0.00 0.98% 0.984 53.07% 0.02 2.61% 0.903

(10) 52.72% 3.28∗ 6.14% 0.121 50.48% 0.00 -1.08% 1.000 52.21% 0.33 2.55% 0.908

(9) 54.66% 10.89∗∗∗ 14.67% 0.000 51.31% 0.27 0.89% 0.986 48.40% 0.00 -0.35% 0.999

(8) 53.44% 3.12∗ 9.88% 0.007 52.15% 2.48 8.54% 0.180 48.89% 0.66 1.25% 0.975

(7) 52.51% 1.96 4.78% 0.269 51.31% 1.65 0.51% 0.992 49.51% 0.00 1.85% 0.951

(6) 53.04% 12.84∗∗∗ 5.89% 0.142 50.92% 0.00 0.95% 0.985 52.58% 0.09 2.94% 0.874

(5) 52.55% 2.15 4.98% 0.246 52.09% 2.05 7.95% 0.235 49.51% 0.15 1.42% 0.972

(4) 54.17% 4.85∗∗ 11.30% 0.001 48.80% 0.20 -1.94% 1.000 48.77% 0.15 2.48% 0.910

(3) 53.32% 3.92∗∗ 8.97% 0.015 50.53% 0.88 4.71% 0.670 47.91% 1.02 -2.21% 1.000

(2) 52.31% 0.90 8.11% 0.034 49.81% 0.00 1.04% 0.983 50.25% 0.58 6.00% 0.449

(1) 52.19% 0.50 7.74% 0.041 49.08% 0.74 3.30% 0.842 49.51% 0.15 -0.13% 0.998

RW+/RW− 50.65% 0.00 0.01% 0.945 49.97% 0.00 0.16% 0.928 49.88% 0.00 1.84% 0.969

BH/AS 49.19% - 0.74% 0.886 51.14% - 2.31% 0.744 48.77% - 0.83% 0.988

Table 8: Forecasting performance for all models during the 3 subperiods defined by the following

dates: 6/01/1999, 23/10/2008, 15/12/2015 and 25/03/2019. PT09 refers to the independence

test of Pesaran and Timmermann [2009]
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Figure 15: Evolution over time of an initial investment of 1 USD in EUR, with reinvestment of

the proceed, for the subperiod 6/01/1999 - 1/12/2008.

CHF In-sample performance

We conduct a similar in-sample analysis for CHF. Figure 16 shows the predicted probability

of a CHF appreciation (panel (i)) and cumulated profit (panel (ii)) derived from the MAX(IRD)

model. On 16 January 2015, the day after the removal of the CHF capping, we observe a

huge drop in our estimate of the appreciation probability for CHF. Correct classification rates

and economic performance can be found in Table 9. For the most complex models based

on IRD (specification 7 to 12), we systematically reject the independence hypothesis between

predicted and realized signs. In particular, for MAX(2) and MAX(IRD) (specification 9 and

8), we register a correct classification rate of 52.32% and 52.21% that translates into average

profits m̂ of 6.2% and 5.89%, respectively. These results are superior to all the other models,

and found to be significantly different from 0 at the 5% and 10% test levels using the most

restrictive test (Full SSPA). The performance is particularly good before 2006 and after 2008.

Another model worth mentioning is ARX(IRD) (specification (3)), recording a performance of

4.64%. Rather surprisingly, both the random walk benchmark RW− and the simple Gaussian

GARCH-in-mean model perform well, reaching average profits of 3.92% and 4.29% despite poor

classification rates (see Appendix). Although our reference models have a superior performance,

we cannot conclude that they generate significantly more profits than the benchmarks. Looking

at alternative performance indicators (Table 10), we find MAX(2), MAX(IRD) and ARX(IRD)

to perform remarkably well: they simultaneously exhibit a positive Sharpe ratio and a positive

skewness, indicating that extreme trading losses are limited. This is confirmed by a gain/loss

ratio superior to 1 and the smallest maximum drawdown among all models.

As discussed in Section 3.2, we probably face a structural break in the data due to the

introduction and removal of a CHF capping between September 2011 and January 2015. To
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neutralize the effect of these events, we fit the various models on three subperiods: before,

during and after the capping period. Performance measures can be found in Table 11. We find

a significant predictive content of MAX(2) and MAX(IRD) before the capping period, both

in terms of directional forecast and average profit. The average profits of these models reach

11% in yearly equivalent rate. During the capping period, though, no directional forecasting

ability is found for any of the models considered. In terms of average profits, the models

based on the VIX perform better, with ARMAX(2) and ARMAX(VIX) reaching 10.7% and

12.6%. No clear pattern is observable for the post-capping period, although most models

exhibit a positive performance, with ARX(2) registering 6.34% on an annual basis. ARX(IRD)

is worth mentioning: it registers a positive performance during the three periods, ranging

between 10.52% during the pre-capping period, and 3.22% during the post-capping period. A

significant predictive content is found for this model during the more recent period. Overall,

these changes in performance over time suggest instabilities in the dynamics, which motivates

us to study the out-of-sample performance obtained with rolling-window estimates.
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Figure 16: (i) One-step ahead predicted probability of an appreciation for CHF. (ii) Evolution

over time of an initial investment of 1 USD with reinvestment of the proceed. Red: MAX(IRD).

Solid black: RW−. Dashed black: BH, AS, RW+.

3.3.2 Out-of-sample performance

To restrict the information set in a more realistic way, we produce out-of-sample directional

forecasts using rolling-window estimates of the parameters. We use the period ranging from

6 January 1999 to 1 December 2014 (3999 observations) as initial training sample. Thus, we

include both non-crisis and crisis data, as well as parts of the more recent period with low inter-

est rates. For CHF, we mix pre-capping and capping periods. We re-estimate the parameters

of the model every 5 days, and predict the direction of change up to March 2019. Overall, we

perform one-step-ahead predictions for 1,075 days.
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USD/CHF (1999M1 - 2019M3)

Specification CR PT09 m̂ Full. SSPA Int. SSPA p-val. ∆m̂ Full. SSPA Int. SSPA p-val.

(12) 52.52% 11.52∗∗∗ 3.91% 0.314 0.175 0.059 -0.01% 0.859 0.736 1.000

(11) 52.19% 7.70∗∗∗ 3.27% 0.444 0.264 0.085 -0.64% 0.912 0.815 1.000

(10) 51.16% 1.26 0.84% 0.939 0.713 0.355 -3.07% 0.994 0.973 1.000

(9) 52.33% 9.72∗∗∗ 6.20% 0.043 0.023 0.005 2.28% 0.555 0.421 0.223

(8) 52.21% 7.37∗∗∗ 5.89% 0.060 0.032 0.007 1.97% 0.606 0.456 0.256

(7) 50.99% 0.79 -0.23% 1.000 1.000 1.000 -4.14% 0.999 0.990 1.000

(6) 51.28% 1.81 1.11% 0.913 - 0.302 -2.81% 0.992 - 1.000

(5) 50.87% 0.38 -0.45% 1.000 - 1.000 -4.36% 1.000 - 1.000

(4) 50.91% 0.09 0.19% 0.985 - 0.458 -3.73% 0.993 - 1.000

(3) 51.58% 0.32 4.64% 0.177 - 0.037 0.73% 0.804 - 0.428

(2) 50.06% 1.12 -1.67% 1.000 - 1.000 -5.59% 1.000 - 1.000

(1) 50.12% 1.27 -1.58% 1.000 - 1.000 -5.49% 1.000 - 1.000

RW+/RW− 50.87% 0.00 3.92% 0.309 - 0.055 - - - -

BH/AS 49.96% - 3.72% 0.855 - 0.239 - - - -

Table 9: In-sample forecasting performance for CHF. *, ** and *** indicate tests significant

at the 10%, 5% and 1% levels, respectively. ∆m̂ refers to the average excess performance over

the random walk benchmark.

USD/CHF (1999M1 - 2019M3)

Spec. Sharpe Skew. AUC AUC∗ G/L Max Draw.

(12) 0.36 -1.20 0.53 0.53 1.06 0.31

(11) 0.30 -1.24 0.53 0.53 1.05 0.31

(10) 0.08 -1.18 0.52 0.52 1.01 0.31

(9) 0.57 1.53 0.53 0.53 1.10 0.21

(8) 0.54 1.54 0.53 0.53 1.10 0.18

(7) -0.02 -1.15 0.52 0.52 1.00 0.35

(6) 0.10 -1.18 0.52 0.52 1.02 0.29

(5) -0.04 -1.15 0.52 0.52 0.99 0.36

(4) 0.02 -1.13 0.53 0.53 1.00 0.45

(3) 0.43 1.59 0.53 0.53 1.08 0.36

(2) -0.15 -1.11 0.51 0.51 0.97 0.62

(1) -0.14 -1.11 0.51 0.51 0.97 0.61

RW+/RW− 0.36 -1.15 0.52 0.51 1.07 0.25

BH/AS 0.15 1.11 - - 1.03 0.32

Table 10: In-sample performance measures for the profit of the trading rules derived from the

different models.
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USD/CHF (1999M1 - 2019M3)

1999M1 - 2011M09 (n = 3, 188) 2011M09 - 2015M01 (n = 840) 2015M01 - 2019M3 (n = 1, 045)

Spec. CR PT09 m̂ Full SSPA CR PT09 m̂ Full SSPA CR PT09 m̂ Full SSPA

(12) 53.98% 7.61∗∗∗ 11.20% 0.002 51.73% 1.13 10.73% 0.145 51.39% 0.00 -0.88% 0.923

(11) 53.48% 2.71∗ 9.93% 0.008 51.85% 0.21 5.91% 0.609 51.96% 0.64 2.94% 0.597

(10) 51.41% 0.32 4.49% 0.312 52.80% 1.97 12.63% 0.056 52.82% 0.01 2.99% 0.593

(9) 53.83% 5.45∗∗∗ 11.18% 0.002 50.54% 0.00 3.69% 0.824 52.34% 0.26 3.22% 0.562

(8) 53.76% 6.95∗∗∗ 10.63% 0.003 51.85% 0.49 4.87% 0.720 52.34% 0.10 3.15% 0.574

(7) 51.35% 0.22 4.50% 0.311 52.32% 0.94 8.67% 0.308 52.73% 0.55 2.62% 0.631

(6) 51.51% 0.66 5.43% 0.197 51.97% 0.89 9.01% 0.275 51.87% 1.54 2.08% 0.685

(5) 51.57% 0.73 5.48% 0.191 51.49% 0.26 3.33% 0.847 52.92% 0.15 2.54% 0.640

(4) 53.26% 0.02 9.84% 0.008 52.56% 2.39 5.12% 0.693 53.59% 1.67 6.34% 0.225

(3) 53.42% 0.02 10.52% 0.004 51.49% 1.16 7.85% 0.384 52.54% 5.36∗∗ 3.22% 0.562

(2) 50.60% 0.01 0.51% 0.899 51.73% 0.69 7.90% 0.382 53.40% 0.19 4.60% 0.410

(1) 50.53% 0.08 0.83% 0.867 50.77% 0.53 1.76% 0.951 53.59% 0.58 4.58% 0.411

RW+/RW− 51.19% 0.00 5.34% 0.193 51.01% 0.00 4.84% 0.696 49.86% 0.00 1.10% 0.788

BH/AS 49.75% - 3.85% 0.434 49.70% - 4.92% 0.687 51.58% - 2.50% 0.626

Table 11: Forecasting performance for all models during the 3 subperiods defined by the fol-

lowing dates: 6/01/1999, 6/09/2011, 15/01/2015.
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Figure 17: Evolution, over time, of an initial investment of 1 USD in CHF (red), with rein-

vestment of the proceed, for the subperiod 6/01/1999 - 6/09/2011 (before capping). Black:

benchmark strategies (solid: BH and RW+, dashed: AS and RW−).
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To account for the effect of choosing the side of the naive benchmark (i.e. if we use the

long or short side of the BH/AS and RW+/RW− strategies), we use the best performing bench-

mark during the in-sample period to conduct out-of-sample forecasts. For the BH and AS

benchmarks, this is similar to forecasting exchange rates with a momentum strategy using the

training data to determine the direction of the momentum. For RW+/RW−, this strategy can

be seen also as a 1-day momentum strategy.

As described in Section 2.3, we use several tests to analyze the out-of-sample forecasts. To

test for significant differences in forecasting abilities, we use a Diebold and Mariano [1995] test.

The models are compared using the conditional predictive ability test proposed by Giacomini

and White [2006] and the fluctuation test of Giacomini and Rossi [2010]. These tests are

denoted by DM, GW and GR, respectively. In particular, the GR test enables us to control for

changes in forecasting performance over time, contrary to other tests that only take the average

performance into account. We perform the GR test for a grid of value for τ ranging between .1

and .85. Details of the loss functions are given in the next section. We also report out-of-sample

values for AUC, AUC∗, G/L and Sharpe ratios, skewness and maximum drawdown.

EUR out-of-sample performance

The out-of-sample predicted probabilities of appreciation for EUR, obtained with AR-

MAX(2) and ARMAX(IRD) are displayed in Figure 18. For ARMAX(2), we obtain an average

performance m̂ of 4.94% in equivalent yearly rate over the forecast horizon. This is the best

result across all tested models (Table 12). The second best performing model is ARMAX(IRD),

with a profit of 3.01%. In Figure 19, panel (i), we display the compounded value over time

of investing 1 USD at the beginning of the forecasting period trading rules defined by either

ARMAX(2) or ARMAX(IRD). Although we register losses at the outset, we rapidly make profit

between 2017 and 2018. On the contrary, both benchmark models exhibit a negative perfor-

mance (−1.26% for the random walk strategy, −2.26% for the momentum strategy). In term

of CR, ARMAX(IRD) obtains a correct classification rate of 52.37%, and is the only model

with a sign forecasting ability found significant by the test of Pesaran and Timmermann [2009].

Figure 19, panel (ii), illustrates this result by reporting the cumulative profit of a trading rule

earning 1 USD if the sign is correctly guessed and losing 1 USD otherwise. Additional perfor-

mance measures are reported in Table 13. The highest values for AUC, AUC∗, the Sharpe and

G/L ratios are obtained with ARMAX(2). We also obtain a positive skewness and one of the

smallest maximum drawdowns.

Is the out-of-sample profit m̂ obtained with ARMAX(2) and ARMAX(IRD) significantly

different from 0? To test this hypothesis, we use the GR test for several τ ∈ [.1, .85]. The loss

function used for the test is given by eq. (22). The null hypothesis is rejected at the 5% test

level for ARMAX(2), and at the 10% for ARMAX(IRD)(Figure 20). GW and DM tests are

inconclusive (Table 12). Looking at significant differences with respect to the RW benchmark,
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Figure 18: Out-of-sample predicted probability of appreciation for EUR over the period

2014M12 - 2019M3, obtained from (i) ARMAX(2) and (ii) ARMAX(IRD).

USD/EUR (2014M12 - 2019M3)

Spec. CR PT09 m̂ DM GW ∆m̂ DM GW

(12) 50.98% 0.15 4.94% 1.15 4.21 6.2% 0.90 2.53

(11) 52.37% 5.11∗∗ 3.01% 0.70 0.74 4.27% 0.61 0.54

(10) 50.23% 1.99 1.62% 0.37 0.62 2.88% 0.44 0.97

(9) 49.40% 0.15 -0.60% -0.14 0.08 0.66% 0.09 0.14

(8) 49.30% 0.02 -2.77% -0.64 0.53 -1.51% -0.21 0.05

(7) 47.72% 1.00 -2.89% -0.67 0.73 -1.63% -0.24 0.07

(6) 51.16% 2.32 2.27% 0.50 0.25 3.53% 0.49 0.23

(5) 48.47% 0.22 -2.70% -0.61 0.63 -1.44% -0.20 0.05

(4) 49.21% 0.18 -1.59% -0.36 0.16 -0.33% -0.05 1.43

(3) 48.28% 0.29 -4.18% -0.99 1.05 -2.92% -0.50 0.38

(2) 47.72% 0.11 0.37% 0.08 0.00 -1.63% 0.29 0.09

(1) 47.44% 1.63 -3.05% -0.74 0.85 -1.79% -0.31 0.23

RW+/RW− 48.00% 0.00 -1.26% -0.34 0.16 - - -

BH/AS 47.81% - -2.26% -0.55 0.31 - - -

Table 12: Out-of-sample forecasting performance for EUR. ∗∗ indicates tests significant at the

5% test levels. ∆m̂ refers to the average excess performance over the random walk benchmark.
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Figure 19: (i) Compounded value of an initial investment of 1 USD in the trading rules derived

from ARMAX(2) (solid red), ARMAX(IRD) (dashed red), random walk (dashed black) and

momentum (solid black) approaches. (ii) Cumulative profit, over time, of a trading rule based

on the different models that earns 1 if the sign is correctly forecast, -1 otherwise.

USD/EUR (2014M12 - 2019M3)

Spec. Sharpe Skew AUC AUC∗ G/L Max. Draw.

(12) 0.56 0.04 0.53 0.53 1.10 0.17

(11) 0.34 -0.05 0.53 0.50 1.06 0.17

(10) 0.18 0.10 0.53 0.52 1.03 0.16

(6) 0.26 0.04 0.53 0.51 1.04 0.20

(9) -0.07 0.05 0.51 0.52 0.99 0.20

(8) -0.31 0.08 0.52 0.51 0.95 0.23

(7) -0.33 0.06 0.51 0.51 0.95 0.22

(5) -0.31 0.05 0.52 0.51 0.95 0.23

(4) -0.18 -0.10 0.50 0.50 0.97 0.29

(3) -0.47 -0.10 0.50 0.50 0.92 0.24

(2) 0.04 0.20 0.49 0.50 1.01 0.13

(1) -0.35 0.09 0.50 0.51 0.94 0.21

RW+/RW− -0.14 -0.28 0.48 0.49 0.98 0.24

BH/AS -0.26 0.09 - - 0.96 0.18

Table 13: Out-of-sample performance measures for the profit of the trading rules derived from

the different models (USD/EUR).
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our loss function becomes

L
(1)
∆ =

1

h

t+h∑
j=t+1

(p̂∗j − p̂
∗,RW
j )Rj,

where p̂∗,RWj is the sign forecast obtained from the random walk benchmark. We also find both

model to be significantly better over some periods of time (Figure 21). The results for the

other specifications (available upon demand) are mostly inconclusive. Finally, repeating the

same procedure with the following loss function:

L
(2)
∆ =

1

h

t+h∑
j=t+1

(p̂∗j − p̂
∗,RW
j )sign(Rj),

to test for superior sign predictability, we obtain the same results (Figure 22). Being more

stringent and using the best (ex-post) BS/AS benchmark12, i.e. without accounting for in-

sample benchmark selection, the results stay unchanged for ARMAX(2) (see Figure 30 in

Appendix).

To summarize this section, we conclude that the performance observed in-sample is mostly

preserved out-of-sample for the ARMAX(2) model (and less evidently for ARMAX(IRD)).

Evidence is less obvious after 2018. Again, it seems that the combination of IRD and VIX

carries information about the future direction of change of USD/EUR exchange rate. It also

appears that the predictive power is economically significant when IRD exhibits a changing

intensity, as over the period 2016 - 2018.

CHF out-of-sample performance

We produce similar out-of-sample forecasts for CHF. The various indicators are reported

in Table 14 and 15. As for the in-sample analysis, the models based on IRD or mixing both

IRD and VIX seem to perform better than the others. In terms of m̂, MAX(2), MAX(IRD),

ARX(2) and AR(IRD) exhibit an average profit ranging between 8.37% and 6.22% in equiv-

alent yearly rate. Only AR(IRD) (specification (3)) is found to have a significant m̂ > 0.

ARMAX(2) and ARMAX(IRD) are also found to be significantly better than the random walk

benchmark. In terms of sign forecasts, only MAX(VIX), ARMA and MA are found to have

a significant directional ability, although without translating into superior economic forecasts.

Looking at the additional indicators (Table 15), the trading strategies derived from ARMAX(2),

ARMAX(IRD), MAX(2), MAX(IRD), ARX(2) and ARX(IRD) all exhibit positive skewness,

G/L ratio above one, good AUC∗ and small maximum drawdown. These results highlight the

predictive content of IRD. Surprisingly, the model with constant asymmetry (specification (1))

performs quite well, too, although its classification rate is below 50%. To illustrate these results,

we display in Figure 23 the compounded value over time of investing 1 USD in our trading rules

in December 2014. The RW benchmark and the model with constant asymmetry (specification

(1)) are displayed in black, exhibiting average returns of 0.95% and 4.68%, respectively. Most

12In this case, this is the AS benchmark, with a correct classification rate of 51.35%
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(i) GR test for ARMAX(2) (H0 : |m̂| ≤ 0)

Jul 2015 Jul 2016 Jul 2017 Jul 2018

Time

-2

0

2

4

G
R

 s
ta

t.

tau = 0.1

Jul 2015 Jul 2016 Jul 2017 Jul 2018

Time

-2

0

2

4

G
R

 s
ta

t.

tau = 0.2

Jan 2016 Jan 2017 Jan 2018

Time

-2

0

2

4

G
R

 s
ta

t.

tau = 0.3

Jan 2016 Jan 2017 Jan 2018

Time

-2

0

2

4

G
R

 s
ta

t.

tau = 0.4

Jan 2016 Jan 2017 Jan 2018

Time

-2

0

2

4

G
R

 s
ta

t.

tau = 0.5

Jul 2016 Jan 2017 Jul 2017

Time

-2

0

2

4

G
R

 s
ta

t.

tau = 0.6

Jul 2016 Jan 2017 Jul 2017

Time

-2

0

2

4

G
R

 s
ta

t.

tau = 0.7

Jan 2017 Jul 2017

Time

-2

0

2

4

G
R

 s
ta

t.

tau = 0.75

Oct 2016 Jan 2017 Apr 2017

Time

-2

0

2

4

G
R

 s
ta

t.

tau = 0.8

(ii) GR test for ARMAX(IRD) (H0 : |m̂| ≤ 0)

Figure 20: GR test statistic (blue) with τ ∈ [.1, .85] using m̂ as loss function. If the statistic is

above the rejection threshold (dashed red), we reject the null hypothesis H0 : |m̂| ≤ 0. Dashed

black: test statistic for the RW strategy. (i) ARMAX(2) and rejection threshold at the 5% test

level. (ii) ARMAX(IRD) and rejection threshold at the 10% test level.
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(i) GR test for ARMAX(2) (H0 : |∆m̂| ≤ 0)
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(ii) GR test for ARMAX(IRD) (H0 : |∆m̂| ≤ 0)

Figure 21: GR test statistic (blue) with τ ∈ [.1, .85] using L
(1)
∆ as loss function. If the statistic

is above the rejection threshold (dashed red), we reject the null hypothesis H0 : |∆m̂| ≤ 0

where ∆m̂ is the average difference in profit with respect to the random walk benchmark. (i)

ARMAX(2) and rejection threshold at the 5% test level. (ii) ARMAX(IRD) and rejection

threshold at the 10% test level.
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(i) GR test for ARMAX(2) (H0 : |L(2)
∆ | ≤ 0)

Jul 2015 Jul 2016 Jul 2017 Jul 2018

Time

-2

0

2

4

G
R

 s
ta

t.

tau = 0.1

Jul 2015 Jul 2016 Jul 2017 Jul 2018

Time

-2

0

2

4

G
R

 s
ta

t.

tau = 0.2

Jan 2016 Jan 2017 Jan 2018

Time

-2

0

2

4

G
R

 s
ta

t.

tau = 0.3

Jan 2016 Jan 2017 Jan 2018

Time

-2

0

2

4

G
R

 s
ta

t.

tau = 0.4

Jan 2016 Jan 2017 Jan 2018

Time

-2

0

2

4

G
R

 s
ta

t.

tau = 0.5

Jul 2016 Jan 2017 Jul 2017

Time

-2

0

2

4

G
R

 s
ta

t.

tau = 0.6

Jul 2016 Jan 2017 Jul 2017

Time

-2

0

2

4

G
R

 s
ta

t.

tau = 0.7

Jan 2017 Jul 2017

Time

-2

0

2

4

G
R

 s
ta

t.

tau = 0.75

Oct 2016 Jan 2017 Apr 2017

Time

-2

0

2

4

G
R

 s
ta

t.

tau = 0.8

(ii) GR test for ARMAX(IRD) (H0 : |L(2)
∆ | ≤ 0)

Figure 22: GR test statistic (blue) with τ ∈ [.1, .85] using L
(2)
∆ as loss function. If the statistic

is above the rejection threshold (dashed red), we reject the null hypothesis H0 : |L(2)
∆ | ≤ 0. (i)

ARMAX(2) and (ii) ARMAX(IRD). Both rejection thresholds are at the 5% test level.
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of the performance seems to be built at the beginning of the period, i.e. between 2015 and mid

2016. In particular, the models performing well are the ones that correctly predicted the surge

in CHF value on 15 January 2015.

To test if the out-of-sample profit m̂ obtained with IRD-based models is truly superior,

we report the results of the GR test for the following specifications: MAX(2), MAX(IRD)

and ARX(IRD). Figures 24 to 26, panels (i), display the GR statistics used to test the null

hypothesis H0 : |m̂| ≤ 0. We reject this hypothesis at the 5% test level for the three models,

with various values of τ . As suggested by Figure 23, the significant performance always takes

place in 2015-2016. Testing now H0 : |∆m̂| ≤ 0 (i.e. using L
(1)
δ as loss function), we obtain

similar results (Figures 24 to 26, panels (ii)). Using L
(2)
δ , we do not find significant results,

in line with the low performance on the pure classification rate (graphs are available upon

demand).

Overall, these results point towards an out-of-sample predictive ability of our models, al-

though the performance seems driven partly by the sharp appreciation of the CHF at the

beginning of 2015 and not much significant after 2017.

USD/CHF (2014M12 - 2019M3)

Spec. CR PT09 m̂ DM GW ∆m̂ DM GW

(12) 51.16% 1.27 5.16% 1.07 1.21 4.21% 0.54 4.95∗

(11) 51.53% 0.92 5.10% 1.06 1.12 4.15% 0.52 5.70∗

(10) 51.26% 2.26 3.32% 0.59 1.87 2.37% 0.24 1.18

(9) 50.70% 0.24 7.62% 1.32 2.96 6.67% 0.85 1.17

(8) 50.42% 0.02 6.22% 1.17 2.46 5.27% 0.68 0.65

(7) 51.26% 3.55∗ 1.71% 0.32 1.18 0.76% 0.08 0.91

(6) 52.47% 3.20∗ 3.21% 0.55 1.77 2.26% 0.23 1.18

(5) 51.72% 4.71∗∗ 2.60% 0.48 1.51 1.65% 0.17 1.03

(4) 51.16% 1.47 6.85% 1.31 3.76 5.90% 1.01 1.26

(3) 50.79% 0.19 8.37% 1.62 4.78∗ 7.42% 1.28 1.43

(2) 50.70% 0.15 3.19% 0.62 2.22 2.24% 0.39 0.57

(1) 48.74% 0.61 4.68% 0.92 2.37 3.73% 0.64 0.47

RW+/RW− 47.72% 0.00 0.95% 0.18 1.22 - - -

BH/AS 47.07% - -0.69% -0.13 0.80 - - -

Table 14: Out-of-sample forecasting performance for CHF. ∗ and ∗∗ indicate tests significant

at the 10% and 5% test levels. ∆m̂ refers to the average excess performance over the random

walk benchmark.
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USD/CHF (2014M12 - 2019M3)

Spec. Sharpe Skew AUC AUC∗ G/L Max. Draw.

(12) 0.48 6.02 0.50 0.51 1.10 0.11

(11) 0.47 6.04 0.51 0.52 1.10 0.11

(10) 0.31 -6.79 0.50 0.50 1.07 0.18

(9) 0.71 6.20 0.51 0.52 1.15 0.13

(8) 0.58 6.19 0.51 0.53 1.13 0.12

(7) 0.16 -6.82 0.51 0.50 1.03 0.18

(6) 0.30 -6.89 0.53 0.50 1.06 0.18

(5) 0.24 -6.84 0.51 0.50 1.05 0.18

(4) 0.63 6.25 0.52 0.55 1.14 0.16

(3) 0.78 6.30 0.51 0.55 1.17 0.10

(2) 0.30 6.21 0.53 0.52 1.06 0.19

(1) 0.43 6.32 0.52 0.51 1.09 0.10

RW+/RW− 0.09 6.87 0.49 0.51 1.02 0.31

BH/AS -0.06 6.86 - - 0.99 0.19

Table 15: Out-of-sample performance measures for the profit of the trading rules derived from

the different models (USD/CHF).
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Figure 23: For CHF, compounded value of an initial investment of 1 USD in the trading rules

derived from MAX(2) (solid red), MAX(IRD) (blue), ARX(IRD) (dashed red), random walk

(solid black) and constant asymmetry (specification (1), dashed black) models.
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(i) GR test for MAX(2) (H0 : |m̂| ≤ 0)
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(ii) GR test for MAX(2) (H0 : |∆m̂| ≤ 0)

Figure 24: GR test statistic (blue) with τ ∈ [.1, .85] using (i) m̂ and (ii) ∆m̂ as loss functions.

If the statistic is above the rejection threshold (dashed red), we reject the null hypothesis at

the 5% test level. Dashed black: test statistics for the RW benchmark.
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(i) GR test for MAX(IRD) (H0 : |m̂| ≤ 0)
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(ii) GR test for MAX(IRD) (H0 : |∆m̂| ≤ 0)

Figure 25: GR test statistic (blue) with τ ∈ [.1, .85] using (i) m̂ and (ii) ∆m̂ as loss functions.

If the statistic is above the rejection threshold (dashed red), we reject the null hypothesis at

the 5% test level. Dashed black: test statistics for the RW benchmark.
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(i) GR test for ARX(IRD) (H0 : |m̂| ≤ 0)
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(ii) GR test for ARX(IRD) (H0 : |∆m̂| ≤ 0)

Figure 26: GR test statistic (blue) with τ ∈ [.1, .85] using (i) m̂ and (ii) ∆m̂ as loss functions.

If the statistic is above the rejection threshold (dashed red), we reject the null hypothesis at

the 5% test level. Dashed black: test statistics for the RW benchmark.
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4 Conclusion

Using a model that allows for conditional dynamic asymmetry, we revisit the link between

interest rate differentials and exchange rate returns. We also account for the effect of financial

uncertainty by the inclusion of the VIX in our analysis. Applying this approach to the study

of EUR and CHF exchange rates vis-a-vis the US Dollar, we find that the larger the difference

between interest rates, the more likely the high-yield currency is to appreciate but it comes at

the cost of a higher likelihood of a very large depreciation (i.e. crash risk). This result is in

line with the theoretical framework of Fahri and Gabaix [2016] and Brunnermeier et al. [2008]

who suggest the influence of carry trades through the brutal unwinding of those positions.

Second, we find that USD is more likely to appreciate with respect to EUR when the VIX

increases, but also that it is exposed to a higher risk of currency crashes. These results are in

line with Menkhoff et al. [2012], Bekaert et al. [2013] and Habib and Stracca [2012] who suggest

that liquidity shortage and increasing risk aversion lead investors towards buying USD, in the

idea of a safe haven currency. However, this increasing uncertainty also leads to an increasing

likelihood of a USD crash. Third, our results suggest the existence of self-fulfilling mechanisms

as in Habib and Stracca [2012], where past unexpected shocks generate an increase in future

crash risk.

Relying on the proposed model, we predict the direction of change of exchange rates and

use these forecasts to build a trading strategy. We show that the detected effects are sufficiently

large to generate significant economic gains both in- and out-of-sample, similarly to the findings

of Amat et al. [2018]. However, we could show the existence of this effect at a daily frequency,

whereas previous literature focused only on a monthly frequency. In addition, we obtain these

results with a transparent and theoretically motivated econometric model.

Notice, though, that we do not account for the selection of the model itself. Therefore

nothing guarantees that one could have obtained a profit ex ante, as assessed, e.g. in Bajgrowicz

and Scaillet [2012]. This is a limit of the present analysis. However, as discussed in Inoue and

Kilian [2005], in-sample results typically exhibit a higher power in performance tests. Hence,

the consistence between in-sample and out-of-sample tests as well as the small number of tested

specifications point towards a limited risk of spurious findings.

From a policy standpoint, our results suggest that favoring an increase in IRD correlates with

systemic issues like a brutal depreciation. They also highlight the importance of self-fulfilling

mechanisms and interactions with exchange rate volatility in currency crashes, suggesting that

the prevention of unexpected shocks in periods of high uncertainty would reduce crash risk.

Finally, a last innovative aspect of the present paper consists in connecting the likelihood

of a depreciation and of a currency crash with economic fundamentals, rather than the level of

exchange rate returns. We believe that this change of perspective has interesting applications

and could reconcile some of the apparent contradictions found in a literature mostly focused

on mean effects. Future research could extend the present approach to studying a larger set of
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currencies and predictors, and see if our results can be generalized.
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A Appendix: the sinh-arcsinh distribution

The pdf of the sinh-arcsinh distribution is given by

f(z; ε, δ) = η−1Zξ,η(x)−1/2δCε,δ((x− ξ)η) exp(−S2
ε,δ((x− ξ)/η)/2),

where

Zξ,η(x) = (2π(1 + ((x− ξ)/η)2)),

Cε,δ(x) = cosh(δ sinh−1(x)− ε) = (1 + S2
ε,δ(x))1/2,

Sε,δ(x) = sinh(δ sinh−1(x)− ε),

ξ = −η sinh(εt/δ)P1/δ

η =
√

1/(0.5(cosh(2εt/δt)P2/δ − 1)− sinh(εt/δ)P1/δ)2,

Pq =
exp(1/4)

8π1/2

(
K(q+1)/2(1/4) +K(q−1)/2(1/4)

)
.

with K being the modified Bessel function of the second kind. ξ and η are the location and the

scale parameters, respectively, whose values are fixed to ensure zero mean and unit variance.

The cumulative distribution function F (z; ε, δ) is obtained from the transformation given in (6)

and is simply:

F (z; ε, δ) = Φ(sinh(δ sinh−1((z − ξ)/η)− ε).

where Φ(·) is the cdf of the standardized Gaussian distribution. The quantile function F−1 is

easily derived in the same way; and is given by

F−1(p; ε, δ) = sinh
(

(1/δ) ∗ sinh−1(Φ−1(p)) + (ε/δ)
)
∗ η + ξ,

where Φ−1 is the quantile function of the Gaussian distribution.

The skewness and kurtosis of zt are given by

SKt =
1

4
{sinh(3εt/δ)P3/δt − 3 sinh(εt/δt)P1/δ},

KUt =
1

8
{cosh(4εt/δ)P4/δ − 4 cosh(2εt/δt)P2/δ + 3}.

where Pq is define by equation (23). Hence, one can observe that both quantities depend on

both parameters. The response surfaces for skewness and kurtosis, for various values of ε and

δ, are displayed in Figure 27.

As shown on Figure 27 (left panel), δ seems to have a limited impact on the skewness

(the response surface is quite flat on this dimension). Greater flexibility can be introduced by

specifying a more complicated equation for δ. Similarly to what is done for εt, the following

equation can be used:

δt = h(It−1) = exp(b0 + b1δt−1 + b2zt−1 + b3xt−1).
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Figure 27: (a) Skewness and (b) Kurtosis

B Appendix: Simulation study

In this appendix, we study the finite sample properties of our econometric approach. We start

by investigating the quality of the proposed maximum likelihood estimation procedure. Then,

we study the size and power of the hypothesis test based on (14), focusing on the regression

parameters in the skewness equation. We consider three sample sizes: T ∈ {500, 1500, 3000}.
The parameters of the various data generating processes (DGP) are displayed in Table 16. For

DGP1 to DGP3, we assume λ and c equal to zero, such that E(Rt) = 0, whereas we introduce

a mean structure in DGP4 to DGP6. If a3 6= 0, we assume that xt−1
iid∼ N(0, 1). For each DGP,

we simulate 1, 000 time series.

Data generating processes

ω α β c λ δ a0 a1 a2 a3 a4

DGP1 10−4 0.05 0.88 - - .8 −0.1 0.4 −0.9 - -
DGP2 10−4 0.05 0.88 - - .8 −0.1 0.4 −0.9 0.85 -
DGP3 10−4 0.1 0.8 - - .85 −0.1 0.5 0.3 -0.5 -
DGP4 10−4 0.05 0.88 10−4 0.1 .8 −0.1 0.4 −0.9 - -
DGP5 10−4 0.05 0.88 10−4 0.1 .8 −0.1 0.4 −0.9 0.85 -
DGP6 10−4 0.1 0.8 10−4 0.1 .85 −0.1 0.5 0.3 −0.5 -
DGP7 10−4 0.05 0.88 10−4 −0.1 .8 −0.1 0.5 0.1 0.15 0.3

Table 16: Values of the parameters considered in the different simulation set-ups.

Results are given in Tables 17 and 18. Overall, we observe a decreasing mean squared error

in the estimated parameters when the sample size increases, and no differences across DGP. As

for most time-series models, the simulations highlight the need for large samples (i.e. several

thousands observations) for a high level of precision.

Now, we study the size and power of the suggested Wald-type tests for the skewness regres-
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RMSE

No mean T ω α β a0 a1 a2 a3 δ

DGP1 500 1.07 0.32 0.1 0.52 0.15 0.77 - 0.23
1500 0.26 0.16 0.03 0.23 0.08 0.38 - 0.08
3000 0.17 0.11 0.02 0.16 0.06 0.27 - 0.06

DGP2 500 0.53 0.27 0.05 0.64 0.12 0.17 0.18 0.6
1500 0.21 0.13 0.02 0.3 0.06 0.08 0.09 0.33
3000 0.13 0.09 0.01 0.23 0.04 0.06 0.06 0.23

DGP3 500 0.43 0.23 0.07 0.61 0.15 0.27 0.22 0.44
° 1500 0.18 0.12 0.03 0.29 0.07 0.13 0.11 0.22

3000 0.11 0.08 0.02 0.2 0.05 0.09 0.07 0.16

Table 17: Root-MSE divided by the value of the corresponding parameter, for DGP without a
mean structure (DGP1 to DGP3).

RMSE

GARCH-in-Mean T ω α β c λ a0 a1 a2 a3 δ

DGP4 500 1.02 0.31 0.1 275.55 7.82 0.61 0.16 0.71 - 0.21
1500 0.25 0.17 0.03 42.19 1.13 0.34 0.09 0.43 - 0.1
3000 0.16 0.11 0.02 26.76 0.71 0.21 0.062 0.28 - 0.07

DGP5 500 0.76 0.28 0.07 88.54 2.79 0.77 0.13 0.2 0.21 0.65
1500 0.22 0.14 0.02 33.31 1.39 0.37 0.07 0.09 0.09 0.32
3000 0.13 0.09 0.01 22.89 1.17 0.24 0.04 0.05 0.06 0.23

DGP6 500 0.41 0.3 0.07 97.2 3.21 0.63 0.14 0.3 0.23 0.43
1500 0.19 0.15 0.03 35.06 1.38 0.31 0.07 0.15 0.11 0.24
3000 0.13 0.12 0.02 23.99 1.19 0.20 0.05 0.09 0.07 0.17

Table 18: Root-MSE divided by the value of the parameters, for DGP with a GARCH-in-Mean
structure (DGP4 to DGP6).
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Figure 28: Rejection rates of Wald tests at the 5% test level, for various values of the parameters.

Dashed: 5% threshold.

sion parameters and λ. We consider two explanatory variables xt−1,1 and xt−1,2 in eq. (7)13. We

generate xt,1 and xt,2 from two AR(1) processes where the AR parameters are equal to 0.9 and

the error terms follow a bivariate normal distribution with a correlation parameter of -0.4 (a

value observed in our data). Baseline values of the parameters are given in Table 16 (DGP7).

Then, we sequentially replace one of the parameters of interest by a range of values (including

0), keeping the others at their baseline value. In line with our empirical study, we set n = 1500.

Figure 28 summarizes our results, indicating good powers under the various scenarios. For a3

and a4, we also obtain excellent sizes, whereas we reject a bit too often for λ, a1 and a2.

13We do not look at inference for the GARCH parameters since these parameters are estimated under positivity

constraints.
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C Appendix: Testing for structural breaks via CUSUM

tests

In this appendix, we provide technical details regarding the CUSUM tests used in Section 3.

In particular, we discuss the necessary modifications to be made, in order to account for the

specifics of our model.

In Kulperger and Yu [2005], the authors derived the asymptotic properties of partial sum

processes constructed on kth power of GARCH residuals, showing that it converges toward

a Brownian process plus a correction term. Such CUSUM statistics can be used to test for a

change in conditional (potentially high-order) moments over time. As implied by their Theorem

1.1 and 1.2, the partial sum process behaves as if the residuals ẑt = rt/σ̂t were asymptotically the

same as the innovations zt. However, in usual GARCH models, zt are assumed (unconditionally)

i.i.d, whereas in our GARCH-SH model, it is not the case under the null hypothesis of no

breaks. To circumvent this issue, we suggest working instead with Gaussian pseudo-residuals

ût, based on the inverse of the sinh-arcsinh transform given by (6). Thus, we defined these

pseudo-residuals as

ût = sinh
(
δ̂t sinh−1(ẑt)− ε̂t

)
,

where ẑt = (Rt− ĉ− λ̂σ̂t)/σ̂t. Under a correct specification of the sinh-arcsinh distribution, ût is

asymptotically N(0,1) distributed and fulfills the main assumptions of Kulperger and Yu [2005].

It also fulfills the assumptions of zero-mean and unit-variance. Two additional requirements

are the finiteness of the kth moment of zt and that u0 is a non-degenerate random variable.

These conditions are fulfilled when we assume that εt and δt are finite. Then, we suggest using

the following test statistic, similar to the one proposed in Kulperger and Yu [2005]:

CUSUM (k) = max
1≤i≤T

|
i∑
t=1

ûkt − iµ̂k|

ŝk
√
T

, (23)

where µ̂k is the empirical moment of order k of the residuals, and ŝk an estimate of E(uk0−µk)2.

A formal proof of the asymptotic properties of (23) is beyond the scope of the paper. On the

basis of the theoretical arguments enumerated previously, we use the (approximated) results

that (23) converges to the supremum of a Brownian bridge:

CUSUM (k) a.s.−−→ sup
0≤u≤1

|B0(u)|.

Additionally, since we might face several breaks in the time series, we need an algorithm to

sequentially identify the dates of the breaks. We simply apply the procedure detailed in Inclan

and Tiao [1994], consisting in repeatedly partitioning our time series, until no more breaks are

found.

Relying on the simulation set-up described in Section B, we briefly study the size of this

test. Results are displayed in Table 19. CUSUM tests appear slightly under-sized.
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Rejections of H0: no breaks

No mean

DGP T k=2 k=3 k=4

DGP1 500 0.024 0.04 0.012

1500 0.032 0.032 0.026

3000 0.044 0.052 0.05

DGP2 500 0.024 0.042 0.034

1500 0.03 0.046 0.032

3000 0.046 0.04 0.036

DGP3 500 0.042 0.038 0.03

1500 0.036 0.038 0.028

3000 0.044 0.042 0.032

GARCH-in-Mean

DGP T k=2 k=3 k=4

DGP4 500 0.04 0.048 0.018

1500 0.044 0.038 0.026

3000 0.042 0.052 0.04

DGP5 500 0.028 0.036 0.028

1500 0.042 0.058 0.038

3000 0.042 0.034 0.036

DGP6 500 0.04 0.036 0.042

1500 0.07 0.044 0.05

3000 0.024 0.042 0.022

Table 19: Type-I error for testing the null hypothesis of no structural breaks, for DGP either

with no mean structure (left) or with a GARCH-in-Mean structure (right).

D Appendix: Additional results

D.1 EUR: Estimated parameters - subperiods

D.2 Results for a Gaussian GARCH-in-mean model

In this section, we provide several additional results for a benchmark Gaussian GARCH-in-

mean model. In Table 21, we report the estimated parameters as well as various specification

and selection statistics. Figure 29 displays the empirical distribution of the PIT residuals used

to conduct the specification tests for both the ARMAX(2) and the Gaussian models. We see

clear departure from uniformity in the Gaussian case.

D.3 Out-of-sample test EUR

In this section, we provide additional results for the out-of-sample analysis related to EUR.

Figure 30 displays the results of the GR test using the best ex-post benchmark (i.e. AS with

a classification rate of 51.38%).
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USD/EUR ARMAX(2) - GARCH-in-Mean

Full sample Period 1 Period 2 Period 3

ω 0.000 0.000 0.000 0.000

α 0.029 0.025 0.034 0.03

β 0.968 0.973 0.966 0.931

c 0.000 0.002∗∗∗ -0.001∗ 0.001

(0.000) (0.001) (0.000) (0.001)

λ -0.032 -0.273∗∗∗ 0.093 -0.151

(0.052) (0.095) (0.057) (0.267)

δ 0.772 0.788 0.752 0.77

(0.022) (0.032) (0.038) (0.053)

a0 -0.043∗ -0.055 -0.047∗∗ -0.011

(0.025) (0.039) (0.021) (0.011)

a1 0.631∗∗∗ 0.285 0.728∗∗∗ 0.951∗∗∗

(0.184) (0.231) (0.114) (0.029)

a2 0.042∗∗∗ 0.060∗∗∗ 0.047∗∗ 0.034∗∗

(0.014) (0.012) (0.019) (0.016)

a3 1.520∗ 3.54∗∗∗ 2.556∗ 0.100

(0.813) (0.972) (1.54) (0.295)

a4 0.171∗ 0.237 0.208∗∗ 0.055

(0.101) (0.174) (0.099) (0.058)

CR 52.83% 54.98% 51.26% 52.09%

(PT09) (6.52∗∗∗) (12.31∗∗) (0.56) (0.10)

CR(RW+/RW−) 50.68% 50.65% 49.97% 49.88%

CR(BH/AS) 50.05% 49.19% 51.14% 48.77%†

m̂ 5.45% 14.71% 0.64% 1.14%

(Full SSPA) (0.03) (0.000) (0.896) (0.977)

m̂(RW+/RW−) 0.22% 0.01% 0.16% 1.84%

(Full SSPA) (0.984) (0.945) (0.928) (0.969)

m̂(BH/AS) 0.19% 0.74% 2.31% 0.83%

(Full SSPA) (0.985) (0.886) (0.744) (0.988)

‘

Table 20: Estimated parameters for ARMAX(2) and performance measures on three subperiods

defined by the following dates: 6/01/1999, 23/10/2008, 15/12/2015 and 25/03/2019. Full SSPA

refers to p-values of the SSPA tests obtained when testing simultaneously all models. For the

benchmark strategies, we report the results for the best side (long or short).
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Gaussian GARCH-in-mean

Currency ω α β c λ AIC BIC LR m̂ CR BK DH AD

EUR 0.000 0.028 0.969 0.000 -0.001 -37,897.08 -37,864.42 146.8∗∗∗ -.19% 49.14% 2.5 32.02∗∗∗ 6.8∗∗∗

CHF 0.000 0.042 0.954 0.000 -0.033 -367.1318 -366.8052 616.9∗∗∗ 4.29% 49.79% 45.4∗∗∗ 67.04∗∗∗ 22.4∗∗∗

Table 21: Estimated parameters, model selection and specification criteria for a classical Gaus-

sian GARCH-in-Mean model, for both currencies. *, ** and *** denote tests significant at the

10%, 5% and 1% level.

(i) USD/EUR

(ii) USD/CHF

Figure 29: Histogram of the PIT residuals for ARMAX(2) and MAX(IRD)(left) versus Gaussian

GARCH-in-mean (right). Upper panel: EUR. Lower panel: CHF.
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(i) GR test for ARMAX(2) (H0 : |L(3)
∆ | ≤ 0)
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(ii) GR test for ARMAX(IRD) (H0 : |L(3)
∆ | ≤ 0)

Figure 30: GR test statistic (blue) with τ ∈ [.1, .85] using L
(3)
∆ =

1

h

t+h∑
j=t+1

(p̂∗j − p̂
∗,AS
j )sign(Rj) as

loss function. If the statistic is above the rejection threshold (dashed red), we reject the null

hypothesis H0 : |L(3)
∆ | ≤ 0. (i) ARMAX(2) and (ii) ARMAX(IRD). Both rejection thresholds

are at the 5% test level.

58


