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Abstract

The generic model of a cable with small bending stiffness and anchored to flexible supports in
rotation and translation is considered. An asymptotic analysis of the natural frequencies of this
generic model is derived and shows that, for small bending stiffness, the first few natural frequencies
can be expressed as a function of the cable axial force, the small bending stiffness and a single
dimensionless group collecting the information of all other problem parameters. This formulation
is used to develop an identification procedure of the cable axial force. Two formulations are
proposed, one numerical and one semi-analytical based on a simple linear regression model. Both
methods do not attempt at separately identifying the problem parameters since the observability
analysis has revealed that only the cable axial force, the bending stiffness and the dimensionless
group can be identified. In particular, the second method is very simple to implement and provides
estimates of the cable axial force which account for the flexibility of the support. The proposed
method can therefore be seen as an extension of usual identification techniques based on linear
regressions of natural frequencies vs. mode number relations, by considering at the same time the
bending stiffness and the deformability of supports. Being simple and robust as shown by means
of an uncertainty quantification analysis, the proposed method can be conveniently embedded in
the framework of a continuous monitoring strategy.

Keywords: Stay cables, Axial force, Bending stiffness, Parameter identification, Structural
health monitoring, Differential Evolution

1. Introduction1

The identification of cable axial force is of paramount importance for structural health moni-2

toring and safety assessment of stayed bridges [44] and other special structures, such as large-span3

cable roofs [8]. Experimental testing campaigns, hence, are typically carried out both at early4

construction stages, to check the compliance of the cable axial force with design requirements, and5

during the service life of the structure. Monitoring variations in time of the axial force, indeed,6

can allow for early detection of potentially harmful damage phenomena [44, 36, 20, 52, 39].7

Direct measurements of the axial force in stay cables can be obtained through permanent8

installation of load cells or by means of lift-off tests performed with hydraulic jacks. Both testing9

techniques require expensive instrumentation. Moreover, lift-off tests are potentially dangerous10

and need to be executed with great care, since they involve removal of portions of the anchoring11

system [35, 11, 24]. On the other hand, indirect measurements based on both static (e.g. [47])12

and dynamic (e.g. [17, 6, 7]) testing can be effectively used to get axial force estimates.13
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Dynamic testing techniques have been thoroughly investigated in the past decades and are14

nowadays widely employed in practice, since they can be performed in operational conditions and15

provide the ground for quick and cheap structural parameter identification procedures [25, 4, 13,16

58, 40].17

Vibration-based identification procedures typically rely on the knowledge of (i) a set of ex-18

perimentally determined natural frequencies of the stay cable, and (ii) a mechanical model that19

relates the natural frequencies to the axial force value. Reliability of results, hence, is inherently20

affected by the predictive capabilities of the underlying mechanical model.21

Due to their slenderness and inherent flexibility, structural cables are often modeled as “per-22

fectly flexible” one-dimensional continua, that can only withstand axial forces. The dynamic23

behavior of perfectly flexible cable models has been widely studied by accounting for the effects24

of both geometric and elastic stiffness terms (see e.g. [31, 56, 50]).25

Small vibrations of shallow cables, i.e. suspended cables characterized by small values of the26

sag-to-span ratio δ (in the order of δ < 1
8 ), have been thoroughly investigated by Irvine and27

Caughey [31, 30] under the assumption of quasi-static stretching. A key feature of the linearized28

model derived by Irvine and Caughey is the decoupling between in-plane and out-of-plane vibra-29

tions, i.e. between the components of motion respectively belonging to and perpendicular to the30

plane of the gravity loads . In-plane spectral properties are shown to be governed by a single non-31

dimensional parameter λ2 that can be conveniently regarded as a characteristic ratio of the elastic32

to the geometric stiffness terms. Small values of the Irvine’s parameter λ2 (i.e. λ2 . 1) are related33

to cables strung at relatively high values of axial force and with a small sag-to-span ratio, such34

as the ones typically employed as stays (see e.g. [6]). It is worth noting that, for vanishing values35

of the parameter λ2, both the effect of the elastic deformation (i.e. the cable extensibility) and36

of the static curvature of the cable (i.e. the cable sagging) become negligible with respect to the37

geometric stiffness contribution and the in-plane linearized behavior of the cable tends the one of38

the well-known unstreatchable taut string model. The small out-of-plane vibrations of the shallow39

cable model, on the other hand, turns out to be always governed by the taut string equation of40

motion [31].41

A generalization of the model of Irvine and Caughey, that fully accounts for the transition42

from shallow to deeply non-shallow cable profiles has been proposed by Lacarbonara et al. [37]43

and served as the basis to a thorough investigation of the non-linear free vibrations of suspended44

cables [38]. Excellent reviews on the non-linear deterministic and stochastic dynamics of perfectly45

flexible cables have been provided, respectively, by Rega [50, 51] and Ibrahim [29].46

Enriched cable models, accounting for bending and torsional stiffness terms, have also been47

proposed in the literature to correctly represent some characteristic features of the static and dy-48

namic response of structural cables, such as the geometric coupling between torsional and bending49

behavior [3] or between axial and torsional behavior [43], and the hysteretic bending behavior50

of metallic cables [21]. Moreover, accounting for these “beam-like” stiffness terms is of pivotal51

importance for the characterization of the stress-strain state within the boundary layers that can52

occur in the neighborhood of the constraints [1, 19, 18].53

Small planar vibrations of taut cables (with sag-to-span ratio δ << 1) characterized by small54

values of the Irvine’s parameter λ2 are often investigated by resorting to the classic unstreatchable55

Euler-Bernoulli beam model [6]. As it has been clearly shown by Arena et al. [1], however, the56

Euler-Bernoulli model can be inaccurate whenever in presence of significant torsional effects or57

static configurations characterized by values of the sag-to-span ratio in the order of δ = 1/1558

or greater. In these cases, a general formulation based on three-dimensional geometrically exact59

curved rod models should be preferred (e.g. [1, 41]).60

Different modeling assumptions have been adopted in the literature on stay cable axial force61

identification problems, including: (a) the well-known taut-string model [12, 25, 4], (b) cable62

models accounting for the bending stiffness, but neglecting cable sagging and axial extensibility63

effects [2, 9, 24, 28], and (c) cable models accounting for bending stiffness, cable sagging and64

axial extensibility effects [34, 42, 45, 62]. Within this context, it has been clearly highlighted65

that cable sagging and axial extensibility play a negligible role on the in-plane dynamics of stay66

cables characterized by small values of the sag-to-span ratio, often encountered in practice (e.g.67
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[31, 45, 6]). Neglecting bending stiffness effects, on the other hand, can lead to oversimplified68

structural models and unacceptable inaccuracies on the estimates of the axial force, as it has been69

shown e.g. in [9, 24]. The bending stiffness is usually treated as an additional unknown of the70

structural identification problem, due to the complex internal geometry of stay cables.71

Boundary conditions are typically introduced in the form of either perfectly hinged or perfectly72

clamped cable end sections, to simplify the analytical treatment of the problem. A more realistic73

structural scheme could be defined, however, by considering equivalent translational and rotational74

springs at the beam end sections (see e.g. [17, 9]) to model the flexibility of the restraint devices and75

of the support structures (e.g. deck and tower for cables in stayed bridges). Proper definition of76

equivalent springs strongly depends on the particular technology adopted to realize the restraints77

and is inherently related to several different sources of uncertainties, such as those related to78

geometric imperfections and aging of the support devices. Physical parameters characterizing the79

cable restraints, hence, should be added to the unknown of the structural identification problem.80

Trying to circumvent this additional difficulty, identification procedures giving axial force esti-81

mates independent of the boundary conditions are recently surfacing in the literature [10, 59, 60].82

They all rely on synchronous recording of the cable motion at several different locations along83

its length to get experimental information on the dynamic deflection shape of the element. The84

experimental setup and signal acquisition system, hence, turns out to be inherently more com-85

plex than the ones required by conventional identification techniques based on natural frequencies86

only. The latter, indeed, can be effectively implemented by acquiring acceleration signals at a87

single point of the cable. Standard dynamic testing techniques (see e.g. [49, 54]), then, can be88

used to get estimates of the lowest natural frequencies of the element.89

In the present paper, we investigate the problem of the identification of cable axial force, on90

the basis of observed natural frequencies. Assuming a small relative bending stiffness of the cable91

elements, which is typical of stay cables and cement-grouted parallel-bundle wire cables, we provide92

an asymptotic expansion of the natural frequencies of cables with flexible supports in rotation and93

translation. This expansion is used to demonstrate that only two parameters can be identified in94

the asymptotic case of small bending stiffness. This model will be used to identify the axial force95

and the bending stiffness, while lumping all other problem parameters in a single dimensionless96

group.97

The proposed model will then be exploited in order to formulate two different versions of an98

identification strategy: the first is based on a least-square approach embedded in a numerical99

procedure; the second relies on a standard linear regression in a conformal space. This latter100

approach is seen to generalize the current practice aiming a fitting the frequency vs. mode number101

relation obtained with simpler structural models. These two models are analyzed within the scope102

of an uncertainty quantification analysis. While the former provides accurate estimates of the103

confidence on the identified tension, the latter reveals by means of simple formulae the main104

quantities affecting the quality of the identification process.105

2. Transverse free-vibrations of stay cables106

2.1. Statement of the problem107

Let us consider a stay cable of length l, with constant bending stiffness EI and mass per unit108

of length m, subject to the axial force T > 0. The cable is assumed to be anchored to flexible109

supports, herein modeled by means of uncoupled translational and rotational springs with stiffness110

coefficients KTj ≥ 0 and KRj ≥ 0 (j = 0, 1), as it is schematically depicted in Fig. 1.111

Stay cables are typically characterized by small values of both the sag-to-span ratio (in the112

order of few percents [6]) and the Irvine’s parameter λ2 (usually lower than one, with slightly larger113

values associated to very long stay cables [6]). As a consequence, both in-plane and out-of-plane114

small vibrations can be effectively described through the unstreatchable Euler-Bernoulli straight115

beam model. By neglecting damping, hence, planar transverse free vibrations are governed by the116

partial differential equation (e.g. [26]):117

EI∂4
xv − T∂2

xv +m∂2
t v = 0 (1)
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where the function v = v (x, t) describes the transverse displacements of the cable centerline,118

x ∈ [0, l] is a coordinate spanning the chord of the element and t∈ R+ is the time.119

The equation of motion (1) can be integrated, for prescribed initial conditions on the displace-120

ment and velocity fields v (x, 0) and v̇ (x, 0), under the boundary conditions:121 
EI∂3

xv (0, t)− T∂xv (0, t) +KT0v (0, t) = 0

EI∂3
xv (l, t)− T∂xv (l, t)−KT1v (l, t) = 0

EI∂2
xv (0, t)−KR0∂xv (0, t) = 0

EI∂2
xv (l, t) +KR1∂xv (l, t) = 0.

, ∀t > 0 (2)

Stationary oscillatory solutions of Eq. (1) can be sought in the form:122

v(x, t) = Φ(x) sin (Ωt+ Θ) , (3)

where Ω is the vibration frequency, Θ is a constant phase depending on the initial conditions of123

the problem and Φ (x) is a mode shape. Substitution of Eq. (3) in Eqs. (1) and (2) yields the124

fourth order Sturm-Liouville problem defined by the ordinary differential equation:125

EIΦ′′′′ − TΦ′′ − Ω2Φ = 0, Φ = Φ (x) , x ∈ [0, l] (4)

along with the boundary conditions:126 
EIΦ′′′(0)− TΦ′(0) +KT0Φ(0) = 0

EIΦ′′′(l)− Φ′(l)−KT1Φ(l) = 0

EIΦ′′(0)−KR0Φ′(0) = 0

EIΦ′′(l) +KR1Φ′(l) = 0

(5)

Please notice that in Eqs. (4) and (5) the apex denotes derivation with respect to x, i.e. (·)′ = d(·)
dx .127

128

As it is well known, the problem (4)-(5) admits countably infinite non trivial solutions: {Ωk,Φk(x)},129

k ∈ N+. Exact closed form solutions can only be obtained in the particular case of doubly-hinged130

stay cables (e.g. [26]) and read:131

Ωk = kπ

√
T

ml2

√
1 + (kπ)

2 EI

T l2
, k ∈ N+ (6)

Φk (x) = Ak sin

(
Ωk
VT

x

)
, k ∈ N+ (7)

where Ak ∈ R is the modal displacement amplitude and VT =
√
T/m is the propagation speed of132

transverse waves in a taut string with mass per unit of length m subject to the axial force T (e.g.133

[32, 31]).134

For any other boundary conditions, such as those described by Eq. (5), exact closed form135

solutions of the boundary value problem (3)-(4) are not available and the modal properties (natural136

frequencies and mode shapes) of the structure are typically obtained through numerical solution137

strategies.138

139

2.2. Non-dimensional formulation140

The dynamic problem formulated in Section 2.1 can be restated in a non-dimensional form by141

introducing the characteristic frequency142

Ω0 =
VT
l

=

√
T

ml2
, (8)
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Figure 1: Schematic representation of a stay cable anchored to flexible supports and subject to a tensile load T .
Cross sections are characterized by constant mass per unit of length m and bending stiffness EI. The distance
between the supports is denoted as l. Please notice that, under the small displacement assumption, at leading order
the following equations hold true: T cos (θ0) = T cos (θ1) = T .

and the non-dimensional bending stiffness143

ε =

√
EI

T l2
. (9)

Values of ε typical of stay cables are lower than 0.01 [6, 7, 45]. Slightly higher values of ε, up144

to ε = 0.02− 0.03, can also be found in cement-grouted parallel-bundle wire cables used in stayed145

bridges [24, 9] or in comparatively shorter cables used e.g. in tensile structures [8].146

Substitution of Eqs. (8) and (9) in (1), yields the non-dimensional governing equation147

ε2∂4
ξν − ∂2

ξν + ∂2
τν = 0 (10)

where ξ = x/l ∈ [0, 1] is the non-dimensional coordinate, τ = ω0t is the non-dimensional time and148

ν (ξ, τ) = v (x (ξ) , t (τ)) /l is the non-dimensional transverse displacement of the cable centerline.149

The Eq. of motion (10) can be integrated, for prescribed initial conditions, under suitable boundary150

conditions that can be easily obtained from Eq. (2) and are herein omitted for the sake of151

conciseness.152

Stationary oscillatory solutions of Eq. (10) can be expressed as ν(ξ, τ) = φ(ξ) sin (ωτ + Θ),153

where ω and φ (ξ) are the non-dimensional counterparts of the vibration frequency Ω and mode154

shape function Φ (x) in Eq. (3), i.e. ω = Ω/Ω0 and φ (ξ) = Φ (x (ξ)). After some straightforward155

computations, the boundary value problem (4)-(5) can be re-written as156

ε2φ′′′′ − φ′′ − ω2φ = 0, with ξ ∈ [0, 1] (11)


ε2φ′′′(0)− φ′(0) + kT0φ(0) = 0

ε2φ′′′(1)− φ′(1)− kT1φ(1) = 0

ε2φ′′(0)− kR0φ
′(0) = 0

ε2φ′′(1) + kR1φ
′(1) = 0

(12)

where the apex denotes derivation with respect to ξ (i.e. (·)′ = d(·)
dξ ), while kTj and kRj (j = 0, 1)157

are non-dimensional translational and rotational stiffness coefficients defined, respectively, as158
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Figure 2: Translational (ρTj , Fig. (a)) and rotational (ρRj , Fig. (b)) degree-of-fixity parameters as a function
of the corresponding non-dimensional stiffness coefficients. The results are shown for different values of the non-
dimensional bending stiffness ε.

kTj =
l

T
KTj and kRj =

1

T l
KRj , with j = 0, 1. (13)

Both translational (kTj) and rotational (kRj) non-dimensional stiffness coefficients can take159

values on the left-bounded interval Ik = [0,+∞), with free and perfectly restrained boundary160

conditions corresponding, respectively, to the lower bound value k− = 0 and to the limit value161

k+ →∞. For modeling purposes, however, it is more convenient to characterize the translational162

and rotational cable restraints by means of degree-of-fixity parameters taking values in the closed163

unit interval Iρ = [0, 1], with free and perfectly fixed restrained boundary conditions corresponding,164

respectively, to the lower and upper bound values ρ− = 0 and ρ+ = 1 (e.g. [9, 33]).165

Starting from this observation, the following definitions are introduced in the present work for166

the translational (ρTj) and rotational (ρRj) degree-of-fixity parameters167

ρTj =
εkTj

1 + εkTj
, j = 0, 1 (14)

ρRj =
kRj

ε+ kRj
, j = 0, 1 (15)

Equations (14) and (15) define two mappings of the left-bounded interval Ik onto the closed168

unit interval Iρ. Figures 2(a) and 2(b) respectively show the values of the translational and169

rotational degree-of-fixity parameters as a function of the corresponding non-dimensional stiffness170

coefficients for different values of the non-dimensional bending stiffness ε typical of stay cables.171

It can be observed how the translational (rotational) degree-of-fixity parameter asymptotically172

approaches the unit value, corresponding to perfectly fixed boundary conditions, with increasing173

rapidity for increasing (decreasing) values of ε. The transition from 0 to 1 in ρRj takes place for174

kRj ∼ ε while the transition from 0 to 1 in ρTj takes place for kTj ∼ ε−1.175

176

By exploiting the definitions in (14) and (15), then, the boundary conditions (12) can be177

re-written as178 
(1− ρT0)

(
ε3φ′′′(0)− εφ′(0)

)
+ ρT0φ(0) = 0

(1− ρT1)
(
ε3φ′′′(1)− εφ′(1)

)
− ρT1φ(1) = 0

(1− ρR0) ε2φ′′(0)− ρR0εφ
′(0) = 0

(1− ρR1) ε2φ′′(1) + ρR1εφ
′(1) = 0

(16)
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This formulation of the boundary conditions generalizes several interesting particular cases.179

Indeed, by setting ρTj = ρRj = 1 in the above equation, the boundary conditions φ = 0 and εφ′ = 0180

at both ends is recovered. They correspond to the perfectly restrained problem in translation and181

rotation (provided ε 6= 0, the end rotation is equal to zero; otherwise the rotation cannot be182

specified). By setting ρTj = 1 and ρRj = 0, one recovers the boundary conditions of the hinged-183

hinged stay cable while setting ρTj = ρRj = 0 corresponds to the free-free stay cable.184

As it has been previously mentioned, values of the non-dimensional bending stiffness typical of185

stay cables are much smaller than unity, i.e. ε� 1. The small number ε multiplying the highest186

order derivative in Eq. (11) makes the boundary value problem (11)-(16) singularly perturbed187

and hints the existence of boundary layers in the mode shapes of the stay cable (e.g. [55, 27, 19]).188

It is worth noticing that the singular perturbation of Eq. (11) can also entail ill-conditioning, for189

vanishingly small values of ε, of numerical solvers associated to classic discretization techniques190

such as Finite Difference or Finite Element formulations (see e.g. [18]).191

In the ideal limit case characterized by ε = 0, the order of Eq. (11) is lowered from four to192

two. The resulting degenerate ordinary differential equation reads193

φ′′ + ω2φ = 0, φ = φ (ξ) , with ξ ∈ [0, 1] (17)

and the boundary conditions (16), i.e. φ(0) = φ(1) = 0. It corresponds to the classic taut194

string model (e.g. [32, 31]). The non-dimensional mode shapes are φ(ts)
k (ξ) = ak sin

(
ω

(ts)
k ξ

)
,195

with ak ∈ R, and the dimensionless natural frequencies, obtained as integer multiples of the196

fundamental one, simply read197

ω
(ts)
k = kπ, with k ∈ N+. (18)

2.3. Semi-analytical solution198

General solutions of Eq. (11) can be expressed as:199

φ(ξ) = α1 sin (z1ξ) + α2 cos (z1ξ) + α3 exp (−z2ξ) + α4 exp (−z2 (1− ξ)) (19)

where αi ∈ R (i = 1, ..., 4) are integration constants, while the arguments z1 and z2 are the two200

functions of the non-dimensional vibration frequency ω:201

zj = zj(ω) =
1

ε
√

2

√
(−1)

j
+

√
1 + (2εω)

2
, j = 1, 2. (20)

Notice that using exponential instead of hyperbolic functions in Eq. (19) is more appropriate to202

highlight the existence of two boundary layers when ε� 1. Substitution of Eqs. (19) and (20) in203

the boundary conditions (16) yields the algebraic eigenvalue problem:204

B (ω; P)α = 0 (21)

where α = (α1, ..., α4)
T is a column vector listing the integration constants of Eq. (19), 0 is the205

four-dimensional null column vector and B is the 4 × 4 “boundary condition matrix” depending206

on ω and on the set of parameters: P = {ε, ρT0, ρT1, ρR0, ρR1}. Closed form expressions for the207

components of the matrix B are fully reported in Appendix A. These, again, generalize simpler208

formulations known in particular cases.209

Countably infinite non trivial solutions {ωk,αk}, with k ∈ N+, of the algebraic eigenvalue210

problem (21) can be readily obtained by complementing Eq. (21) with the characteristic equation211

D (ω; P) = det [B (ω; P)] = 0 (22)

The eigenvalues ωk, i.e. the non-dimensional natural frequencies of the stay cable, corre-212

spond to the roots of Eq. (22). Generally speaking, hence, they can be regarded as functions213

of the five parameters belonging to the set P. Intuitive symmetry reasons, however, allow one214
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to observe that the eigenvalues ωk should depend on two mappings ρT and ρR of the degree-of-215

fixity parameters that need to satisfy the symmetry conditions: ρT (ρT0, ρT1) = ρT (ρT1, ρT0) and216

ρR (ρR0, ρR1) = ρR (ρR1, ρR0). This indicates that the non-dimensional natural frequencies of the217

cable shall not depend on the 5 parameters of the problem, independently, but rather by means218

of some dimensionless groups.219

For instance, symmetry requirements allowed to state that the non-dimensional natural fre-220

quencies of the cable should depend (at most) only on the non-dimensional bending stiffness ε221

and on two parameters (ρT and ρR) describing the boundary conditions, i.e. ωk = ωk (ε, ρT , ρR).222

Appropriate definitions for the parameters ρT and ρR will be introduced later in this Section.223

Notice that this discussion on symmetry is only valid for the natural frequencies but not for mode224

shapes.225

Exact solutions of the characteristic Eq. (22) are only available for the special case of doubly-226

hinged cables. They correspond to the non-dimensional counterparts of (6) and read227

ωk = kπ

√
1 + (kπ)

2
ε2. (23)

For other boundary conditions, the roots of Eq. (22) can be numerically evaluated through a228

suitable root finding algorithm.229

Beside numerical solutions, a deeper insight into the properties of the functions ωk = ωk (ε, ρT , ρR)230

can be gained by expanding the determinant D (ω; P) in Taylor series around ε = 0. By trun-231

cating the series expansion at first order in ε and focusing on the engineering meaningful case of232

non-zero translational stiffness of the anchorages (i.e. ρT0, ρT1 > 0), one can get233

D (ω) = ρT0ρT1

{
sin (ω)− 2ω cos (ω)

[
1 +

ρR0 + ρR1

2
− 1

2

(
1

ρT0
+

1

ρT1

)]
ε

}
+ o(ε) (24)

where o( ) denotes the Landau symbol (“little-o”). Inspection of Eq. (24) naturally leads to the234

following definitions for the parameters ρT and ρR235

ρR =
1

2
(ρR0 + ρR1) and ρT =

2ρT0ρT1

ρT0 + ρT1
(25)

Moreover, by introducing the parameter236

p = 1 + ρR −
1

ρT
, (26)

Eq. (24) can be re-written in the more compact form237238

D (ω) = ρT0ρT1 (sin (ω)− 2pεω cos (ω)) + o(ε). (27)

The non-dimensional cable frequencies, hence, should satisfy the first order accurate transcen-239

dental equation240

tan (ω) = 2pωε+ o(ε) (28)

whose first-order accurate solutions read241242

ωk ≡ ωk (ε, p) = kπ (1 + 2pε) + o(ε), k ∈ N+ (29)

Equations (28) and (29) clearly allow to appreciate how, for ε� 1, boundary conditions affect243

the lower-order non-dimensional cable frequencies through the global parameter p only, rather244

than through the two independent parameters ρT and ρR. This latter point, that will be further245

investigated in the next Section, has a major impact on the setting up of frequency-based axial246

force identification procedures, since it suggests that the progression of the natural frequencies of247

a stay cable anchored on flexible supports depends at first order only on two parameters, namely248

the non-dimensional bending stiffness ε and the parameter p defined in Eq. (26).249

Moreover, Eq. (27) allows to conclude that, thanks to the scaling of the governing equations250

herein adopted, the determinant D (ω; P) of the boundary condition matrix admits a Taylor series251
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expansion with a bounded and order-one leading order term for vanishingly small values of ε. This252

makes searching for the roots of the characteristic Eq. (22) a well-conditioned problem that can253

be efficiently solved by means of simple root finding algorithms.254

In the present work, the zeros of Eq. (22) are found through sequential applications of a255

standard dichotomy root finding algorithm. As an example, Fig. (3-a) shows the absolute value256

of the determinant D (ω) for a doubly-hinged stay cable (p = 0) and two different values of non-257

dimensional bending stiffness, namely: ε = 0.01 and ε = 0.02. The red circles denote the first258

ten zeros of the function, numerically evaluated with a tolerance equal to 10−5 on |D (ω)|. As259

it can be easily inferred from Fig. (3-b), for both values of ε the non-dimensional frequencies260

obtained through the proposed semi-analytical solution strategy are in excellent agreement with261

the exact values calculated through Eq. (23). Fig. (3-b) also shows a comparison with the262

first ten natural frequencies of a Finite Element Model (FEM) relying on a discretization of the263

cable in 100 three-dimensional (3D) two-node equally spaced corotational Euler-Bernoulli beam264

elements [23, 22], fully accounting for the geometric nonlinearities that characterize the cable265

response and with consistent mass matrix. Focusing on planar vibration modes, displacements of266

the 3D finite elements have been constrained to belong to the vertical plane. As a consequence,267

each node of the elements can only undergo to transverse and longitudinal displacements and268

planar rotations (which amounts to a total number of 300 degrees-of-freedom, in the most general269

case of elastically restrained end sections). The beam elements are assumed to be straight in the270

reference configuration of the problem. Cubic and linear shape functions are adopted, respectively,271

for transverse and axial displacements. Preliminary parametric analyses have been performed by272

varying the number of FE to carefully check the convergence of the discrete model in terms of273

the lower natural frequencies and mode shapes. Preliminary comparisons with the outcomes of274

a lumped mass FEM have also have been carried out, leading as expected (due to the inherent275

slenderness of the structural element herein considered) to practically negligible differences in the276

results. The natural frequencies of the FEM are in good agreement with both the semi-analytical277

and the exact solutions, with maximum discrepancies smaller than 1% for the tenth mode.278

The validity of the proposed semi-analytical model has been further assessed, under different279

boundary conditions, through extensive comparisons with the outcomes of the FEM. Results are280

shown in Figure 4 in terms of the first ten non-dimensional natural frequencies of stay cables with281

non-dimensional bending stiffness equal to ε = 0.01 (Fig. 4(a)) and ε = 0.02 (Fig. 4(b)) and the282

following five different boundary conditions: (I) ρR = 0, ρT = 1 (p = 0, doubly-hinged stay cable),283

(II) ρR = 1, ρT = 1 (p = 1, doubly-clamped stay cable), (III) ρR = 0.5, ρT = 1 (p = 0.5), (IV)284

ρR = 1, ρT = 0.5 (p = 0), (V) ρR = 1, ρT = 0.25 (p = −2). It can be observed that the outcomes285

of the two models are in excellent agreement for all values of ε and boundary conditions herein286

considered, with maximum discrepancies smaller than 1% for the tenth mode.287

It is also interesting to notice that the curves corresponding to the boundary conditions (I)288

and (IV), associated to the same value of restraint parameter p = 0, are practically coincident289

up to the fifth and third mode for respectively ε = 0.01 and ε = 0.02. Differences between the290

curves increase with the order of the mode, but are less than 0.5% and 4% at the tenth mode for291

respectively ε = 0.01 and ε = 0.02. These numerical results further strengthen the conclusion,292

previously reached through inspection of Eqs. (28) and (29), that lower-order non-dimensional293

frequencies of stay cables are affected by the global restraint parameter p only, rather than by the294

two independent parameters ρT and ρR.295

296

297

2.4. Closed-form asymptotic solution298

Closed form equations for the natural frequencies of stay cables are of valuable interest to define299

efficient vibration-based axial force identification procedures. As it has been already mentioned300

in Section 2.3, however, exact closed form solutions of the fourth order Sturm-Liouville problem301

(11)-(16) can only be found in the special case of doubly-hinged cables (see Eq. (23)). During302
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Figure 3: Doubly-hinged stay cable (p = 0). Results are shown for two different values of the non-dimensional
bending stiffness ε. (a) Absolute value of the determinant D (ω) of the boundary condition matrix (Eq. (22)). The
red circles denote the zeros of the determinant, numerically evaluated with a tolerance equal to 10−5 on |D (ω)|.
(b) Non-dimensional natural frequencies: comparison among the results of the proposed semi-analytical model, the
exact solution (Eq. (23)) and the outcomes of a finite element model.
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Figure 4: Comparison between the non-dimensional natural frequencies obtained through the semi-analytical and
the finite element model. Results are shown for ε = 0.01 (Fig. (a)) and ε = 0.02 (Fig. (b)) and five different
boundary conditions: (I) ρR = 0, ρT = 1 (p = 0, doubly-hinged stay cable), (II) ρR = 1, ρT = 1 (p = 1, doubly-
clamped stay cable), (III) ρR = 0.5, ρT = 1 (p = 0.5), (IV) ρR = 1, ρT = 0.5 (p = 0), (V) ρR = 1, ρT = 0.25
(p = −2).
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the years, this observation led researchers to adopt both pragmatical approaches and approximate303

solution strategies.304

Pragmatical approaches of the literature mainly consist in: (a) neglecting the effects of the305

bending stiffness, (e.g. [12, 25, 4]) so that Eqs. (11)-(16) boil down to the taut string eigenvalue306

problem (17), whose natural frequencies are reported in Eq. (18); or (b) properly accounting for307

the effects of the bending stiffness, but approximately modeling cable anchorages by assuming308

a doubly-hinged structural scheme (e.g. [2]). It is worth noting that, for values of the non-309

dimensional bending stiffness ε typical of stay cables, both pragmatical approaches (a) and (b)310

usually deliver an excellent estimate of the fundamental frequency, while higher order natural311

frequencies are predicted with a level of accuracy decreasing with the modal order.312

Approximate closed form expressions of the stay cable natural frequencies have also been313

obtained in the literature under particular assumptions on the boundary conditions, namely for the314

doubly-clamped and the doubly-hinged structural schemes. Focusing on doubly-clamped axially-315

loaded elements, Morse and Ingard [46] derived, through a Taylor series expansion of the terms316

of the characteristic equation (22), a second-order accurate asymptotic expression later used for317

axial force identification purposes by several authors (e.g. [17, 24, 6])318

ωk = kπ

(
1 + 2ε+

(
4 +

(kπ)
2

2

)
ε2

)
+ o

(
ε2
)
, k ∈ N+ (30)

where the leading order term gives, as expected, the non-dimensional natural frequencies of the319

taut string model (cf. Eq. (18)). By following the same approach as Morse and Ingard [46], a320

similar result can also be easily obtained for doubly-hinged elements321

ωk = kπ

(
1 +

(kπ)
2

2
ε2

)
+ o

(
ε2
)
, k ∈ N+ (31)

Notice that Eq. (31) can also be readily obtained through a Taylor series expansion of the322

exact solution (23).323

A novel second-order accurate closed form asymptotic expression, that generalizes Eqs. (30)324

and (31) to account for a partial flexibility of cable anchorages, is developed in the following325

through a standard perturbation approach (e.g. [27]).326

Let us search for a second-order accurate asymptotic solution of the algebraic eigenvalue prob-327

lem (21) that can be expressed through the regular expansion328

ω = ω(0) + ω(1)ε+ ω(2)ε
2 + o(ε2), (32)

α = α(0) +α(1)ε+α(2)ε
2 + o(ε2). (33)

Substitution of Eq. (32) in the definitions (A.1)-(A.16) and subsequent Taylor series expansion329

in a neighborhood of ε = 0, yields the following second-order accurate expression for the boundary330

condition matrix B331

B = B(0)

(
ω(0)

)
+ B(1)

(
ω(1), ω(0)

)
ε+ B(2)

(
ω(2), ω(1), ω(0)

)
ε2 + o(ε2) (34)

where B(0), B(1) and B(2) are 4 × 4 matrices whose components are fully reported in Appendix332

B. Substitution of Eqs. (33) and (34) in (21), then, leads to the matrix equation333 (
B(0) + B(1)ε+ B(2)ε

2
) (
α(0) +α(1)ε+α(2)ε

2
)

= 0 (35)

The individual vanishing of the coefficients of the different powers in ε in Eq. (35) yields the334

system of equations335 
ord(ε0) : B(0)α(0) = 0

ord(ε1) : B(0)α(1) + B(1)α(0) = 0

ord(ε2) : B(0)α(2) + B(1)α(1) + B(2)α(0) = 0

(36)
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that can be easily solved for the variables ω(i) and α(i) (i = 0, 1, 2) through a cascaded approach,336

starting from the leading order problem (i.e. ord(ε0)) and moving towards the higher order ones.337

Solution of (36) is fully detailed in Appendix C and leads to the following second-order accurate338

asymptotic expression for the non-dimensional natural frequencies of the cable339

ωk = kπ

(
1 + 2pε+

(
(kπ)

2

2
+ 4p2

)
ε2

)
+ o(ε2), k ∈ N+ (37)

The leading order term in Eq. (37) coincides, as expected, with the frequencies ω(ts)
k of the340

taut sting model (Eq. (18)), while the effects of the bending stiffness and of the flexibility of the341

cable anchorages enter the first and second order correction terms through the non-dimensional342

variables ε and p. Equation (37), hence, can also be re-written in the more expressive form343

ωk = ω
(ts)
k (1 + fk (ε, p)) + o(ε2), k ∈ N+ (38)

with the definition344

fk (ε, p) = 2pε+

(
(kπ)

2

2
+ 4p2

)
ε2, k ∈ N+ (39)

It is also worth noting that the proposed asymptotic solution easily allows one to recover the345

equations previously introduced for the special cases of doubly-clamped (Eq. (30)) and doubly-346

hinged (Eq. (31)) cables, by respectively setting p = 1 or p = 0 in Eq. (39). More importantly,347

Equations (38-39) show that, at leading order the natural frequencies are given by the taut string348

model, ωk ∼ ω
(ts)
k . Then, the second and third order terms explicitly given in fk (ε, p) indicate349

that natural frequencies only depend on p and ε. The only possibility to separate, on the sole350

basis of natural frequencies, the influence of translational and rotational flexibilities of anchorages,351

would be to push the derivation to the fourth order. For practical reasons, the measurement noise352

and epistemic uncertainties make it unrealistic to derive an identification procedure based on a353

fourth-order small detail. This also justifies the reason why the two identification procedures354

presented in the following Section (Sections 3.2 and 3.3) do not pretend to identify more than355

3 parameters. Furthermore, Equations (38-39) indicate that the sequence of {ωk}, as a function356

of k, takes the form of a quadratic expression in k with only two terms, namely the intercept357

and the second degree coefficient). The adjustement of a mathematical model to the sequence of358

{ωk}, as a function of k, is therefore not able to capture more than 2 independent parameters.359

This explains why p is considered as a parameter, while the proposed identification techniques will360

provide estimators for the cable tension and bending stiffness.361

Figure 5 shows a comparison between the outcomes of the asymptotic solution (38) and the362

ones of the semi-analytical model described in Section 2.3. Results are presented in terms of the363

first ten non-dimensional natural frequencies of stay cables with non-dimensional bending stiffness364

equal to ε = 0.01 (Fig. 5(a)) and ε = 0.02 (Fig. 5(b)) under the same five different boundary365

conditions labeled as (I)-(V) in Section 2.3. Notice that the asymptotic solutions corresponding366

to cases (I) and (IV) are coincident, since they are both associated to the same value of the367

non-dimensional restraint parameter: p = 0.368

On the overall, the asymptotic solution is in excellent agreement with the results of the semi-369

analytical model. Discrepancies increase, as expected, with the increase of both ε and the modal370

order. For ε = 0.01 (Fig. 5(a)), differences are less than 1% over the whole range of modes herein371

considered and for all different boundary conditions. For ε = 0.02 (Fig. 5(a)), the maximum372

differences between the asymptotic solution and the outcomes of the semi-analytical model are373

less than 1.5% for boundary conditions (I), (II) and (III). Discrepancies are larger for the boundary374

conditions (IV) and (V), being however in the order of 5% for the tenth mode.375

376
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Figure 5: Comparison between the non-dimensional natural frequencies obtained through the asymptotic solution
(Eq. (37)) and the semi-analytical model (Section 2.3). Results are shown for ε = 0.01 (Fig. (a)) and ε = 0.02 (Fig.
(b)) and five different boundary conditions: (I) ρR = 0, ρT = 1 (p = 0, doubly-hinged stay cable), (II) ρR = 1,
ρT = 1 (p = 1, doubly-clamped stay cable), (III) ρR = 0.5, ρT = 1 (p = 0.5), (IV) ρR = 1, ρT = 0.5 (p = 0), (V)
ρR = 1, ρT = 0.25 (p = −2).

3. Parameter identification problem377

Most vibration-based methods for the identification and monitoring of the axial force of stay378

cables rely on the knowledge of a set of experimentally determined natural frequencies. Stay cables379

are indeed lightweight and lightly damped structural elements, whose transverse vibrations can380

be easily excited by providing relatively small amounts of input energy. Standard dynamic testing381

techniques (see e.g. [49, 54]), hence, can be effectively used to get estimates of the lowest natural382

frequencies of the cable. This experimental information, along with a suitable structural model,383

serves as the basis to set up a model updating strategy to identify the value of unknown structural384

parameters.385

More specifically, assuming that the length l and mass per unit length m of the stay cable are386

known, the axial force in the stay cable is determined from (8):387

T = ml2Ω2
0, (40)

which indicates that the identification problem is limited to estimating Ω0.388

Three different identification strategies are presented in this Section. Classic approaches relying389

on application of the taut string model are firstly reviewed in Section 3.1. The closed form390

asymptotic solution developed in Section 2.4 is used, within this context, to provide a rigorous391

assessment of the effects on the axial force estimate due to the simplifying assumptions at the392

base of the taut string model. Two novel strategies for the simultaneous identification of the393

axial force and bending stiffness of stay cables anchored to flexible supports are then presented in394

Sections 3.2 and 3.3. The first one (Section 3.2) relies on the numerical solution of a non-linear395

optimization problem, while the second one (Section 3.3) is based on the application of a simple396

linear regression model.397

3.1. Taut string model398

Let us denote asM∗ =
{

Ω∗k1 ,Ω
∗
k2
, ...,Ω∗kM

}
a set of M natural circular frequencies, identified399

from a vibration test and associated to the modes k1 ≤ k2 ≤ ... ≤ kM (with kj ∈ N+, ∀j ∈ [1,M ]).400

The measured frequenciesM∗ can be conveniently regarded as realizations of a set of independent401

Gaussian variables M = {Wk1 ,Wk2 , ...,WkM }, with nominal average values and variances given402

by403

Ω̄kj = E
[
Wkj

]
and σ2

kj = E
[
W 2
kj

]
− Ω̄2

kj , j = 1, ...,M (41)
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where E[.] denotes the mathematical expectation [48].404

The most simple axial force identification strategy proposed in the literature relies on the405

adoption of the taut string model [17, 7], whose natural circular frequencies Ω
(ts)
k are given by406

Ω
(ts)
k = Ω0 ω

(ts)
k = kπΩ0, k = 1, 2, ... (42)

since ω(ts)
k = kπ (see Eq. (18)). Due to both unavoidable measurements errors and the simplifying407

assumptions of the adopted structural model (“modeling errors”), the measured frequencies M∗408

will only approximately satisfy Eq. (42). An estimate Ω̂0 of the characteristic frequency can be409

obtained by firstly solving for Ω0 each of the equations: Ω
(ts)
kj

= Ω∗kj (j = 1, ...,M), and then410

taking the arithmetic mean of the results, i.e.411

Ω̂0 =
1

M

M∑
j=1

Ω∗kj
kjπ

, M ≥ 1. (43)

Once Ω̂0 is known from Eq. (43), the axial force can be estimated from Eq. (40) as412

T̂ = ml2Ω̂2
0 (44)

where m and l should be regarded as the nominal values of the linear density and length of the413

cable. A simple and usual approach consists in considering only one natural frequency, in which414

case the summation drops and makes the determination of the estimate Ω̂0 straightforward.415

The bending stiffness of the stay cable and the flexibility of the anchorages, which are not416

accounted for in the taut string model, unfortunately make Ω̂0 a biased estimator. The bias417

associated to these modeling errors can be quantitatively assessed by exploiting the asymptotic418

solution introduced in Section 2.4. Taking expectations of both sides of Eq. (43) yields419

E
[
Ω̂0

]
=

1

M

M∑
j=1

Ω̄kj
kjπ

. (45)

For small values of the non-dimensional bending stiffness ε and focusing on the lower modes of420

the cable, the average values Ω̄kj can be approximately assumed equal to Ω̄kj = Ω0ω
(ts)
kj

(
1 + fkj (ε, p)

)
421

(see Eq. (38)). Substitution in Eq. (45) yields422

E
[
Ω̂0

]
= Ω0

1 +
1

M

M∑
j=1

fkj (ε, p)

 (46)

By recalling the definition of fk (ε, p) introduced in Eq. (39), the bias term in (46) reads423

bias
[
Ω̂0

]
= E

[
Ω̂0

]
− Ω0 = Ω0

2pε (1 + 2pε) + ε2 π
2

2M

M∑
j=1

k2
j

 (47)

Figure 6 shows this theoretical bias of the estimator Ω̂0 as a function of the non-dimensional424

bending stiffness ε and for three different boundary conditions: (I) p = 0 (doubly-hinged stay425

cable), (II) p = 1, (doubly-clamped stay cable) and (III) p = 0.5. These boundary conditions426

cover the whole range of values that the restraint parameter p can assume in the special case,427

often encountered in practice, of stay cables anchored to supports characterized by negligible428

translational flexibility (i.e. ρT = 1 in Eq. (26)). Figures 6(a) and 6(b) are referred to identification429

procedures respectively based on the knowledge of (a) the fundamental frequency of the cable only430

(i.e. j = M = 1 in Eqs. (45) and (47)), and (b) the five lower natural frequencies of the cable (i.e.431

M = 5 and j = 1, 2, ..., 5 in Eqs. (45) and (47)).432

As it can be easily observed from Figure 6, the bias tends to zero for structural elements433

approaching the idealized taut string model, i.e. for vanishingly small values of ε. Moreover, the434
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Figure 6: Bias of the estimator Ω̂0 relying on the application of a taut string model (see Eqs. (43) and (47)). The
bias is normalized for the characteristic frequency Ω0 and plotted as a function of the non-dimensional bending
stiffness ε. Results are shown for three different boundary conditions: (I) p = 0 (doubly-hinged stay cable), (II)
p = 1, (doubly-clamped stay cable) and (III) p = 0.5. Figure (a) is obtained by considering M = 1 and j = 1
(fundamental mode of the cable). Figure (b) is obtained by considering M = 5 and j = 1, 2, ..., 5 (first five modes
of the cable).

bias increases with the increase of both (i) the number of modesM considered in the identification435

procedure, and (ii) the value of the degree-of-fixity parameter p. For fixed values of ε and M ,436

indeed, the bias is minimum for doubly hinged stay cables (p = 0, curves labeled as (I) in Fig. 6)437

and maximum for doubly clamped stay cables (p = 1, curves labeled as (II) in Fig. 6). It can be438

concluded, hence, that the bias of the estimator Ω̂0 increases with the increase of the rotational439

stiffness of the cable anchorages.440

On the overall, inspection of the results depicted in Figure 6, shows that, depending on the441

boundary conditions and the number of modes M , the bias introduced by modeling errors in the442

identification procedure based on the taut string model can be quite relevant, i.e. in the order of443

several percent of Ω0.444

In spite of these potentially significant inaccuracies, identification strategies based on the taut445

string model are widely used in practice due to their inherent simplicity, paving the way for a446

straightforward assessment of uncertainties. With the probabilistic model (41) for the measured447

frequencies, the variance σ2
Ω̂0

of the estimator Ω̂0 can be calculated as448

σ2
Ω̂0

= E
[
Ω̂2

0

]
−
(
E
[
Ω̂0

])2

=
1

M2

M∑
j=1

σ2
kj

k2
jπ

2
(48)

By assuming that the measured frequencies are characterized by a constant coefficient of vari-449

ation In = σkn/Ω̄kn (also termed in the following, with a slight abuse of terminology, noise450

intensity), Eq. (48) can be re-written as451

σ2
Ω̂0

=
I2
n

M2

M∑
j=1

Ω̄2
kj

k2
jπ

2
. (49)

The substitution of Ω̄kj = Ω0ω
(ts)
kj

(
1 + fkj (ε, p)

)
in Eq. (49), then, yields the following ex-452

pression for the standard deviation σΩ̂0
453

σΩ̂0
=
InΩ0

M

√√√√ M∑
j=1

(
1 + fkj (ε, p)

)2 (50)

By neglecting higher-order terms, hence, σΩ̂0
can be approximately computed as454
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σΩ̂0
=

In√
M

Ω0 '
In√
M

Ω̂0. (51)

It is worth noticing that the standard deviation of the estimator Ω̂0, contrarily to the bias due455

to modeling errors, decreases with the increase of the number of modes M . As a consequence,456

the selection of an appropriate value of M naturally claims for a trade-off between accuracy and457

variability of the outcomes of the identification procedure.458

Starting from Eq. (44) the combined uncertainty σT̂ on the estimated value T̂ of the cable459

axial force can be evaluated through the well-known first-order accurate expression (e.g. [17, 7]):460

σT̂
T̂
' σm

m
+ 2

σl
l

+ 2
σΩ̂0

Ω̂0

(52)

where σm and σl are the standard uncertainties (see e.g. [5]) associated to the nominal values m461

and l of the cable linear density and length.462

3.2. Non-linear optimization problem463

Both bending stiffness and anchorage flexibility effects on the low-order natural circular fre-464

quencies Ωk (k = 1, 2, ...) of a stay cable can be accurately accounted for by means of the closed-465

form asymptotic solution presented in Section 2.4. Multiplication of Eq. (38) by the characteristic466

frequency Ω0 = Ω0 (T,m, l) (see Eq.(8)) yields467

Ωk = Ω0 ω
(ts)
k (1 + fk (ε, p)) , k = 1, 2, ... (53)

where ω(ts)
k = kπ are the non-dimensional frequencies of the taut string model (Eq. (18)).468

Whenever a set of M measured frequencies M∗ =
{

Ω∗k1 ,Ω
∗
k2
, ...,Ω∗kM

}
is available from vi-469

bration tests, the unknown model parameters Ω0, ε and p can be estimated by minimizing the470

difference between predictions of Eq. (53) and experimental observations. To this aim, let us471

introduce the cost (or objective) function472

Fobj (X) =

√√√√ M∑
j=1

(
1−

Ωkj
Ω∗kj

)2

(54)

where X is the parameter vector X = (Ω0, ε, p)
T ∈ S ⊂ R3, taking values on the searching space473

S subject to the physical constraints: Ω0 > 0, ε > 0 and p ≤ 1. Whenever the translational474

flexibility of the cable anchorages can be assumed as negligible, the degree-of-fixity parameter p475

can only take values in the closed unit interval, i.e. 0 ≤ p ≤ 1 and the definition of the searching476

space S needs to be modified accordingly.477

Identification of the structural parameters, within this context, amounts to solve the non-linear478

constrained optimization problem479

X̂ = argmin
X∈S

Fobj (X) (55)

Once the optimal parameters Ω̂0 and ε̂ are known from the solution X̂ of (55), estimates of480

the cable axial force (T̂ ) and bending stiffness (ÊI) can be respectively obtained through Eq. (44)481

and Eq. (9) as:482

EI = T̂ ε̂2l2 (56)

The non-linear optimization problem defined in Eq. (55) is characterized by several peculiar483

features that should guide the selection of an appropriate solution algorithm. Due to unavoidable484

measurement errors affecting the natural frequencies Ω∗kj (j = 1, ...,M), the landscape of the cost485

function (54) will be characterized, in general, by many local minima. Moreover, inspection of486

Eqs. (53) and (39) allows one to observe that the sensitivity of the cost function (54) with respect487
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to the parameter p tends to be substantially negligible for small values of the non-dimensional488

bending stiffness ε typical of stay cables.489

Gradient-based optimization algorithms, hence, are not well suited for the particular problem490

at hand, since they are prone to get trapped in local minima and their iteration operators could491

potentially be ill-conditioned for small values of ε. Within the class of gradient-free algorithms,492

the family of Differential Evolution (DE) algorithms, firstly proposed by Storn and Price [53],493

has shown excellent performances in finding the global optimum of non-linear, non-convex, multi-494

modal and non-differentiable functions (see e.g. [14, 16]).495

DE is an Evolutionary Algorithm that iteratively operates on a population of candidate solu-496

tions made of NP parameter vectors. The initial population is randomly chosen within an initial497

searching volume V0 ⊆ S and offsprings are generated by perturbing trial solutions with scaled498

differences of randomly selected population elements. As the number of iterations grows, the499

characteristic size of these differences tend to automatically adapt to the natural scales of the ob-500

jective landscape [16]. It is worth noting that the peculiar strategy adopted to generate offsprings501

and evolve the population of candidate solution makes DE algorithms able to deal with objective502

functions characterized by low or moderately low sensitivity with respect to one ore more variables503

of the searching space without numerical problems. Selection of the better fitted elements of the504

population is performed through a one-to-one parent/offspring competition scheme. The physical505

constraints can be enforced through a simple penalty criterion and the iterations are performed506

until a termination criterion is satisfied.507

In the present work, a custom implementation of a well-known variant of the DE algorithm508

proposed by Das et al. [15] has been adopted to solve the non-linear optimization problem in509

Eq. (55). The termination criterion has been defined such that iterations are stopped whenever510

one of the following conditions is satisfied: (a) the relative difference between the best and worst511

objective function values ∆ =
(
Fworst

obj − F best
obj

)
/max

{
Fworst

obj , 1
}
of a population is below a given512

threshold Toll (cf. the ’Diff’ termination criterion proposed by Zielinski and Laur [61]), (b) the513

value of the cost function is lower than a prescribed value Fmin
obj , (c) the number of iterations NIT514

is equal to a prescribed maximum number of iterations MAXIT .515

Whenever multiple sets of observed frequencies are available, the non-linear optimization prob-516

lem (55) can be repeatedly solved by means of independent runs of the DE algorithm. The average517

values and variances of the structural parameter estimates X̂ =
(

Ω̂0, ε̂, p̂
)T

and the combined un-518

certainty of the estimated axial force T̂ , then, can be calculated a posteriori, through a standard519

statistical analysis of the results of the identification procedure.520

In order to better illustrate a typical run of the DE algorithm, a reference stay cable anchored521

to flexible supports and characterized by Ω0 = 5.66 rad/s, ε = 0.02 and p = 0.25 (“target values”) is522

considered in the present section. The cost function (54) was defined by assuming that the first five523

natural frequencies of the system are known. Measured frequencies were numerically simulated by524

corrupting the theoretical results, obtained from the solution of the algebraic eigenvalue problem525

(21), through the addition of a small error term drawn from a zero-mean Gaussian distribution with526

coefficient of variation In = 0.5% (notice that In can be conveniently regarded, within this context,527

as the measurement noise intensity). The optimization problem (55) has been solved by running528

the DE algorithm (“DEGL/SAW/bin” scheme, with scale factor F = 0.8 and crossover parameter529

CR = 0.9, see [15] for further details), starting from a population of NP = 30 trial solutions530

randomly chosen in the initial search volume V0 : 10−5 ≤ Ω0 ≤ 50, 10−5 ≤ ε ≤ 1, 0 ≤ p ≤ 1.531

The parameters of the termination criterion have been set up as: Fmin
obj = 10−6, Toll = 10−7 and532

MAXIT = 5000.533

Figures 7 and 8 show the initial and final populations of candidate solutions, along with the534

result of the optimization run, i.e. the best member of the final population, and the target solution.535

The two figures allow one to clearly appreciate how the initial population, uniformly distributed536

in the initial searching volume V0, evolves to a final population clustered in a small region of the537

searching space close to the target solution. It is also worth noting that the dispersion of the538

members of the final population with respect to variables Ω0 and ε is much lower than the one539

with respect to p. This result is a direct consequence of the already mentioned low sensitivity of540
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Figure 7: Illustration of a typical run of the DE algorithm. An initial population of NP = 30 trial solutions
randomly chosen in the initial search volume V0 : 10−5 ≤ ω0 ≤ 50, 10−5 ≤ ε ≤ 1, 0 ≤ p ≤ 1 evolves to a final
population close to the target solution characterized by the values: Ω0 = 5.66 rad/s, ε = 0.02 and p = 0.25

the cable natural frequencies with respect to the degree-of-fixity p.541

Figure 9(a) shows the evolution of the best and worst values of the cost function (54) through542

the iterations of the DE algorithm. These two quantities converge to a common small value543

as the population of candidate solutions tends to concentrate in a neighborhood of the target544

solution. The components of the best parameter vector are shown in Figures 9(b), (c) and (d)545

as a function of the number of iterations. It is worth noting that parameters Ω0 and ε rapidly546

converge to the corresponding target values. As expected, instead, variations of the parameter p547

do not significantly affect the value of the cost function. This topic will be further discussed in548

Section 4.1549

3.3. Linear regression model550

Axial force identification strategies based on the numerical solution of a non-linear optimization551

problem, such as the one proposed in Section 3.2, can be computationally expensive and not well552

suited for structural health monitoring applications requiring continuous acquisition and on-line553

processing of experimental data. Furthermore, error propagation analyses can only be carried out554

through a posteriori statistical treatment of the outcomes of the identification procedure. This555

can lead to a considerable increase of the overall computational burden and prevents a deeper556

understanding of the effects on the axial force estimates of the main mechanical and geometrical557

parameters entering the structural model.558

To circumvent these drawbacks, a novel approach is developed in the present Section for the559

simultaneous identification of the cable axial force and bending stiffness. The proposed procedure560

accounts for both the bending stiffness of the cable and the effects of the anchorage flexibility.It561

is based on the following steps: (a) a transformation of coordinates, mapping the non-linear562

asymptotic equation (53) into a linear one, (b) ordinary linear regression analysis. Once the563

regression coefficients are known, simple closed form equations allow one to get estimates of the564

characteristic frequency (Ω̂0) and non-dimensional bending stiffness (ε̂) of the cable. Propagation565

of uncertainties is then investigated through approximate closed form equations, leading to a clear566

picture of the main geometrical and mechanical parameters affecting the results of the proposed567

identification procedure.568
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Figure 8: Illustration of a typical run of the DE algorithm. Projections of Figure 7 on the coordinate planes (p,Ω0)
(Figure (a)), and (p, ε) (Figure (b)).

Iteration	number
0 10 20 30 40 50

F o
bj

10−3

0.01

0.1

1

10

100

1000 (a)
Best	value
Worst	value

Iteration	number
0 10 20 30 40 50

Ω 0
	(r

ad
/s

)

1

2

3

4

5

6

7

8 (b)
Best	member
Target	value

Iteration	number
0 10 20 30 40 50

ɛ

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175 (c)
Best	member
Target	value

Iteration	number
0 10 20 30 40 50

p

0

0.2

0.4

0.6

0.8

1 (d)
Best	member
Target	value

Figure 9: Illustration of a typical run of the DE algorithm. Figure (a) shows the best and worst values of the cost
function (54) as a function of the number of iterations. Figures (b), (c) and (d) show the value of the components
(Ω0, ε, p) of the best parameter vector as a function of the number of iterations.
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Let us consider an ordered set of M natural frequencies {Ωk1 ,Ωk2 , ...,ΩkM }, with k1 ≤ k2 ≤569

... ≤ kM (kj ∈ N+, ∀j ∈ [1,M ]), and introduce the integral coordinate570

ηm =
1

m

m∑
j=1

Ωkj
πkj

, m = 1, ...,M (57)

Substitution of (53) into this definition yields571

ηm =
1

m

m∑
j=1

πkjΩ0

(
1 + fkj (ε, p)

)
πkj

=
Ω0

m

m∑
j=1

(
1 + 2pε+

(
(kjπ)

2

2
+ 4p2

)
ε2

)
, (58)

which can also be written572

ηm = β0 + β1γm, m = 1, ...,M (59)

where573

γm =
1

m

m∑
j=1

k2
j (60)

and574

β0 = Ω0

(
1 + 2pε+ 4p2ε2

)
and β1 = Ω0

ε2π2

2
. (61)

The use of this new coordinate shows that the original problem involving a quadratic sequence575

of the mode orders {kj} can be replaced by the simple linear relationship (59) in the new coordinate576

system (γm, ηm).577

Whenever a set of frequenciesM∗ =
{

Ω∗k1 ,Ω
∗
k2
, ...,Ω∗kM

}
, associated to the modes k1 ≤ k2 ≤578

... ≤ kM , is known from vibration tests, Eqs. (57) and (60) can be used to calculate the cor-579

responding “experimental” points (γ∗m, η
∗
m), m = 1, ...,M . Notice that the set {η1, ..., ηM} can580

also be regarded as sample of non-Gaussian random variable obtained by applying the non-linear581

transformation (57) to the set of independent Gaussian variables M = {Wk1 ,Wk2 , ...,WkM }, al-582

ready introduced in Section 3.1. A full characterization of the probability density function of this583

resultant non-Gaussian random variable, although relatively straightforward, is outside the scope584

of the present work.585

The coefficients β0 and β1, then, can be estimated through an application of the ordinary least586

squares method (see e.g. [57]):587

β̂1 =
Sηγ
Sγγ

(62)

β̂0 = η̄ − β̂1γ̄ = η̄ − Sηγ
Sγγ

γ̄ (63)

where588

η̄ =
1

M

M∑
m=1

η∗m, γ̄ =
1

M

M∑
m=1

γ∗m (64)

589

Sηη =
1

M

M∑
m=1

(η∗m − η̄)
2
, Sγγ =

1

M

M∑
m=1

(γ∗m − γ̄)
2
, Sηγ =

1

M

M∑
m=1

(η∗m − η̄) (γ∗m − γ̄) . (65)

The estimators β̂0 and β̂1 given by these formulae are also available in any commercial software590

as a standard tool of basic fitting. The proposed linear fitting has therefore no specific difficulty,591

other than the establishment of the transformed coordinates (η, γ). Figure 10 illustrates a typical592

application of the coordinate transformation defined by Eqs. (57) and (60) to the first five natural593

frequencies of a cable characterized by Ω0 = 5.66 rad/s, ε = 0.02 and p = 0.5. Ten samples of594

measured frequencies have been numerically simulated by corrupting the theoretical results of the595
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Figure 10: First five natural frequencies of a stay cable characterized by Ω0 = 5.66 rad/s, ε = 0.02 and p = 0.5.
Measured results are corrupted by a zero-mean Gaussian noise with intensity In = 0.5%. (a) Representation in the
plane (k, Ωk

kπ
). (b) Representation in the plane (γk, ηk), obtained through the coordinate transformation defined in

Eqs. (57) and (60).

semi-analytical model, presented in Section 2.3, through the addition of a low-intensity zero-mean596

Gaussian noise. Figures 10(a) and 10(b) respectively show the simulated measurement results597

and their transformed representation in the coordinate system (γm, ηm). The outcomes of the598

underlying theoretical (i.e. free from noise) model are also shown for comparison purposes (red599

dashed lines).600

Once β̂0 and β̂1 are determined, substitution of β̂0 and β̂1 in Eqs. (61) yields, after some601

rearrangements, the system of equations602 {
ε̂2

1+2pε̂+4p2ε̂2 = 2
π2

β̂1

β̂0

Ω̂0

(
1 + 2pε̂+ 4p2ε̂2

)
= β̂0

(66)

where Ω̂0 and ε̂ are estimates of the characteristic frequency and the non-dimensional stiffness of603

the cable.604

Equations (61) and (66) allow one to notice that the intercept β0 of the linear regression model605

is of the same order of magnitude as Ω0, while the slope β1 is of the same order as ε2. For typical606

stay cables, ε� 1 and Ω0 ∼ 1. A first-order accurate approximate solution of (66), hence, can be607

expressed as608

Ω̂0 = β̂0 − p
2
√

2

π

√
β̂0β̂1 (67)

ε̂ =

√
2

π

√
β̂1

β̂0

(68)

Once Ω̂0 and ε̂ are known, estimates of the cable axial force (T̂ ) and bending stiffness (ÊI)609

can be respectively obtained through Eqs. (44) and (56).610

Substitution of Eq. (68) in (67) yields the following, more expressive, equation for Ω̂0611

Ω̂0 = β̂0 (1− 2pε̂) (69)

Inspection of Eqs. (68) and (69) allows one to observe that modeling errors on the boundary612

conditions do not affect ε̂, but can introduce a bias on the estimator Ω̂0.613

It is interesting to notice that, at first order, the linear relation between ηm and γm expressed614

in (59) just depends on the two parameters β0 and β1. This indicates that it is impossible to615
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independently determine the three parameters Ω0, ε and p. In principle, a third equation for the616

third unknown could be determined by considering the governing equations at second order. This617

investigation track (to form a well-posed set of equations) is not further developed because the618

order of magnitude of the second-order terms are very likely to fall within the measurement noise619

in most practical cases. Instead, in the solutions expressed in (67-68) we have considered p as a620

parameter.621

Let us denote as p∗ an assumed value of the restraint parameter p that, after substitution in622

Eq. (69), allows to get Ω̂0 for given ε̂ and β̂0. Moreover, let us define as ∆p = p∗−p the difference623

between the assumed (p∗) and the unknown “true” value (p) of the restraint parameter. A first624

order accurate estimate expression of the bias of the estimator Ω̂0 can be easily obtained from Eq.625

(69)626

bias
[
Ω̂0

]
= 2∆p ε̂ Ω̂0. (70)

By assuming p∗ = 0, i.e. by modeling both cable restraints as perfect hinges, one gets ∆p = −p627

and Eq. (70) approximately coincides with the first order term in the Eq. (47), describing the628

bias of the identification procedure based on the taut string model. Furthermore, whenever the629

translational flexibility of the cable anchorages is negligible, the “true” value of the degree-of-fixity630

parameter can only vary in the range 0 ≤ p ≤ 1. As a consequence, the bias of the estimator Ω̂0631

turns out to be bounded, with upper and lower bound values implicitly defined by Eq. (70). For632

example, by pragmatically assuming the intermediate value p∗ = 0.5, Eq. (70) yields633 ∣∣∣∣ 1

Ω̂0

bias
[
Ω̂0

]∣∣∣∣ ≤ ε̂ (71)

By denoting respectively as σ2
β̂0
, σ2

β̂1
and ρβ̂0β̂1

the variances and correlation coefficient of the634

regression parameters β̂0 and β̂1, a standard linearized error propagation model (see e.g. [5])635

allows to approximately evaluate the variances of Ω̂0 and ε̂ as636

σ2
Ω̂0

=

(
∂Ω̂0

∂β̂0

)2

σ2
β̂0

+

(
∂Ω̂0

∂β̂1

)2

σ2
β̂1

+
∂Ω̂0

∂β̂0

∂Ω̂0

∂β̂1

ρβ̂0β̂1
σβ̂0

σβ̂1
(72)

and637

σ2
ε̂ =

(
∂ε̂

∂β̂0

)2

σ2
β̂0

+

(
∂ε̂

∂β̂1

)2

σ2
β̂1

+
∂ε̂

∂β̂0

∂ε̂

∂β̂1

ρβ̂0β̂1
σβ̂0

σβ̂1
. (73)

Equations (72) and (73) rely on the assumption of small coefficients of variation
σβ̂0
β̂0

and
σβ̂1
β̂1

,638

i.e.
σβ̂0
β̂0
� 1,

σβ̂1
β̂1
� 1. As it will be further shown in Section 4.2 through numerical examples,639

typical values of the the ratio
σβ̂0
β̂0

are in the order of a few percent, while the order of magnitude640

of the coefficient of variation
σβ̂1
β̂1

can rapidly approach the unity for decreasing values of the641

non-dimensional bending stiffness ε and increasing values of the noise intensity.642

Although approximate, Eqs. (72) and (73) allows one to gain a deeper insight on the propaga-643

tion of uncertainties within the proposed identification procedure. By assuming that
σβ̂0
β̂0
∼ ε̂

σβ̂1
β̂1

,644

substitution of the partial derivatives of Ω̂0 and ε̂ in Eqs. (72) and (73) yields, after some simple645

rearrangements, the following second-order accurate approximate equations646 (
σΩ̂0

Ω̂0

)2

=

(
σβ̂0

β̂0

)2

− pε̂ ρβ̂0β̂1

σβ̂0

β̂0

σβ̂1

β̂1

pε̂2

(
σβ̂1

β̂1

)2

(74)

(σε̂
ε̂

)2

=
1

4

[(
σβ̂1

β̂1

)2

− ρβ̂0β̂1

σβ̂0

β̂0

σβ̂1

β̂1

+

(
σβ̂0

β̂0

)2
]
. (75)
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Equation (74) clearly allows one to appreciate that the leading order term of the coefficient of647

variation of Ω̂0 is equal to that of β̂0. Correction terms increase with ε̂ and are linearly proportional648

to the value of the restraint parameter p. On the other hand, Eq. (75) shows that the coefficient649

of variation of ε̂ is independent of the boundary conditions and with a leading order term equal650

to 1
2

σβ̂1
β̂1

.651

In summary, in this Section, we have proposed an extension of the identification procedure for652

a cable with a focus on the influence of unknown end conditions. By exploiting the asymptotic653

response for small bending stiffness, we have shown that it is only possible to determine two654

of the three parameters Ω0, ε and p with the help of a simple linear regression model. For655

practical reasons, parameter p is typically difficult to determine, a reason why we have suggested656

to consider it as a known parameter of the model, since, in most cases of practical interest p ∈ [0, 1],657

a pragmatical choice p = 0.5 could be formulated. It lessens the bias and standard error on the658

estimate that could be obtained by assuming hinged-hinged end conditions. More importantly, the659

bias on the estimated cable tension could be bounded by considering the two limit cases p = 0 and660

p = 1. Finally, because of the simplicity of this asymptotic model, the uncertainty propagation661

analysis of the proposed identification procedure could be derived. The main trends indicating in662

which way the problem parameters do affect the standard errors of the estimated cable tension663

and bending stiffness could be determined. These will be illustrated in the following Section.664

4. Applications665

The performances of the novel identification strategies described in Sections 3.2 and 3.3 have666

been assessed through extensive numerical testing. The results will be presented in the following667

with reference to a stay cable attached to anchorages with negligible translational flexibility and668

characterized by Ω0 = 5.66 rad/s and T = 4000 kN. Three different values of non-dimensional669

bending stiffness (ε = 0.01, 0.02, 0.03) have been considered, along with five different boundary670

conditions: (IR) p = 0 (doubly-hinged cable), (IIR) p = 0.25, (IIIR) p = 0.50, (IVR) p = 0.75 and671

(VR) p = 1 (doubly-clamped cable).672

In order to simulate experimental input data, the algebraic eigenvalue problem (21) has been673

numerically solved to get the first five natural frequencies of the system. These reference values,674

then, have been corrupted through multiplication by a unit-mean and low intensity Gaussian noise,675

to account for the effects of measurement errors. Different values of noise intensity, ranging from676

0 to 2.5%, have been considered. Please notice that the range of noise intensity values herein677

considered is consistent with the expected outcome of standard dynamic testing techniques for the678

identification of natural frequencies of stay cables (see e.g. [49, 54]). For each noise intensity value,679

a sample of 1000 sets of noisy natural frequencies has been independently randomly generated.680

Sections 4.1 and 4.2 present the results of the proposed identification strategies based on, re-681

spectively, the non-linear optimization problem (see Section 3.2) and the linear regression model682

(see Section 3.3). Section 4.3 reports comparisons between the outcomes of the proposed identifi-683

cation strategies and the ones of the classic approach relying on the taut string model (see Section684

3.1).685

4.1. Solution of the non-linear optimization problem686

The non-linear optimization problem (55) has been solved by running the DE algorithm pre-687

sented in Section 3.2 (“DEGL/SAW/bin” scheme, with scale factor F = 0.8 and crossover param-688

eter CR = 0.9, see [15] for further details), starting from a population of NP = 30 trial solutions689

randomly chosen in the initial search volume V0 : 10−5 ≤ Ω0 ≤ 50, 10−5 ≤ ε ≤ 1, 0 ≤ p ≤ 1.690

The parameters of the termination criterion have been set up as: Fminobj = 10−6, Toll = 10−7 and691

MAXIT = 5000. Please notice that the initial search space V0 satisfies all physical constraints692

of the structural problem (i.e. Ω0 > 0, ε > 0 and 0 ≤ p ≤ 1). Since trial solutions are not693

constrained within the initial search volume V0, however, no special criteria needs to be adopted694

to define V0. As a consequence, the initial upper bounds values of the variables Ω0 and ε have695

been herein defined in order to be large enough to highlight the good convergence properties of696
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the optimization algorithm also whenever initial guesses for these structural parameters are not697

available.698

Figure 11 shows the results of the identification procedure, as a function of the noise intensity,699

for a stay cable with target bending stiffness value ε = 0.02. Results are averaged over the number700

of runs NR of the algorithm (i.e. NR = 1000) for every different noise intensity level and expressed701

in terms of: (a-c) the identified values of the parameters Ω̂0,ave, ε̂ave and p̂ave; (d) the relative702

error on the element axial force, ∆T =
T̂ave−Ttarget

Ttarget
, where T̂ave is the average identified value of703

the axial force and Ttarget is the target value (i.e. Ttarget = 4000 kN); (e) F best
obj,ave is the average704

value of the cost function associated to the identified optimal set of parameters; (f) NITave is the705

average number of iterations of the DE algorithm.706

The identification strategy gives fairly accurate results in terms of parameters Ω0 and ε for707

all values of noise intensity herein considered. As already noticed in Section 3.1, the boundary708

conditions do not significantly affect the cost function (54) and, as a consequence, the identification709

algorithm is not able to correctly identify the parameter p. For each value of noise intensity, the710

identification procedure tends to a mean value of p equal to about 0.5, no matter the target value in711

[0, 1]. This mean value actually coincides with the mean value of p within the randomly generated712

candidate solutions of the DE algorithm.713

On the overall, in spite of a poor identification of the degree-of-fixity p of the beam end sections,714

the procedure gives a good estimate of the axial force. Errors on the average identified axial force715

value are not substantially affected by noise intensity and, since p→ 0.5, the bias is higher for the716

two boundary conditions corresponding to the limit cases of doubly-hinged (label IR, p = 0) and717

doubly-clamped (label VR, p = 1) cables, for which |∆p| = 0.5, see (70).718

Figure 11(e) allows to appreciate how measurements errors, herein associated to non-zero noise719

intensity values, determine a significant jump in the estimated minimum values of the cost function.720

Figure 11(f) shows that convergence of the algorithm is usually reached after a number of iterations721

significantly lower than the prescribed maximum numberMAXIT , because the relative difference722

between the best and worst objective function is lower than the prescribed tolerance value (see723

the description of the termination criterion in Section 3.1).724

As it can be clearly appreciated from Figure 11(a), errors on the parameter p introduce a bias725

on the estimates of Ω̂0. Numerical tests carried out for different values of ε, in the typical range726

of values of stay cables, have shown that the bias of the estimator Ω̂0 is very well approximated727

by the same Eq. (70) originally derived for the linear regression model. The analysis of the728

outcomes of the DE algorithm, hence, suggests that, whenever in presence of cable anchorages729

with unknown rotational flexibility, a pragmatical approach to reduce the computational burden730

of the identification procedure without affecting the average values of the estimated parameters731

Ω̂0 and ε̂0 is to assume p = 0.5. Under this assumption, the maximum expected relative error on732

Ω̂0 turns out to be in the range ±ε̂ (cf. Eq. (71)).733

Figure 12 shows a comparison between the results of the standard DE algorithm presented734

in Section 3.2 and the one based on the pragmatical assumption p = 0.5, reducing therefore the735

searching space to a two-dimensional space. In all cases, computations have been performed by736

using the control parameters of the DE algorithm previously reported in this Section and the737

outcomes averaged over the number of runs NR = 1000 for each noise intensity level. Reference738

stay cables with the same boundary conditions (p = 0.5) and three different values of ε (ε = 0.01,739

0.02 and 0.03) have been considered. The results are shown in terms of the average values of740

Ω̂0 and ε̂ (Figures 12(a) and 12(c)) along with their associated coefficient of variation (Figures741

12(b) and 12(d)). As it can be appreciated from Figure 12, the outcomes of the two-parameter742

identification algorithm based on the pragmatical assumption p = 0.5 are practically coincident743

with the ones of the three-parameter DE algorithm, with an important difference for the coefficient744

of variation of Ω̂0. Enforcing the constraint p = 0.5, indeed, leads to values of σΩ̂0
/Ω̂0 that are745

independent of ε and well approximated by the linear relation σΩ̂0
/Ω̂0 = In. These values are in746

general smaller than the ones coming from the three-parameter DE algorithm and shows the same747

linear trend as the classic identification strategy based on the taut string model, see Eq. (51).748
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Figure 11: Non-linear optimization problem. Results of the Differential Evolution (DE) algorithm, averaged over
one-thousand runs, as a function of the noise intensity. (a) Characteristic frequency Ω0 (target value: Ω0 = 5.66
rad/s). (b) Non-dimensional bending stiffness ε (target value: ε = 0.02). (c) Degree-of-fixity parameter p. (d)

Relative error on the axial force ∆T =
T̂−Ttarget
Ttarget

. (e) Value of the cost function associated to the identified optimal
set of parameters. (f) Number of iterations (the maximum number is MAXIT = 5000).
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Figure 12: Non-linear optimization problem. Comparison among the results of the Differential Evolution algorithm
with unknown parameters: Ω0, ε and p (DE) and the ones obtained under the assumption p = 0.5 (DE, p = 0.5).
The results are averaged over one-thousand runs and shown as a function of the noise intensity. (a) Characteristic
frequency Ω0 (target value: Ω0 = 5.66 rad/s). (b) Coefficient of variation of the estimated value of Ω0. (c) Non-
dimensional bending stiffness ε (target values: ε = 0.01, 0.02 and 0.03). (d) Coefficient of variation of the estimated
value of ε.
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4.2. Results of the linear regression model749

As a first illustration, the linear regression model presented in Section 3.3 is applied to a stay750

cable characterized by target bending stiffness ε = 0.02 and restraint parameter p = 0.5 (cf. the751

boundary condition labeled as IIIR in Section 4.1). The results of the identification algorithm are752

averaged over the number of runs NR = 1000 for each noise intensity level. Figure 13 shows the753

average values of Ω̂0 and ε̂, (a) and (c), along with their associated coefficient of variations, (b)754

and (d). Figures 13(a) and 13(b) report, for comparison purposes, the results obtained by setting755

the restraint parameter p in Eq. (69) equal to: p = 0 (curves labeled as “LR, p = 0”), p = 0.5756

(“LR, p = 0.5”) and p = 1 (“LR, p = 1”). Different assumptions on p do not affect the estimate ε̂757

of the non-dimensional bending stiffness (see Eqs. (68) and (75)). As a consequence, a single curve758

labeled as “LR” reports the results of the proposed identification procedure in Figures 13(c) and759

13(d). The outcomes of the approximate closed-form equations (74) and (75) for the coefficients760

of variation σΩ̂0
/Ω̂0 and σε̂/ε̂ are also reported in Figures 13(b) and 13(d) (see the dashed curves,761

labeled as “Approx. Model”). Figures 14(a) and 14(b) respectively show the coefficient of variation762

of the linear regression parameters β̂0 and β̂1 as a function of the noise intensity.763

Figure 13(a) shows that the average values of Ω̂0 are substantially independent of the noise764

intensity and biased by modeling errors on the boundary conditions, herein globally modeled765

though the restraint parameter p. As expected from Eq. (70), bias-induced discrepancies between766

the estimated and target values of the characteristic frequency Ω0 are practically negligible for the767

model “LR, p = 0.5”, while relative errors equal to about +ε and −ε (i.e. ±2%) are respectively768

associated to the models “LR, p = 0” and “LR, p = 1”.769

As it can be appreciated from Figure 13(b), the coefficient of variation σΩ̂0
/Ω̂0 is almost linearly770

related to the noise noise intensity In. Slope values increase with the restraint parameter, ranging771

from about 0.9 for p = 0 to about 1.7 for p = 1. The numerical results shown in Figure 13(b)772

are practically coincident with the outcomes of the approximate closed-form error propagation773

Eq. (74) for the special case p = 0 (i.e. doubly-hinged stay cable). Discrepancies between the774

numerical results and the outcomes of the approximate model increase with the increase of both775

p and the noise intensity. The reason for these discrepancies can be traced back to the behavior776

of the coefficient of variation of the linear regression coefficient β̂1, which satisfies the considered777

assumption σβ̂1
/β̂1 � 1 only for small values of the noise intensity, as it can be clearly observed778

from Figure 14(b).779

The proposed identification procedure also delivers fairly good estimates of the non-dimensional780

bending stiffness ε, as it can be appreciated from Figure 13(c). Discrepancies between the average781

value of ε̂ and the target value ε = 0.02 increase with the noise intensity, ranging from about 1.8%782

for In = 0 to about 11% for In = 2.5%. It is worth noting that the small error corresponding to783

the ideal case of experimental data free from noise (i.e. In = 0) can be regarded as a modeling784

error due to the adoption of the asymptotic closed form Eq. (37) instead of the exact solution of785

the semi-analytical model presented in Section 2.3.786

The values of the coefficient of variation σε̂/ε̂ increase with the noise intensity, as it is shown in787

Figure 13(d). A comparison between Figures 13(d) and 14(b) clearly allows one to appreciate that788

σε̂/ε̂ is mainly governed by the leading order term of the approximate equation (75), i.e.: 1
2

σβ̂1
β̂1

.789

It can also be observed how the closed form Eq. (75) delivers a reasonably good approximation790

of σε̂/ε̂ for small values of noise intensity, with discrepancies in the order of about 15% and 30%791

for In respectively equal to 1% and 2.5%.792

Parametric analyses have been carried out to assess the performance of the linear regression793

model for different values of the non-dimensional bending stiffness ε. Figure 15 depicts the out-794

comes of the proposed identification procedure for three stay cables characterized by Ω0 = 5.66795

rad/s, p = 0.5 and different values of ε, i.e. ε = 0.01, 0.02 and 0.03. The linear regression model796

has been applied by setting the restraint parameter p in Eq. (69) equal to p = 0.5, i.e. by modeling797

boundary conditions without errors. The results of the identification algorithm are averaged over798

the number of runs NR (i.e. NR = 1000) for each noise intensity level.799

The average values of Ω̂0 (Figure 15(a)) are substantially independent of ε and unbiased,800

according to the predictions of Eq. (70). Furthermore, the coefficient of variation σΩ̂0
/Ω̂0 turns801
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Figure 13: Results of the linear regression model, averaged over one-thousand runs, as a function of the noise
intensity for a stay cable anchored to flexible restraints characterized by a theoretical value of the restraint parameter
equal to p = 0.5. (a) Characteristic frequency Ω0 (target value: Ω0 = 5.66 rad/s). (b) Coefficient of variation of the
estimated value of Ω0. (c) Non-dimensional bending stiffness ε (target value: 0.02). (d) Coefficient of variation of
the estimated value of ε. The results shown in Figures 13(a) and 13(b) have been obtained by setting the restraint
parameter p in Eq. (69) equal to: p = 0 (curves labeled as LR, p = 0), p = 0.5 (LR, p = 0.5) and p = 1 (LR, p = 1).
Approximate results (labeled as Approx. Model) in Figures (b) and (d) are respectively obtained through Eqs. (74)
and (75).
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Figure 14: Results of the linear regression model, averaged over one-thousand runs, as a function of the noise
intensity for a stay cable anchored to flexible restraints characterized by: Ω0 = 5.66 rad/s, ε = 0.02 and p = 0.5.
Coefficients of variation of the linear regression parameters: (a) β̂0 (see Eq. (63)), and (b) β̂1 (see Eq. (62)).
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Figure 15: Results of the linear regression model, averaged over one-thousand runs, as a function of the noise
intensity for a stay cable anchored to flexible restraints characterized by: Ω0 = 5.66 rad/s, p = 0.5 and three
different values of ε: ε = 0.01, 0.02 and 0.03. The results have been obtained by setting the restraint parameter p
in Eq. (69) equal to: p = 0.5. (a) Characteristic frequency Ω0 (target value: Ω0 = 5.66 rad/s). (b) Coefficient of
variation of the estimated value of Ω0. (c) Non-dimensional bending stiffness ε (target values: 0.01, 0.02 and 0.03).
(d) Coefficient of variation of the estimated value of ε.
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out to be only weakly affected by ε (Figure 15(b)). This remark is consistent with the predictions of802

Eq. (74), characterized by a leading-order term independent of the cable non-dimensional bending803

stiffness. Figure 15(c) allows one to observe that the proposed identification procedure delivers804

average values of ε̂ in very good agreement with the target ones (i.e. ε = 0.01, 0.02 and 0.03),805

for all values of noise intensity herein considered. Within this context, it is worth noting that the806

already mentioned modeling errors associated to the ideal condition of zero noise (In = 0) decrease807

for decreasing values of ε, being practically negligible for ε = 0.01. The coefficient of variation808

σε̂/ε̂ is shown in Figure 15(d) as a function of the noise intensity. It can be easily observed that,809

for a fixed value of noise intensity, σε̂/ε̂ rapidly increases with the decrease of the non-dimensional810

bending stiffness ε.811

These illustrations show that, at the limited extra cost of a coordinate transformation before812

the linear regression, we could develop a simple identification procedure that provides very good813

estimates of the cable tension, through Ω̂0, with limited, controlled and rather noise-insensitive814

bias. At the same time, the method provides accurate estimates of the cable bending stiffness ε̂815

which are insensitive to the assumed flexibility in the boundary conditions.816

4.3. Comparisons among different identification procedures817

The outcomes of the two novel identification procedures proposed in Sections 3.2 (non-linear op-818

timization problem) and 3.3 (linear regression model) are systematically compared, in the present819

Section, with reference to stay cables characterized by Ω0 = 5.66 rad/s, p = 0.5 and three different820

values of ε, i.e.: ε = 0.01, 0.02 and 0.03. The results of the classic approach relying on the taut821

string model (see Section 3.1) are also considered for comparison purposes.822

The non-linear optimization problem (Section 3.2) has been solved by using the two variants823

of the DE algorithm already described in Section 4.1, i.e.: (i) the three-parameter scheme with824

unknown parameters Ω0, ε and p (curves labeled as “DE”), and (ii) the two-parameter scheme825

based on the pragmatical assumption p = 0.5, with unknown parameters Ω0 and ε (curves labeled826

as “DE, p = 0.5”). All control parameters of the DE algorithm are defined as explained in Section827

4.1. Similarly as in Section 4.2, the linear regression model has been applied by considering three828

different assumptions to set the restraint parameter p in Eq. (69): (i) p = 0 (curves labeled as829

“LR, p = 0”), (ii) p = 0.5 (“LR, p = 0.5”), and (iii) p = 1 (“LR, p = 1”). As already shown in830

Section 4.2, different assumptions on p do not affect the estimate ε̂ of the non-dimensional bending831

stiffness and its associated coefficient of variation σε̂/ε̂ . As a consequence, a single curve labeled832

as “LR” is used to report the results of the linear regression model in terms of ε̂ and σε̂/ε̂ . Two833

different variants of the taut string model have also been considered for comparison purposes,834

respectively based on the knowledge of: (i) the fundamental frequency of the cable only (curves835

labeled as “TS 1f ”) , and (ii) the five lower natural frequencies of the cable (curves labeled as836

“TS 5f ”).837

Figures 16, 17 and 18 show the results of the different identification algorithms, averaged838

over the number of runs NR = 1000 considered for each noise intensity level. Figures 16-18 (a)839

report the average values of Ω̂0. The results of the two different variants of the DE algorithm840

(“DE” and “DE, p = 0.5”) are practically coincident with the ones of the linear regression model841

“LR, p = 0.5”. The results of the taut string model “TS 1f ”, on the other hand, turns out to842

be very close to the ones of the linear regression model “LR, p = 0”. This was expected, since843

both models neglect the effect of the rotational stiffness of the anchoring devices. Minimum and844

maximum values of Ω̂0 are systematically delivered by, respectively the “LR, p = 1” and the845

“TS 5f ” models. The difference between the two taut string models “TS 1f ” and “TS 5f ” can be846

easily explained by recalling that, for these procedures, the bias of the estimator Ω̂0 increase with847

the increase of the number of modes considered for identification purposes, see Eq. (47).848

Figures 16-18 (b) show the coefficient of variation σΩ̂0
/Ω̂0 as a function of the noise intensity849

In. All identification strategies, with the only exception of the three-parameter identification850

algorithm (“DE”), are characterized by a somewhat linear relation between σΩ̂0
/Ω̂0 and In, with851

slope values that are: (a) strictly independent of ε for the identification strategies “LR, p = 0”,852

“TS 1f ” and “TS 5f ”, (b) substantially independent of ε for the remaining identification strategies853

(also see the discussion in Sections 4.1 and 4.2). This distinction follows the motivation that a854
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Figure 16: Comparison among different identification procedures. Target values are Ω0 = 5.66 rad/s, ε = 0.01,
p = 0.5.

feature of a robust identification strategy should be such that a discrepancy on the estimation of ε855

shall not spoils the quality of the estimation of Ω0 and, hence, T . Minimum and maximum slope856

values are respectively associated to the “TS 5f ” and “LR, p = 1” models.857

Figures 16-18 (c) easily allow one to appreciate that both DE algorithms (i.e. “DE” and “DE,858

p = 0.5”) give average values of ε̂ very close to the ones of the more simple linear regression model,859

for any value of the noise intensity herein considered. On the other hand, DE algorithms estimates860

are characterized, in general, by smaller values of the coefficient of variation σε̂/ε̂, as it can be861

observed from Figures 16-18 (d).862

5. Conclusions863

Starting from the mechanical model of a cable with a small bending stiffness and flexible864

anchorages in both translation and rotation, two different identification strategies have been de-865

veloped. These identification methods provide estimates of the cable axial force T and of the866

(small) dimensionless bending stiffness ε while considering the end restraints as unknown param-867

eter. They rely on the asymptotic expansions of the natural frequencies of such a cable for small868

bending stiffness, which is typical of stay cables and structural elements with similar aspect ratios.869

Indeed, as a prelude to the derivation of the identification procedure, we have shown that, up870

to the third order in ε, the natural frequencies of the cable are only affected by three parameters,871

Ω0, ε and p. The first two are related to the axial force in the cable (which is the sole parameter872

affecting the natural frequencies at leading order) and its bending stiffness while the latter is a873
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Figure 17: Comparison among different identification procedures. Target values are Ω0 = 5.66 rad/s, ε = 0.02,
p = 0.5.
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Figure 18: Comparison among different identification procedures. Target values are Ω0 = 5.66 rad/s, ε = 0.03,
p = 0.5.
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dimensionless group translating the influence of boundary restraints. Since they all act through this874

unique parameter, it is therefore impossible to separate, on the sole basis of natural frequencies, the875

influence of translational and rotational flexibilities of anchorages, for vanishingly small bending876

stiffness.877

A first identification procedure naturally relies upon a constrained least-square optimization878

problem, minimizing a norm of the difference between the measured natural frequencies of a cable879

and those predicted by the asymptotic model. This optimization problem is solved with the880

Differential Evolution algorithm which is based on the evolution of a swarm of best candidates,881

non gradient-based and capable of dealing with several local minima. It has been implemented882

in two versions, a three-dimensional one aiming at identifying Ω0, ε and p and a two-dimensional883

one aiming at identifying Ω0 and ε, while p is imposed.884

The second identification procedure is based on a linear regression in a transformed coordinate885

system. The proposed identification method is as simple as the common method based on the taut886

string model. It is also a straightforward generalization of the methods based on the fitting of a887

two-parameter model (including the equivalent of Ω0 and ε), with the major difference that the888

management of boundary conditions are herein explicitly taken into consideration. In the unlikely889

case of known rotational and translational anchorage rigidities, parameter p can be imposed and890

this yields the best performances in the proposed method. Otherwise, it is suggested to set p to its891

median value p = 0.5 in order to limit the undesired influence of unknown boundary conditions.892

Any other user-defined choice is also possible, including an interval analysis.893

The quality of the results obtained with the two proposed identification methods is assessed894

by means of the statistics of the bias and dispersion of the estimators Ω̂0 and ε̂. These are895

compared to those obtained with the standard taut-string model. In short, it is shown that the896

linear regression model performs as good as the first identification procedure which is based on897

the Differential Evolution solver and much more computationally demanding. Compared to the898

taut string model, the proposed linear regression approach provides a very similar estimate of899

the cable axial force but, additionally and with almost no extra cost, an estimate of the cable900

bending stiffness. Furthermore, the influence of the stiffness of anchorages is fully controlled901

through parameter p. The simplicity of the proposed formulation also made it possible to derive902

analytical expressions for the uncertainty propagation analysis which gives a clear picture of the903

way parameters influence the quality of the identification procedure.904

Finally, since it generalizes many particular cases, the proposed method can be used as such905

in the various contexts today where cable tension and bending stiffness need to be identified with906

the sole knowledge of measured natural frequencies.907
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Appendix A: Components of the boundary condition matrix B908

The components of the boundary condition matrix B (see Eq. (21) for definition) will be909

denoted in the following as Bi,j (i, j = 1, ..., 4), with subscripts i and j identifying, respectively,910

the ith row and the jth column of the matrix. Components Bi,j are, in general, functions of the911

nondimensional frequency ω and of the parameters: P = {ε, ρT0, ρT1, ρR0, ρR1}. In order to avoid912

cumbersome expressions, however, Eqs. (A.1)-(A.16) are written by exploiting the definition of the913

variables zj = zj (ω) (j = 1, 2) introduced in Eq. (20) and without making explicit the functional914

dependence on ω.915

B1,1 = − (1− ρT0)
(
1 + ε2z2

1

)
εz1 (A.1)

B1,2 = ρT0 (A.2)

B1,3 = ρT0 + (1− ρT0)
(
1− ε2z2

2

)
εz2 (A.3)

B1,4 =
(
ρT0 − (1− ρT0)

(
1− ε2z2

2

)
εz2

)
exp (−z2) (A.4)

B2,1 = −ρT1 sin (z1)− (1− ρT1) cos (z1)
(
1 + ε2z2

1

)
εz1 (A.5)

B2,2 = −ρT1 cos (z1) + (1− ρT1) sin (z1)
(
1 + ε2z2

1

)
εz1 (A.6)

B2,3 =
(
−ρT1 + (1− ρT1)

(
1− ε2z2

2

)
εz2

)
exp (−z2) (A.7)

B2,4 = −ρT1 − (1− ρT1)
(
1− ε2z2

2

)
εz2 (A.8)

B3,1 = −εz1ρR0 (A.9)

B3,2 = − (1− ρR0) ε2z2
1 (A.10)

B3,3 = (ρR0 + (1− ρR0) εz2) εz2 (A.11)

B3,4 = (−ρR0 + (1− ρR0) εz2) εz2 exp (−z2) (A.12)

B4,1 = (ρR1 cos (z1)− (1− ρR1) sin (z1) εz1) εz1 (A.13)

B4,2 = (−ρR1 sin (z1)− (1− ρR1) cos (z1) εz1) εz1 (A.14)

B4,3 = (−ρR1 + (1− ρR1) εz2) εz2 exp (−z2) (A.15)

B4,4 = (ρR1 + (1− ρR1) εz2) εz2 (A.16)
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Appendix B: Components of matrices B(0), B(1) and B(2)916

The components of matricesB(0), B(1) andB(2) (see Eq. (34) for definition) will be respectively917

denoted as B(0)i,j , B(1)i,j and B(2)i,j(i, j = 1, ..., 4), with the same notation adopted in Appendix918

A.919

All non-zero components of the matrix B(0) are reported in the following Eqs. (B.1)-(B.7):920

B(0)1,2 = ρT0 (B.1)

B(0)1,3 = ρT0 (B.2)

B(0)2,1 = −ρT1 sin
(
ω(0)

)
(B.3)

B(0)2,2 = −ρT1 cos
(
ω(0)

)
(B.4)

B(0)2,4 = −ρT1 (B.5)

B(0)3,3 = 1 (B.6)

B(0)4,4 = 1 (B.7)

All non-zero components of the matrix B(1) are reported in the following Eqs. (B.8)-(B.13):921

B(1)1,1 = −ω(0) (1− ρT0) (B.8)

B(1)2,1 = −ω(0) cos
(
ω(0)

)
(1− ρT1)− ω(1) cos

(
ω(0)

)
ρT1 (B.9)

B(1)2,2 = ω(0) sin
(
ω(0)

)
(1− ρT1) + ω(1) sin

(
ω(0)

)
ρT1 (B.10)

B(1)3,1 = −ω(0)ρR0 (B.11)

B(1)4,1 = ω(0) cos
(
ω(0)

)
ρR1 (B.12)

B(1)4,2 = −ω(0) sin
(
ω(0)

)
ρR1 (B.13)

All non-zero components of the matrix B(2) are reported in the following Eqs. (B.14)-(B.24):922

B(2)1,1 = −ω(1) (1− ρT0) (B.14)

B(2)1,3 = −ω2
(0) (1− ρT0) (B.15)

B(2)2,1 =
1

2
ω3

(0) cos
(
ω(0)

)
ρT1 +

1

2
ω2

(0) sin
(
ω(0)

)
ρT1

+ω(1)ω(0) sin
(
ω(0)

)
(1− ρT1)

−ω(1) cos
(
ω(0)

)
(1− ρT1)− ω(2) cos

(
ω(0)

)
ρT1

(B.16)

B(2)2,2 = −1

2
ω3

(0) sin
(
ω(0)

)
ρT1 +

1

2
ω2

(1) cos
(
ω(0)

)
ρT1

+ω(1)ω(0) cos
(
ω(0)

)
(1− ρT1)

+ω(1) sin
(
ω(0)

)
(1− ρT1) + ω(2) sin

(
ω(0)

)
ρT1

(B.17)
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B(2)2,4 = ω2
(0) (1− ρT1) (B.18)

B(2)3,1 = −ω(1)ρR0 (B.19)

B(2)3,2 = −ω2
(0) (1− ρR0) (B.20)

B(2)3,3 = ω2
(0)

(
1− 1

2
ρR0

)
(B.21)

B(2)4,1 = −ω2
(0) sin

(
ω(0)

)
(1− ρR1)

−ω(1)ω(0) sin
(
ω(0)

)
ρR1 + ω(1) cos

(
ω(0)

)
ρR1

(B.22)

B(2)4,2 = −ω2
(0) cos

(
ω(0)

)
(1− ρR1)

−ω(1)ω(0) cos
(
ω(0)

)
ρR1 − ω(1) sin

(
ω(0)

)
ρR1

(B.23)

B(2)4,4 = ω2
(0)

(
1− 1

2
ρR1

)
(B.24)

Appendix C: Solution of the system of equations (36)923

In this Appendix, the system of Eqs. (36) is fully solved for the coefficients ω(i) and α(i)924

(i = 0, 1, 2) of the second-order accurate asymptotic expansions of the eigenvalues ω (Eq. (32))925

and eigenvectors α (Eq. (33)) of problem (21). The solution is sought through a cascaded926

approach, starting from the leading order problem (i.e. ord(ε0)) in (36) and moving towards the927

higher order ones.928

Leading order solution929

The solution of the leading order problem (i.e. ord(ε0)) in (36) amounts to find the the930

eigenvalues and eigenvectors of the matrix B(0), whose components are defined in the Appendix931

B (see Eqs. (B.1)-(B.7)).932

It can be easily verified that the eigenvalues of B(0) coincide, as expected, with the non-933

dimensional natural frequencies of the taut string model, i.e. (cf. Eq. (18)):934

ω(0)k = kπ, k ∈ N+ (C.1)

The right (α(0)k) and left (βT(0)k) eigenvectors of B(0) can be expressed as:935

α(0)k = α0 = (1, 0, 0, 0)
T
, ∀k ∈ N+ (C.2)

βT(0)k =

(
1, (−1)

k ρT0

ρT1
,−ρT0, (−1)

k
ρT0

)
, k ∈ N+ (C.3)
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First order correction936

Once the leading order solution is known, the row corresponding to the ord(ε1) problem in (36)937

can be pre-multiplied by βT(0)k yielding the scalar equation:938

βT(0)kB(1)

(
ω(1)k, ω(0)k

)
α0 = 0 (C.4)

Solutions of Eq. (18) for ω(1)k read:939

ω(1)k = 2p kπ, ∀k ∈ N+ (C.5)

where p is the restraint parameter defined in Eq. (26). By substituting Eqs. (C.1), (C.2) and940

(C.5) in the second equation of (36), then, one can get the linear equation:941

B(0)

(
ω(0)k

)
α(1)k = −B(1)

(
ω(1)k, ω(0)k

)
α0 (C.6)

whose solutions for α(1)k read:942

α(1)k = kπ
(

0,−p0, ρR0, (−1)
k+1

ρR1

)T
(C.7)

with the definition:943

p0 = 1 + ρR0 −
1

ρT0
, ρT0 > 0 (C.8)

Second order correction944

Once both the leading order solution and the first order correction are known, the row cor-945

responding to the ord(ε2) problem in (36) can be pre-multiplied by βT(0)k yielding the scalar946

equation:947

βT(0)kB(1)

(
ω(1)k, ω(0)k

)
α(1)k + βT(0)kB(2)

(
ω(2)k, ω(1)k, ω(0)k

)
α0 = 0 (C.9)

Solutions of Eq. (C.9) for ω(2)k read:948

ω(2)k =

(
(kπ)

2

2
+ 4p2

)
, kπ ∀k ∈ N+ (C.10)

where p is the restraint parameter defined in Eq. (26). By substituting Eqs. (C.1), (C.2), (C.5),949

(C.7) and (C.10) in the third equation of (36), then, one can get the linear equation:950

B(0)

(
ω(0)k

)
α(2)k = −B(1)

(
ω(1)k, ω(0)k

)
α(1)k −B(2)

(
ω(2)k, ω(1)k, ω(0)k

)
α0 (C.11)

whose solutions for α(2)k read:951

α(1)k = kπ
(

0,−p0p, ρR0p, (−1)
k+1

ρR1p
)T

(C.12)
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