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Abstract. We generalize the greedy and lazy β-transformations for a real base β to
the setting of alternate bases β = (β0, . . . , βp−1), which were recently introduced by the
first and second authors as a particular case of Cantor bases. As in the real base case,
these new transformations, denoted Tβ and Lβ respectively, can be iterated in order to
generate the digits of the greedy and lazy β-expansions of real numbers. The aim of
this paper is to describe the measure theoretical dynamical behaviors of Tβ and Lβ. We
first prove the existence of a unique absolutely continuous (with respect to an extended
Lebesgue measure, called the p-Lebesgue measure) Tβ-invariant measure. We then show
that this unique measure is in fact equivalent to the p-Lebesgue measure and that the
corresponding dynamical system is ergodic and has entropy 1

p
log(βp−1 · · ·β0). We give

an explicit expression of the density function of this invariant measure and compute the
frequencies of letters in the greedy β-expansions. The dynamical properties of Lβ are
obtained by showing that the lazy dynamical system is isomorphic to the greedy one. We
also provide an isomorphism with a suitable extension of the β-shift. Finally, we show
that the β-expansions can be seen as (βp−1 · · ·β0)-representations over general digit sets
and we compare both frameworks.
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1. Introduction

A representation of a non-negative real number x in a real base β > 1 is an infinite
sequence a0a1a2 · · · of non-negative integers such that x =

∑∞
i=0

ai
βi+1 . These representa-

tions were first considered by Rényi [23] and Parry [21] for points x in the unit interval
with digits an belonging to the set {0, 1, · · · , dβe − 1}. Typically each point in [0, 1) has
uncountably many representations [25]. The largest in the lexicographic order is called the
greedy expansion and the smallest is called the lazy expansion. An interesting feature of
these extreme cases is that they can be generated dynamically by iterating the so-called
greedy β-transformation Tβ and lazy β-transformation Lβ respectively (see Section 2.2 for
definitions). The dynamical properties of Tβ and Lβ are now well understood since the
seminal works of Rényi and Parry; for example, see [11]. Pedicini [22] extended the defi-
nition of real base representations by considering digits ai belonging to some fixed finite
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2 DYNAMICAL BEHAVIOR OF ALTERNATE BASE EXPANSIONS

set of reals ∆. In the last fifteen years, generalizations of classical results such as charac-
terizations of greedy and lazy expansions and the properties of their underlying dynamical
systems have been obtained; see for example [2, 7, 16]. To distinguish the general digit set
from the classical case, we refer to the resulting representations as (β,∆)-representations.

In a recent work, the first two authors introduced the notion of expansions of real
numbers in a real Cantor base [5]. One starts with an infinite sequence β = (βn)n≥0

of real bases greater than 1 and satisfying
∏∞
n=0 βn = ∞, and representations of a non-

negative real number x are infinite sequences a0a1a2 · · · of non-negative integers such that
x =

∑+∞
n=0

an
βn···β0 . In this initial work, generalizations of several combinatorial results of real

base representations were obtained, such as Parry’s criterion for greedy β-expansions [5,
Theorem 26] or Bertrand-Mathis characterization of sofic β-shifts [5, Theorem 48]. The
latter result was obtained for periodic Cantor bases, which are called alternate bases and
are central in the present paper.

Representations involving more than one base have recently gained momentum as shown
by the five simultaneous and independent works [4, 5, 18, 20, 27]. In particular, these papers
all present a generalization of Parry’s theorem to their respective frameworks. But so far,
all the research was concentrated on the symbolic properties of these representations.

The aim of this paper is to study the measure theoretical dynamical behaviors of the
greedy and lazy expansions in a periodic Cantor base β = (β0, . . . , βp−1, β0, . . . , βp−1, . . .),
which we refer to as an alternate base. This is done by introducing two new transforma-
tions, the alternate greedy transformation Tβ and the alternate lazy transformation Lβ,
iterations of which generate the greedy and lazy alternate base expansions respectively.
We find for each transformation a natural invariant ergodic measure absolutely continuous
with respect to an appropriate generalization of the Lebesgue measure and calculate its
measure theoretical entropy (Theorems 4.12 and 5.3). Using tools from ergodic theory, we
are able to exhibit some statistical properties of these expansions, such as the frequency
of digits in the greedy expansion of a typical point (Proposition 4.18). Furthermore, we
show that the dynamical system underlying the greedy expansion is measure theoretically
isomorphic to the dynamical system underlying the lazy expansion (Proposition 5.1) as
well as to the dynamical system underlying a natural generalization of the so-called β-shift
(Proposition 6.2); as a consequence, the three transformations have the same dynamical
behavior. Another interesting property of the alternate base expansions is that when every
p-terms are written as one fraction, then one is able to rewrite the involved series in the
form x =

∑+∞
n=0

dn
(βp−1···β0)n , with dn belonging to some fixed digit set ∆β of real num-

bers, see formula (13). This algebraic operation transforms the alternate base expansion
to a (βp−1 · · ·β0,∆β)-representation. We give a sufficient condition for this transformed
representation to be greedy or lazy (Theorem 7.6).

The article is organized as follows. In Section 2, we provide the necessary background
on measure theory and on expansions of real numbers in a real base. In Section 3, we
introduce the greedy and lazy alternate base expansions and define the associated trans-
formations Tβ and Lβ. Section 4 is concerned with the dynamical properties of the greedy
transformation. We first prove the existence of a unique absolutely continuous (with re-
spect to a generalization of the Lebesgue measure, which is defined in (8) and called the
p-Lebesgue measure) Tβ-invariant measure and then prove that this measure is equivalent
to the p-Lebesgue measure and that the corresponding dynamical system is ergodic. We
then express the density function of this measure and compute the frequencies of letters in
the greedy β-expansions. In Section 5 and 6, we prove that the greedy dynamical system
is isomorphic to the lazy one, as well as to a suitable extension of the β-shift. In Section 7,
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we show that the β-expansions can be seen as (βp−1 · · ·β0)-representations over general
digit sets and we compare both frameworks.

2. Preliminaries

2.1. Measure preserving dynamical systems. In this subsection we summerize the
ergodic properties that will be used throughout this paper, for more detail we refer the
reader to [3, 10, 13, 15, 26].

A probability space is a triplet (X,F , µ) where X is a set, F is a σ-algebra over X and
µ is a measure on F such that µ(X) = 1. For a measurable transformation T : X → X
and a measure µ on F , the measure µ is T -invariant, or equivalently, the transformation
T : X → X is measure preserving with respect to µ, if for all B ∈ F , µ(T−1(B)) = µ(B).
A (measure preserving) dynamical system is a quadruple (X,F , µ, T ) where (X,F , µ) is a
probability space and T : X → X is a measure preserving transformation with respect to
µ. A dynamical system (X,F , µ, T ) is ergodic if all B ∈ F such that T−1(B) = B satisfy
µ(B) ∈ {0, 1}, and it is exact if

⋂∞
n=0{T−n(B) : B ∈ F} only contains sets of measure 0 or

1. Clearly, any exact dynamical system is ergodic. Two dynamical systems (X,FX , µX , TX)
and (Y,FY , µY , TY ) are (measure preservingly) isomorphic if there exist M ∈ FX and
N ∈ FY with µX(M) = µY (N) = 0 and TX(X \M) ⊂ X \M , TY (Y \N) ⊂ Y \N , and
if there exists a bijective map ψ : X \M → Y \ N which is bimeasurable with respect to
the σ-algebras FX ∩ (X \M) and FY ∩ (Y \N) and such that for all B ∈ FY ∩ (Y \N),
µY (B) = µX(ψ−1(B)), and finally, such that for all x ∈ X \M , ψ(TX(x)) = TY (ψ(x)).
Here and throughout the paper, for a subset A of X, the notation F ∩ A designates the
σ-algebra {B ∩A : B ∈ F} over A.

With any given dynamical system (X,F , µ, T ), one associates a non-negative real num-
ber hµ(T ), called the measure theoretical entropy of T , that measures the average amount
of information gained by each application of T . Moreover, the entropy is an isomorphic in-
variant, in the sense that isomorphic systems have the same entropy. Formally, the measure
theoretical entropy is defined as

hµ(T ) = sup
α

lim
n→∞

1

n
Hµ

( n−1∨
i=0

T−i(α)
)
,

where α denotes a finite (measurable) partition of X,
∨n−1
i=0 T

−i(α) is the refined partition
consisting of all sets of the form Ai0 ∩ T−1(Ai1) ∩ · · · ∩ T−(n−1)(Ain−1) with Aij ∈ α, and

Hµ

( n−1∨
i=0

T−iα
)

= −
∑

D∈
∨n−1
i=0 T

−iα

µ(D) log
(
µ(D)

)
.

Given a dynamical system (X,F , µ, T ) and A ∈ F with µ(A) > 0, one can restrict the
dynamics to the sub-probability space (A,F ∩A,µA) where µA(C) = µ(C)

µ(A) for C ∈ F ∩A.
This is done by defining for x ∈ A, the first return time r(x) = inf{n ≥ 1 : Tn(x) ∈ A}. By
the classical Poincaré Recurrence Theorem, r(x) is finite for µA-almost all x ∈ A. We then
define TA : A→ A by setting TA(x) = T r(x)(x). This function is almost everywhere defined,
but by throwing away a set of measure zero one can assume with no less of generality that
r(x) is finite on A. The induced dynamical system (A,F ∩ A,µA, TA) inherits many nice
properties of the original system. For example TA is measure preserving with respect to µA.
If the original system is ergodic, then the induced system is also ergodic. The converse holds
true if µ(

⋃∞
n=0 T

−n(A)) = 1. A famous result of Abramov [1] relates the entropy of the
original system with the entropy of the induced system. To be more precise, the theorem
states that if (X,F , µ, T ) is measure preserving and ergodic, then hµ(T ) = µ(A)hµA(TA).
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For two measures µ and ν on the same σ-algebra F , we say that µ is absolutely continuous
with respect to ν if for all B ∈ F , ν(B) = 0 implies µ(B) = 0, and we say that µ and
ν are equivalent if they are absolutely continuous with respect to each other. In what
follows, we will be concerned by the Borel σ-algebras B(A), where A ⊂ R. In particular, a
measure on B(A) is absolutely continuous if it is absolutely continuous with respect to the
Lebesgue measure λ restricted to B(A). The Radon-Nikodym theorem states that µ and ν
are two probability measures such that µ is absolutely continuous with respect to ν, then
there exists a ν-integrable map f : X 7→ [0,+∞) such that for all B ∈ F , µ(B) =

∫
B f dν.

Moreover, the map f is ν-almost everywhere unique. Such a map is called the density
function of the measure µ with respect to the measure ν and is usually denoted dµ

dν .

2.2. Real base expansions. Let β be a real number greater than 1. A β-representation
of a non-negative real number x is an infinite sequence a0a1a2 · · · over N such that x =∑∞

i=0
ai
βi+1 . For x ∈ [0, 1), a particular β-representation of x, called the greedy β-expansion

of x, is obtained by using the greedy algorithm. If the first N digits of the β-expansion of
x are given by a0, . . . , aN−1, then the next digit aN is the greatest integer such that

N∑
n=0

an
βn+1

≤ x.

Note that, by definition of the greedy algorithm, the β-expansion of a real number x ∈ [0, 1)
is written over the restricted alphabet [[0, dβe − 1]]. Here and throughout the text, for
i, j ∈ Z, the notation [[i, j]] designates the interval of integers {i, . . . , j}. The greedy β-
expansion can also be obtained by iterating the greedy β-transformation

Tβ : [0, 1)→ [0, 1), x 7→ βx− bβxc
by setting an = bβTnβ (x)c for all n ∈ N.

Example 2.1. In this example and throughout the paper, ϕ designates the golden ratio,
i.e., ϕ = 1+

√
5

2 . The transformation Tϕ2 is depicted in Figure 1.

0 1

1

1
ϕ2

2
ϕ2

Figure 1. The transformation Tϕ2 .

Real base expansions have been studied through various points of view. We refer the
reader to [19, Chapter 7] for a survey on their combinatorial properties and [10] for a
survey on their dynamical properties. A fundamental dynamical result is the following.
This summarizes results from [21, 23, 24].

Theorem 2.2. There exists a unique Tβ-invariant absolutely continuous probability mea-
sure µβ on B([0, 1)). Furthermore, the measure µβ is equivalent to the Lebesgue measure
on B([0, 1)) and the dynamical system ([0, 1),B([0, 1)), µβ, Tβ) is ergodic and has entropy
log(β).
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Remark 2.3. It follows from Theorem 2.2 that Tβ is non-singular with respect to the
Lebesgue measure, i.e., for all B ∈ B([0, 1)), λ(B) = 0 if and only if λ(T−1

β (B)) = 0.

In what follows, we let

xβ =
dβe − 1

β − 1
.

This value corresponds to the greatest real number that has a β-representation over the
alphabet [[0, dβe − 1]]. Clearly, we have xβ ≥ 1. The extended greedy β-transformation,
denoted T ext

β , is defined in [11] as

T ext
β : [0, xβ)→ [0, xβ), x 7→

{
βx− bβxc if x ∈ [0, 1)

βx− (dβe − 1) if x ∈ [1, xβ).

Note that for all x ∈
[ dβe−1

β , dβeβ
)
, the two cases of the definition coincide since bβxc =

dβe − 1. The extended β-transformation restricted to the interval [0, 1) gives back the
classical greedy β-transformation defined above. Moreover, for all x ∈ [0, xβ), there exists
N ∈ N such that for all n ≥ N , (T ext

β )n(x) ∈ [0, 1).

Example 2.4. We continue Example 2.1. The extended greedy transformation T ext
ϕ2 is

depicted in Figure 2.

0 1

1

1
ϕ2

2
ϕ2

2
ϕ2−1

2
ϕ2−1

Figure 2. The extended transformation T ext
ϕ2 .

In the greedy algorithm, each digit is chosen as the largest possible among 0, 1, . . . , dβe−1
at the considered position. At the other extreme, the lazy algorithm picks the least possible
digit at each step [12]: if the first N digits of the expansion of a real number x ∈ (0, xβ]
are given by a0, . . . , aN−1, then the next digit aN is the least element in [[0, dβe − 1]] such
that

N∑
n=0

an
βn+1

+
∞∑

n=N+1

dβe − 1

βn+1
≥ x,

or equivalently,
N∑
n=0

an
βn+1

+
xβ
βN+1

≥ x.
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The so-obtained β-representation is called the lazy β-expansion of x. The lazy β-transfor-
mation dynamically generating the lazy β-expansion is the transformation Lβ defined as
follows [10]:

Lβ : (0, xβ]→ (0, xβ], x 7→

{
βx if x ∈ (0, xβ − 1]

βx− dβx− xβe if x ∈ (xβ − 1, xβ].

Observe that for all x ∈
(xβ−1

β ,
xβ
β

]
, the two cases of the definition coincide since dβx −

xβe = 0. Moreover, since Lβ
(
(xβ − 1, xβ]

)
= (xβ − 1, xβ], the lazy transformation Lβ can

be restricted to the length-one interval (xβ − 1, xβ]. Also note that for all x ∈ (0, xβ],
there exists N ∈ N such that for all n ≥ N , Lnβ(x) ∈ (xβ − 1, xβ]. Furthermore, for all
x ∈ (xβ − 1, xβ] and n ∈ N, we have an = dβLnβ(x)− xβe.
Example 2.5. The lazy transformation Lϕ2 is depicted in Figure 3.

2
ϕ2−1
−1

2
ϕ2−1
−10 2

ϕ2−1

2
ϕ2−1

2
ϕ2−1
− 2
ϕ2

2
ϕ2−1
− 1
ϕ2

Figure 3. The transformation Lϕ2 .

It is proven in [11] that there is an isomorphism between the greedy and the lazy β-
transformations. As a direct consequence of this property, an analogue of Theorem 2.2 is
obtained for the lazy transformation restricted to the interval (xβ − 1, xβ].

3. Alternate base expansions

Let p be a positive integer and β = (β0, . . . , βp−1) be a p-tuple of real numbers greater
than 1. Such a p-tuple β is called an alternate base and p is called its length. A β-
representation of a non-negative real number x is an infinite sequence a0a1a2 · · · over N
such that

x =
a0

β0
+

a1

β1β0
+ · · · +

ap−1

βp−1 · · ·β0
(1)

+
ap

β0(βp−1 · · ·β0)
+

ap+1

β1β0(βp−1 · · ·β0)
+ · · · +

a2p−1

(βp−1 · · ·β0)2

+ · · ·

We use the convention that for all n ∈ Z, βn = βn mod p and β(n) = (βn, . . . , βn+p−1).
Therefore, the equality (1) can be rewritten as:

x =
+∞∑
n=0

an∏n
k=0 βk

.
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The alternate bases are particular cases of Cantor real bases, which were introduced and
studied in [5].

In this paper, our aim is to study the dynamics behind some distinguished representa-
tion in alternate bases, namely the greedy and lazy β-expansions. Firstly, we recall the
notion of greedy β-expansions defined in [5] and we introduce the greedy β-transformation
dynamically generating the digits of the greedy β-expansions. Secondly, we introduce the
notion of lazy β-expansions and the corresponding lazy β-transformation.

3.1. The greedy β-expansion. For x ∈ [0, 1), a distinguished β-representation, called
the greedy β-expansion of x, is obtained from the greedy algorithm. If the first N digits
of the greedy β-expansion of x are given by a0, . . . , aN−1, then the next digit aN is the
greatest integer such that

N∑
n=0

an∏n
k=0 βk

≤ x.

Note that, by the definition of the greedy algorithm, for every n ∈ N, the n-th digit of the
β-expansion of a real number x ∈ [0, 1) belongs to the restricted alphabet [[0, dβne − 1]].
The greedy β-expansion can also be obtained by alternating the βi-transformations: for
all x ∈ [0, 1) and n ∈ N, an = bβn

(
Tβn−1 ◦ · · · ◦ Tβ0(x)

)
c. The greedy β-expansion of x is

denoted dβ(x). In particular, if p = 1 then it corresponds to the usual greedy β-expansion
as defined in Section 2.2.

Example 3.1. Consider the alternate base β = (1+
√

13
2 , 5+

√
13

6 ) already studied in [5]. The
greedy β-expansions are obtained by alternating the transformations T 1+

√
13

2

and T 5+
√
13

6

,
which are both depicted in Figure 4. Moreover, in Figure 5 we see the computation of the
first five digits of the greedy β-expansion of 1+

√
5

5 .

0 1

1

1
β0

2
β0

1
β1

Figure 4. The transformations T 1+
√
13

2

(blue) and T 5+
√
13

6

(green).

We now define the greedy β-transformation by

(2) Tβ : [[0, p− 1]]× [0, 1)→ [[0, p− 1]]× [0, 1), (i, x) 7→
(
(i+ 1) mod p, Tβi(x)

)
.

The greedy β-transformation generates the digits of the greedy β-expansions as follows.
For all x ∈ [0, 1) and n ∈ N, the digit an of dβ(x) is equal to bβnπ2

(
Tnβ (0, x)

)
c where

π2 : N× R→ R, (n, x) 7→ x.
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0 1 21 0 10 0 1 21 0 10 0 1 22

Figure 5. The first five digits of the greedy β-expansion of 1+
√

5
5 are 10102

for β = (1+
√

13
2 , 5+

√
13

6 ).

As in Section 2.2, the greedy β-transformation can be extended to an interval of real
numbers bigger than [0, 1). To do so, we define

(3) xβ =
∞∑
n=0

dβne − 1∏n
k=0 βk

.

It can be easily seen that 1 ≤ xβ < ∞. This value corresponds to the greatest real
number that has a β-representation a0a1a2 · · · such that each digit an belongs to the
alphabet [[0, dβne−1]], that is, xβ is the real number having (dβ0e−1)(dβ1e−1) · · · as a β-
representation. Similarly, for all n ∈ Z, the largest number that has a β(n)-representation
a0a1a2 · · · such that each digit am belongs to the alphabet [[0, dβn+me − 1]] is given by

xβ(n) =
∞∑
m=0

dβn+me − 1∏m
k=0 βn+k

.

Hence, for all n ∈ Z, we get

(4) xβ(n) =
xβ(n+1) + dβne − 1

βn
.

We define the extended greedy β-transformation, denoted T ext
β , by

T ext
β :

p−1⋃
i=0

(
{i} × [0, xβ(i))

)
→

p−1⋃
i=0

(
{i} × [0, xβ(i))

)
,(5)

(i, x) 7→

{(
(i+ 1) mod p, βix− bβixc

)
if x ∈ [0, 1)(

(i+ 1) mod p, βix− (dβie − 1)
)

if x ∈ [1, xβ(i)).

The greedy β-expansion of x ∈ [0, xβ) is obtained by alternating the p maps

π2 ◦ T ext
β ◦ δi∣∣[0,x

β(i) )
: [0, xβ(i))→ [0, xβ(i+1))

for i ∈ [[0, p− 1]], where
δi : R→ {i} × R, x 7→ (i, x).

Proposition 3.2. For all x ∈ [0, xβ) and n ∈ N, we have

π2 ◦ (T ext
β )n ◦ δ0(x) = βn−1 · · ·β0x−

n−1∑
k=0

βn−1 · · ·βk+1ck

where (c0, . . . , cn−1) is the lexicographically greatest n-tuple in
∏n−1
k=0 [[0, dβke−1]] such that∑n−1

k=0 βn−1···βk+1ck
βn−1···β0 ≤ x.
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Proof. We proceed by induction on n. The base case n = 0 is immediate: both members of
the equality are equal to x. Now, suppose that the result is satisfied for some n ∈ N. Let
x ∈ [0, xβ). Let (c0, . . . , cn−1) is the lexicographically greatest n-tuple in

∏n−1
k=0 [[0, dβke−1]]

such that
∑n−1
k=0 βn−1···βk+1ck

βn−1···β0 ≤ x. Then it is easily seen that for allm < n, (c0, . . . , cm) is the

lexicographically greatest (m+1)-tuple in
∏m
k=0 [[0, dβke−1]] such that

∑m
k=0 βm···βk+1ck

βm···β0 ≤ x.
Now, set y = π2 ◦ (T ext

β )n ◦ δ0(x). Then y ∈ [0, xβ(n)) and by induction hypothesis, we
obtain that y = βn−1 · · ·β0x−

∑n−1
k=0 βn−1 · · ·βk+1ck. Then, by setting

cn =

{
bβnyc if y ∈ [0, 1)

dβne − 1 if y ∈ [1, xβ(n))

we obtain that π2◦(T ext
β )n+1◦δ0(x) = βn · · ·β0x−

∑n
k=0 βn · · ·βk+1ck. In order to conclude,

we have to show that
a)

∑n
k=0 βn···βk+1ck

βn···β0 ≤ x
b) (c0, . . . , cn) is the lexicographically greatest (n+1)-tuple in

∏n
k=0 [[0, dβke−1]] such

that a) holds.
By definition of cn, we have cn ≤ βny. Therefore,
n∑
k=0

βn · · ·βk+1ck = βn

n−1∑
k=0

βn−1 · · ·βk+1ck + cn = βn(βn−1 · · ·β0x− y) + cn ≤ βn · · ·β0x.

This shows that a) holds.
Let us show b) by contradiction. Suppose that there exists (c′0, . . . , c

′
n) ∈

∏n
k=0 [[0, dβke−

1]] such that (c′0, . . . , c
′
n) >lex (c0, . . . , cn) and

∑n
k=0 βn···βk+1c

′
k

βn···β0 ≤ x. Then there existsm ≤ n
such that c′0 = c0, . . . , c

′
m−1 = cm−1 and c′m ≥ cm + 1. We again consider two cases. First,

suppose that m < n. Since (c′0, . . . , c
′
m) >lex (c0, . . . , cm), we get

∑m
k=0 βm···βk+1c

′
k

βm···β0 > x. But
then

n∑
k=0

βn · · ·βk+1c
′
k ≥ βn · · ·βm+1

m∑
k=0

βm · · ·βk+1c
′
k > βn · · ·β0x,

a contradiction. Second, suppose that m = n. Then

βn · · ·β0x ≥
n∑
k=0

βn · · ·βk+1c
′
k ≥

n−1∑
k=0

βn · · ·βk+1ck + cn + 1,

hence βny ≥ cn + 1. If y ∈ [0, 1) then cn + 1 = bβnyc + 1 > βny, a contradiction.
Otherwise, y ∈ [1, xβ(n)) and cn + 1 = dβne. But then c′n ≥ dβne, which is impossible since
c′n ∈ [[0, dβne − 1]]. This shows b) and ends the proof. �

The restriction of the extended greedy β-transformation to the domain [[0, p−1]]× [0, 1)
gives back the greedy β-transformation initially defined in (2). Moreover, the subspace
[[0, p− 1]]× [0, 1) is an attractor of T ext

β in the sense given by the following proposition.

Proposition 3.3. For each (i, x) ∈
⋃p−1
i=0

(
{i} × [0, xβ(i))

)
, there exists N ∈ N such that

for all n ≥ N , (T ext
β )n(i, x) ∈ [[0, p− 1]]× [0, 1).

Proof. Let (i, x) ∈
⋃p−1
i=0

(
{i} × [0, xβ(i))

)
. On the one hand, if (T ext

β )N (i, x) ∈ [[0, p− 1]]×
[0, 1) for some N ∈ N, then clearly (T ext

β )n(i, x) ∈ [[0, p− 1]]× [0, 1) for all n ≥ N . On the

other hand, if (T ext
β )n(i, x) /∈ [[0, p−1]]× [0, 1) for all n ∈ N, then we would get that x = x

(i)
β

since at each step n, the greedy algorithm would pick the maximal digit dβi+ne − 1. �
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Example 3.4. Let β = (1+
√

13
2 , 5+

√
13

6 ) be the alternate base of Example 3.1. The maps
π2 ◦ T ext

β ◦ δ0
∣∣[0,xβ)

: [0, xβ) → [0, xβ(1)) and π2 ◦ T ext
β ◦ δ1

∣∣[0,x
β(1) )

: [0, xβ(1)) → [0, xβ) are

depicted in Figure 6.

0 1

1

xβ(1)

xβ(1)

xβ

xβ

1
β0

2
β0

1
β1

Figure 6. The maps π2 ◦ T ext
β ◦ δ0

∣∣[0,xβ)
(blue) and π2 ◦ T ext

β ◦ δ1
∣∣[0,x

β(1) )

(green) with β = (1+
√

13
2 , 5+

√
13

6 ).

3.2. The lazy β-expansion. As in the real base case, in the greedy β-expansion, each
digit is chosen as the largest possible at the considered position. Here, we define and study
the other extreme β-representation, called the lazy β-expansion, taking the least possible
digit at each step. For x ∈ [0, xβ), if the first N digits of the lazy β-expansion of x are
given by a0, . . . , aN−1, then the next digit aN is the least element in [[0, dβNe − 1]] such
that

N∑
n=0

an∏n
k=0 βk

+
∞∑

n=N+1

dβne − 1∏n
k=0 βk

≥ x,

or equivalently,
N∑
n=0

an∏n
k=0 βk

+
xβ(N)∏N
k=0 βk

≥ x.

This algorithm is called the lazy algorithm. For all N ∈ N, we have
N∑
n=0

an∏n
k=0 βk

≤ x,

which implies that the lazy algorithm converges, that is,

x =
∞∑
n=0

an∏n
k=0 βk

.

We now define the lazy β-transformation by

Lβ :

p−1⋃
i=0

(
{i} × (0, xβ(i) ]

)
→

p−1⋃
i=0

(
{i} × (0, xβ(i) ]

)
,
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(i, x) 7→

{(
(i+ 1) mod p, βix

)
if x ∈ (0, xβ(i) − 1](

(i+ 1) mod p, βix− dβix− xβ(i+1)e
)

if x ∈ (xβ(i) − 1, xβ(i) ].

The lazy β-expansion of x ∈ (0, xβ] is obtained by alternating the p maps

π2 ◦ Lβ ◦ δi∣∣(0,x
β(i) ]

: (0, xβ(i) ]→ (0, xβ(i+1) ]

for i ∈ [[0, p− 1]]. The following proposition is the analogue of Proposition 3.2 for the lazy
β-transformation, which can be proved in a similar fashion.

Proposition 3.5. For all x ∈ (0, xβ] and n ∈ N, we have

π2 ◦ Lnβ ◦ δ0(x) = βn−1 · · ·β0x−
n−1∑
i=0

βn−1 · · ·βi+1ci

where (c0, . . . , cn−1) is the lexicographically least n-tuple in
∏n−1
k=0 [[0, dβke − 1]] such that∑n−1

i=0 βn−1···βi+1ci
βn−1···β0 +

∑∞
m=n

dβme−1∏m
k=0 βk

≥ x.

Note that for each i ∈ [[0, p− 1]],

Lβ

(
{i} × (xβ(i) − 1, xβ(i) ]

)
⊂ {(i+ 1) mod p} × (xβ(i+1) − 1, xβ(i+1) ].

Therefore, the lazy β-transformation can be restricted to the domain
⋃p−1
i=0

(
{i} × (xβ(i) −

1, xβ(i) ]
)
. The (restricted) lazy β-transformation generates the digits of the lazy β-expan-

sions of real numbers in the interval (xβ − 1, xβ] as follows. For all x ∈ (xβ − 1, xβ] and
n ∈ N, the digit an in the lazy β-expansion of x is equal to dβnπ2

(
Lnβ(0, x)

)
− xβ(n+1)e.

Similarly to the greedy case, we obtain that the subspace
⋃p−1
i=0

(
{i} × (xβ(i) − 1, xβ(i) ]

)
is an attractor of Lβ.

Proposition 3.6. For each (i, x) ∈
⋃p−1
i=0

(
{i} × (0, xβ(i) ]

)
, there exists N ∈ N such that

for all n ≥ N , Lnβ(i, x) ∈
⋃p−1
i=0

(
{i} × (xβ(i) − 1, xβ(i) ]

)
.

Proof. Let (i, x) ∈
⋃p−1
i=0

(
{i} × (0, xβ(i) ]

)
. On the one hand, if LNβ (i, x) ∈

⋃p−1
i=0

(
{i} ×

(xβ(i) − 1, xβ(i) ]
)
for some N ∈ N, then clearly Lnβ(i, x) ∈

⋃p−1
i=0

(
{i} × (xβ(i) − 1, xβ(i) ]

)
for

all n ≥ N . On the other hand, if Lnβ(i, x) /∈
⋃p−1
i=0

(
{i} × (xβ(i) − 1, xβ(i) ]

)
for all n ∈ N,

then we would get that x = 0 since at each step, the lazy algorithm would pick the minimal
digit, which is always 0. �

Example 3.7. Consider again the length-2 alternate base β = (1+
√

13
2 , 5+

√
13

6 ) from Ex-
amples 3.1 and 3.4. We have xβ = 5+7

√
13

18 ' 1.67 and xβ(1) = 2+
√

13
3 ' 1.86. The maps

π2 ◦ Lβ ◦ δ0
∣∣(0,xβ]

: (0, xβ] → (0, xβ(1) ] and π2 ◦ Lβ ◦ δ1
∣∣(0,x

β(1) ]
: (0, xβ(1) ] → (0, xβ] are de-

picted in Figure 7. In Figure 8 we see the computation of the first five digits of the lazy
β-expansion of 1+

√
5

5 .

3.3. A note on Cantor bases. The greedy algorithm described in Sections 3.1 and 3.2
is well defined in the extended context of Cantor bases, i.e., sequences of real numbers
β = (βn)n∈N greater than 1 such that the product

∏∞
n=0 βn is infinite [5]. In this case, the

greedy algorithm converge on [0, 1): for all x ∈ [0, 1), the computed digits an are such that∑∞
n=0

an∏n
k=0 βk

= x. Therefore, the value xβ defined as in (3) is greater than or equal to 1.
However, it might be that xβ = ∞. For example, it is the case for the Cantor base given
by βn = 1 + 1

n+1 for all n ∈ N.



12 DYNAMICAL BEHAVIOR OF ALTERNATE BASE EXPANSIONS

0 xβ(1)xβ

xβ(1)− 1
β1

xβ− 2
β0

xβ− 1
β0

xβ(1)

xβ

xβ(1)−1

xβ−1

Figure 7. The maps π2 ◦ Lβ ◦ δ0
∣∣(0,xβ]

(blue) and π2 ◦ Lβ ◦ δ1
∣∣(0,x

β(1) ]

(green) with β = (1+
√

13
2 , 5+

√
13

6 ).

0 1 2 0 1 0 1 2 0 1

0 1 2

Figure 8. The first five digits of the lazy β-expansion of 1+
√

5
5 are 01112

for β = (1+
√

13
2 , 5+

√
13

6 ).

Note that the restriction of the transformation π2 ◦ (T ext
β )n ◦ δ0 to the unit interval

[0, 1) coincide with the composition Tβn−1 ◦ · · · ◦ Tβ0 . Thus, when restricted to [0, 1),
Proposition 3.2 can be reformulated as follows.

Proposition 3.8. For all x ∈ [0, 1) and n ∈ N, we have

Tβn−1 ◦ · · · ◦ Tβ0(x) = βn−1 · · ·β0x−
n−1∑
k=0

βn−1 · · ·βk+1ck

where (c0, . . . , cn−1) is the lexicographically greatest n-tuple in
∏n−1
k=0 [[0, dβke−1]] such that∑n−1

k=0 βn−1···βk+1ck
βn−1···β0 ≤ x.
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For all k ∈ [[0, n− 1]], the transformation Lβk is defined on (0, xβk ] and can be restricted
to (xβk − 1, xβk ]. So, the restricted transformations Lrestr

β0
, . . . , Lrestr

βn−1
cannot be composed

to one another in general. Therefore, even if the lazy algorithm can be defined for Cantor
bases, provided that xβ < ∞, we cannot state an analogue of Proposition 3.8 in terms of
the lazy transformations for Cantor bases.

Even though this paper is mostly concerned with alternate bases, let us emphasize
that some results are indeed valid for any sequence (βn)n∈N ∈ (R>1)N, and hence for
any Cantor base. This is the case of Proposition 3.8, Proposition 4.3, Corollary 4.4 and
Proposition 4.14.

4. Dynamical properties of Tβ

In this section, we study the dynamics of the greedy β-transformation. First, we gener-
alize Theorem 2.2 to the transformation Tβ on [[0, p − 1]] × [0, 1). Second, we extend the
obtained result to the extended transformation Tβ. Third, we provide a formula for the
density functions of the measures found in the first two parts. Finally, we compute the
frequencies of the digits in the greedy β-expansions.

4.1. Unique absolutely continuous Tβ-invariant measure. In order to generalize
Theorem 2.2 to alternate bases, we start by recalling a result of Lasota and Yorke.

Theorem 4.1. [17, Theorem 4] Let T : [0, 1)→ [0, 1) be a transformation for which there
exists a partition [a0, a1), . . . , [aK−1, aK) of the interval [0, 1) with a0 < · · · < aK such that
for each k ∈ [[0,K − 1]], T∣∣[ak,ak+1)

is convex, T (ak) = 0, T ′(ak) > 0 and T ′(0) > 1. Then

there exists a unique T -invariant absolutely continuous probability measure. Furthermore,
its density function is bounded and decreasing, and the corresponding dynamical system is
exact.

We then prove a stability lemma.

Lemma 4.2. Let I be the family of transformations T : [0, 1) → [0, 1) for which there
exist a partition [a0, a1), . . . , [aK−1, aK) of the interval [0, 1) with a0 < · · · < aK and a
slope s > 1 such that for all k ∈ [[0,K − 1]], ak+1 − ak ≤ 1

s and for all x ∈ [ak, ak+1),
T (x) = s(x− ak). Then I is closed under composition.

Proof. Let S, T ∈ I. Let [a0, a1), . . . , [aK−1, aK) and [b0, b1), . . . , [bL−1, bL) be partitions
of the interval [0, 1) with a0 < · · · < aK , b0 < · · · < bL, and let s, t > 1 such that
for all k ∈ [[0,K − 1]], ak+1 − ak ≤ 1

s , for all ` ∈ [[0, L − 1]], b`+1 − b` ≤ 1
t and for all

x ∈ [0, 1), S(x) = s(x − ak) if x ∈ [ak, ak+1) and T (x) = t(x − b`) if x ∈ [b`, b`+1). For
each k ∈ [[0,K − 1]], define Lk to be the greatest ` ∈ [[0, L − 1]] such that ak + b`

s < ak+1.
Consider the partition[

a0 +
b0
s
, a0 +

b1
s

)
, . . . ,

[
a0 +

bL0−1

s
, a0 +

bL0

s

)
,
[
a0 +

bL0

s
, a1

)
...[
aK−1 +

b0
s
, aK−1 +

b1
s

)
, . . . ,

[
aK−1 +

bLK−1−1

s
, aK−1 +

bLK−1

s

)
,
[
aK−1 +

bLK−1

s
, aK

)
of the interval [0, 1). For each k ∈ [[0,K−1]] and ` ∈ [[0, Lk−1]], ak+

b`+1

s −ak−
b`
s ≤

1
ts and

ak+1−ak−
bLk
s = (ak+1−ak−

bLk+1

s )+
bLk+1−bLk

s ≤ 1
ts . Now, let x ∈ [0, 1) and k ∈ [[0,K−1]]

be such that x ∈ [ak, ak+1). Then S(x) = s(x − ak) ∈ [0, 1). We distinguish two cases:
either there exists ` ∈ [[0, Lk− 1]] such that x ∈ [ak + b`

s , ak +
b`+1

s ), or x ∈ [ak +
bLk
s , ak+1).
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In the former case, S(x) ∈ [b`, b`+1) and T ◦ S(x) = t(S(x) − b`) = ts(x − (ak + b`
s )). In

the latter case, since ak+1 − ak ≤
bLk+1

s , we get that S(x) ∈ [bLk , bLk+1) and hence that
T ◦ S(x) = t(S(x) − bLk) = ts(x − (ak +

bLk
s )). This shows that the composition T ◦ S

belongs to I. �

The following proposition provides us with the main tool for the construction of a Tβ-
invariant measure.

Proposition 4.3. For all n ∈ N≥1 and all β0, . . . , βn−1 > 1, there exists a unique (Tβn−1 ◦
· · · ◦ Tβ0)-invariant absolutely continuous probability measure µ on B([0, 1)). Furthermore,
the measure µ is equivalent to the Lebesgue measure on B([0, 1)), its density function is
bounded and decreasing, and the dynamical system ([0, 1),B([0, 1)), µ, Tβn−1 ◦ · · · ◦ Tβ0) is
exact and has entropy log(βn−1 · · ·β0).

Proof. The existence of a unique (Tβn−1 ◦ · · · ◦ Tβ0)-invariant absolutely continuous proba-
bility measure µ on B([0, 1)), the fact that its density function is bounded and decreasing,
and the exactness of the corresponding dynamical system follow from Theorem 4.1 and
Lemma 4.2. With a similar argument as in [8, Lemma 2.6], we can conclude that dµ

dλ > 0
λ-almost everywhere on [0, 1). It follows that µ is equivalent to the Lebesgue measure on
B([0, 1)). Moreover, the entropy equals log(βn−1 · · ·β0) since Tβn−1 ◦ · · · ◦Tβ0 is a piecewise
linear transformation of constant slope βn−1 · · ·β0 [9, 24]. �

The following consequence of Proposition 4.3 will be useful for proving our generalization
of Theorem 2.2.

Corollary 4.4. Let n ∈ N≥1 and β0, . . . , βn−1 > 1. Then for all B ∈ B([0, 1)) such that
(Tβn−1 ◦ · · · ◦ Tβ0)−1(B) = B, we have λ(B) ∈ {0, 1}.

For each i ∈ [[0, p − 1]], we let µβ,i denote the unique (Tβi−1
◦ · · · ◦ Tβi−p)-invariant

absolutely continuous probability measure given by Proposition 4.3. We use the convention
that for all n ∈ Z, µβ,n = µβ,n mod p. Let us define a probability measure µβ on the σ-
algebra

Tp =

{
p−1⋃
i=0

({i} ×Bi) : ∀i ∈ [[0, p− 1]], Bi ∈ B([0, 1))

}
(6)

over [[0, p− 1]]× [0, 1) as follows. For all B0, . . . , Bp−1 ∈ B([0, 1)), we set

µβ

(
p−1⋃
i=0

({i} ×Bi)

)
=

1

p

p−1∑
i=0

µβ,i(Bi).(7)

We now study the properties of the probability measure µβ.

Lemma 4.5. For i ∈ [[0, p− 1]], we have µβ,i = µβ,i−1 ◦ T−1
βi−1

.

Proof. Let i ∈ [[0, p − 1]]. By the definition of µβ,i and by Proposition 4.3, it suffices to
show that µβ,i−1 ◦T−1

βi−1
is a (Tβi−1

◦ · · · ◦Tβi−p)-invariant absolutely continuous probability
measure on B([0, 1)). First, we have µβ,i−1

(
T−1
βi−1

([0, 1))
)

= µβ,i−1([0, 1)) = 1. Second, for
all B ∈ B([0, 1)), we have

µβ,i−1 ◦ T−1
βi−1

(
(Tβi−1

◦ · · · ◦ Tβi−p)
−1(B)

)
= µβ,i−1

(
(Tβi−1

◦ · · · ◦ Tβi−p ◦ Tβi−p−1
)−1(B)

)
= µβ,i−1

(
(Tβi−2

◦ · · · ◦ Tβi−p−1
)−1(T−1

βi−1
(B))

)
= µβ,i−1

(
T−1
βi−1

(B)
)
.
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Third, for all B ∈ B([0, 1)) such that λ(B) = 0, we get that λ(T−1
βi−1

(B)) = 0 by Remark 2.3,
and hence that µβ,i−1(T−1

βi−1
(B)) = 0 since µβ,i−1 is absolutely continuous. �

Proposition 4.6. The measure µβ is Tβ-invariant.

Proof. For all B0, . . . , Bp−1 ∈ B([0, 1)),

µβ

(
T−1
β

(
p−1⋃
i=0

({i} ×Bi)

))
= µβ

(
p−1⋃
i=0

T−1
β ({i} ×Bi)

)

= µβ

(
p−1⋃
i=0

(
{(i− 1) mod p} × T−1

βi−1
(Bi)

))

=
1

p

p−1∑
i=0

µβ,i−1(T−1
βi−1

(Bi))

=
1

p

p−1∑
i=0

µβ,i(Bi)

= µβ

(
p−1⋃
i=0

({i} ×Bi)

)
where we applied Lemma 4.5 for the fourth equality. �

Corollary 4.7. The quadruple
(
[[0, p− 1]]× [0, 1), Tp, µβ, Tβ

)
is a dynamical system.

Let us define a new measure λp over the σ-algebra Tp. For all B0, . . . , Bp−1 ∈ B([0, 1)),
we set

(8) λp

(
p−1⋃
i=0

({i} ×Bi)

)
=

1

p

p−1∑
i=0

λ(Bi).

We call this measure the p-Lebesgue measure on Tp.

Proposition 4.8. The measure µβ is equivalent to the p-Lebesgue measure on Tp.

Proof. This follows from the fact that the p measures µβ,0, . . . , µβ,p−1 are equivalent to the
Lebesgue measure λ on B([0, 1)). �

Next, we compute the entropy of the dynamical system
(
[[0, p − 1]] × [0, 1), Tp, µβ, Tβ

)
.

To do so, we consider the p induced transformations

Tβ,i : {i} × [0, 1)→ {i} × [0, 1), (i, x) 7→ T pβ(i, x)

for i ∈ [[0, p − 1]]. Note that indeed, for all (i, x) ∈ [[0, p − 1]] × [0, 1), the first return of
(i, x) to {i} × [0, 1) is equal to p. Thus Tβ,i = T pβ

∣∣{i}×[0,1)
. For each i ∈ [[0, p − 1]], the

induced transformation Tβ,i is measure preserving with respect to the measure νβ,i on the
σ-algebra {{i} ×B : B ∈ B([0, 1))} defined as follows: for all B ∈ B([0, 1)),

νβ,i({i} ×B) = pµβ({i} ×B).

Lemma 4.9. For every i ∈ [[0, p − 1]], the map δi∣∣[0,1)
: [0, 1) → {i} × [0, 1), x 7→ (i, x)

defines an isomorphism between the dynamical systems(
[0, 1),B([0, 1)), µβ,i, Tβi−1

◦ · · · ◦ Tβi−p
)

and (
{i} × [0, 1), {{i} ×B : B ∈ B([0, 1))}, νβ,i, Tβ,i

)



16 DYNAMICAL BEHAVIOR OF ALTERNATE BASE EXPANSIONS

Proof. This is a straightforward verification. �

Proposition 4.10. The entropy of the dynamical system
(
[[0, p− 1]]× [0, 1), Tp, µβ, Tβ

)
is

1
p log(βp−1 · · ·β0).

Proof. Let i ∈ [[0, p− 1]]. By Abramov’s formula (see Section 2.1), we have

hµβ(Tβ) = µβ({i} × [0, 1))hνβ,i(Tβ,i) =
1

p
hνβ,i(Tβ,i).

Since the entropy is invariant under isomorphism, it follows from Proposition 4.3 and
Lemma 4.9 that hνβ,i(Tβ,i) = log(βp−1 · · ·β0). Hence the conclusion. �

Finally, we prove that any Tβ-invariant set has p-Lebesgue measure 0 or 1.

Proposition 4.11. For all A ∈ Tp such that T−1
β (A) = A, we have λp(A) ∈ {0, 1}.

Proof. Let B0, . . . , Bp−1 be sets in B([0, 1)) such that

T−1
β

(
p−1⋃
i=0

({i} ×Bi)

)
=

p−1⋃
i=0

({i} ×Bi).

This implies that

(9) T−1
βi−1

(Bi) = B(i−1) mod p for all i ∈ [[0, p− 1]].

We use the convention that Bn = Bn mod p for all n ∈ Z. An easy induction yields that for
all i ∈ [[0, p− 1]] and n ∈ N, (Tβi−1

◦ · · · ◦Tβi−n)−1(Bi) = Bi−n. In particular, for n = p, we
get that for each i ∈ [[0, p− 1]], (Tβi−1

◦ · · · ◦ Tβi−p)−1(Bi) = Bi. By Corollary 4.4, for each
i ∈ [[0, p− 1]], λ(Bi) ∈ {0, 1}. By definition of λp, in order to conclude, it suffices to show
that either λ(Bi) = 0 for all i ∈ [[0, p− 1]], or λ(Bi) = 1 for all i ∈ [[0, p− 1]]. From (9) and
Remark 2.3, we get that for each i ∈ [[0, p− 1]], λ(Bi) = 0 if and only if λ(Bi+1) = 0. The
conclusion follows. �

We are now able to state the announced generalization of Theorem 2.2 to alternate bases.

Theorem 4.12. The measure µβ is the unique Tβ-invariant probability measure on Tp
that is absolutely continuous with respect to λp. Furthermore, µβ is equivalent to λp on
Tp and the dynamical system ([[0, p − 1]] × [0, 1), Tp, µβ, Tβ) is ergodic and has entropy
1
p log(βp−1 · · ·β0).

Proof. By Propositions 4.6 and 4.8, µβ is a Tβ-invariant probability measure that is abso-
lutely continuous with respect to λp on B([0, 1)). Then we get from Proposition 4.11 that
for all A ∈ Tp such that T−1

β (A) = A, we have µβ(A) ∈ {0, 1}. Therefore, the dynamical
system ([[0, p − 1]] × [0, 1), Tp, µβ, Tβ) is ergodic. Now, we obtain that the measure µβ is
unique as a well-known consequence of the Ergodic Theorem, see [9, Theorem 3.1.2]. The
equivalence between µβ and λp and the entropy of the system were already obtained in
Propositions 4.8 and 4.10. �

For p greater than 1, the dynamical system ([[0, p−1]]×[0, 1), Tp, µβ, Tβ) is not exact even
though for all i ∈ [[0, p− 1]], the dynamical systems ([0, 1),B([0, 1)), µβ,i, Tβi−1

◦ · · · ◦Tβi−p)
are exact. It suffices to note that the dynamical system ([[0, p−1]]× [0, 1), Tp, µβ, T pβ) is not
ergodic for p > 1. Indeed, T−pβ ({0} × [0, 1)) = {0} × [0, 1) whereas µβ({0} × [0, 1)) = 1

p .
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4.2. Extended measure. In order to study the dynamics of the extended greedy β-
transformation defined in (5), we define extended measures µext

β and λext
β by extending the

domain of the measures µβ and λp defined in (7) and (8) respectively. First, we define a
new σ-algebra T ext

β on
⋃p−1
i=0

(
{i} × [0, xβ(i))

)
as follows:

T ext
β =

{
p−1⋃
i=0

({i} ×Bi) : ∀i ∈ [[0, p− 1]], Bi ∈ B([0, xβ(i)))

}
.

Second, for A ∈ T ext
β , we set µext

β (A) = µβ
(
A ∩

(
[[0, p − 1]] × [0, 1)

))
and λext

β (A) =

λp
(
A ∩

(
[[0, p− 1]]× [0, 1)

))
.

Note that, in the previous section, we could have denoted the σ-algebra Tp by Tβ and
similarly, the measure λp by λβ. We chose to only emphasize the dependence in p since the
definitions of Tp and λp indeed only depend on the length p of the corresponding alternate
base β.

Theorem 4.13. The measure µext
β is the unique T ext

β -invariant probability measure on T ext
β

that is absolutely continuous with respect to λext
β . Furthermore, µext

β is equivalent to λext
β

on T ext
β and the dynamical system (

⋃p−1
i=0

(
{i} × [0, xβ(i))

)
, T ext

β , µext
β , T ext

β ) is ergodic and
has entropy 1

p log(βp−1 · · ·β0).

Proof. Clearly, µext
β is a probability measure on T ext

β . For all A ∈ T ext
β , we have

µext
β ((T ext

β )−1(A)) = µβ
(
(T ext

β )−1(A) ∩ ([[0, p− 1]]× [0, 1))
)

= µβ
(
(T ext

β )−1
(
A ∩ ([[0, p− 1]]× [0, 1))

)
∩ ([[0, p− 1]]× [0, 1))

)
= µβ

(
T−1
β

(
A ∩ ([[0, p− 1]]× [0, 1))

))
= µβ

(
A ∩ ([[0, p− 1]]× [0, 1))

)
= µext

β (A)

where we used Proposition 4.6 for the fourth equality. This shows that µext
β is T ext

β -invariant
on T ext

β . The conclusion then follows from the fact that the identity map from [[0, p− 1]]×
[0, 1) to

⋃p−1
i=0

(
{i} × [0, xβ(i))

)
defines an isomorphism between the dynamical systems

([[0, p− 1]]× [0, 1), Tp, µβ, Tβ) and (
⋃p−1
i=0

(
{i} × [0, xβ(i))

)
, T ext

β , µext
β , T ext

β ). �

4.3. Density functions. In the next proposition, we express the density function of the
unique measure given in Proposition 4.3.

Proposition 4.14. Consider n ∈ N≥1 and β0, . . . , βn−1 > 1. Suppose that
• K is the number of not onto branches of Tβn−1 ◦ · · · ◦ Tβ0
• for j ∈ [[1,K]], cj is the right-hand side endpoint of the domain of the j-th not onto
branche of Tβn−1 ◦ · · · ◦ Tβ0
• T : [0, 1) → [0, 1) is the transformation defined by T (x) = Tβn−1 ◦ · · · ◦ Tβ0(x) for
x /∈ {c1, . . . , cK} and T (cj) = limx→c−j

Tβn−1 ◦ · · · ◦ Tβ0(x) for j ∈ [[1,K]]

• S is the matrix defined by S = (Si,j)1≤i,j,≤K where

Si,j =

∞∑
m=1

δ(Tm(ci) > cj)

(βn−1 · · ·β0)m
,

where δ(P ) equals 1 when the property P is satisfied and 0 otherwise
• 1 is not an eigenvalue of S
• d0 = 1 and

(
d1 · · · dK

)
=
(
1 · · · 1

)
(−S + IdK)−1
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• C =
∫ 1

0

(
d0 +

∑K
j=1 dj

∑∞
m=1

χ[0,Tm(cj)]

(βn−1···β0)m

)
dλ is the normalization constant.

Then the density function of the (Tβn−1◦· · ·◦Tβ0)-invariant measure given by Proposition 4.3
with respect to the Lebesgue measure is

(10)
1

C

(
d0 +

K∑
j=1

dj

∞∑
m=1

χ[0,Tm(cj)]

(βn−1 · · ·β0)m

)
.

Proof. This is an application of the formula given in [14, Theorem 2]. �

In [14] Gora conjectured that 1 is not an eigenvalue of the matrix S if and only if the
dynamical system is exact. Thus, if Gora’s conjecture were true, thanks to Proposition 4.3,
the hypothesis that 1 is not an eigenvalue of the matrix S could be removed from the
statement of Proposition 4.14. In particular, Proposition 4.14 would then provide the
density function of the (Tβn−1◦· · ·◦Tβ0)-invariant measure given by Proposition 4.3 without
any further conditions.

Example 4.15. Consider once again the alternate base β = (1+
√

13
2 , 5+

√
13

6 ). The com-
position Tβ1 ◦ Tβ0 is depicted in Figure 9. Since 1

β0
= β1 − 1, keeping the notation of

0 1

1

1
β0

1
β1β0

1
β0

β1+1
β1β0

2
β0

Figure 9. The composition Tβ1 ◦ Tβ0 with β = (1+
√

13
2 , 5+

√
13

6 ).

Proposition 4.14, we have K = 3, c1 = 1
β0
, c2 = 2

β0
and c3 = 1. We have T (c1) =

T (c2) = T (c3) = c1. Therefore, all elements in S equal 0, d0 = d1 = d2 = d3 = 1 and
C = 1 + 3

β0(β1β0−1) = 1 + 3
β2
0
. The density of the unique absolutely continuous (Tβ1 ◦ Tβ0)-

invariant probability measure is
1

C

(
1 +

3

β0
χ[0, 1

β0
]

)
.

For example, µ
(
[0, 1

β0
)
)

= 13+
√

13
26 . Moreover, it can be checked that µ

(
(Tβ1◦Tβ0)−1[0, 1

β0
)
)

=

µ
(
[0, 1

β0
)
)
.

We obtain a formula for the density function dµβ
dλp

by using the density functions dµβ,i
dλ

for i ∈ [[0, p− 1]]. We first need a lemma.

Lemma 4.16. For all i ∈ [[0, p − 1]], all sets B ∈ B([0, 1)) and all B([0, 1))-measurable
functions f : [0, 1) → [0,∞), the map f ◦ π2 : [[0, p − 1]] × [0, 1) → [0,∞) is Tp-measurable
and ∫

{i}×B
f ◦ π2 dλp =

1

p

∫
B
fdλ.
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Proof. This follows from standard arguments by using the definition of the Lebesgue inte-
gral via simple functions. �

Proposition 4.17. The density function dµβ
dλp

of µβ with respect to the p-Lebesgue measure
on Tp is

(11)
p−1∑
i=0

(
dµβ,i
dλ
◦ π2

)
· χ{i}×[0,1).

Proof. Let A ∈ Tp and let B0, . . . , Bp−1 ∈ B([0, 1)) such that A =
⋃p−1
i=0 ({i} × Bi). It

follows from Lemma 4.16 that∫
A

p−1∑
i=0

(
dµβ,i
dλ
◦ π2

)
· χ{i}×[0,1) dλp =

p−1∑
i=0

∫
{i}×Bi

dµβ,i
dλ
◦ π2 dλp

=
1

p

p−1∑
i=0

∫
Bi

dµβ,i
dλ

dλ

=
1

p

p−1∑
i=0

µβ,i(Bi)

=µβ(A).

�

Note that the formula (11) also holds for the extended measures µext
β and λext

β on T ext
β .

4.4. Frequencies. We now turn to the frequencies of the digits in the greedy β-expansions
of real numbers in the interval [0, 1). Recall that the frequency of a digit d occurring in
the greedy β-expansion a0a1a2 · · · of a real number x in [0, 1) is equal to

lim
n→∞

1

n
#{0 ≤ k < n : ak = d},

provided that this limit exists.

Proposition 4.18. For λ-almost all x ∈ [0, 1), the frequency of any digit d occurring in
the greedy β-expansion of x exists and is equal to

1

p

p−1∑
i=0

µβ,i

([
d
βi
, d+1
βi

)
∩ [0, 1)

)
.

Proof. Let x ∈ [0, 1) and let d be a digit occurring in dβ(x) = a0a1a2 · · · . Then for all
k ∈ N, ak = d if and only if π2(T kβ(0, x)) ∈ [ dβk ,

d+1
βk

)∩ [0, 1). Moreover, since for all k ∈ N,
T kβ(0, x) ∈ {k mod p} × [0, 1), we have

χ[ d
βk
, d+1
βk

)∩[0,1)

(
π2

(
T kβ(0, x)

))
= χ

{k mod p}×
(

[ d
βk
, d+1
βk

)∩[0,1)
)(T kβ(0, x)

)
=

p−1∑
i=0

χ
{i}×

(
[ d
βi
, d+1
βi

)∩[0,1)
)(T kβ(0, x)

)
.

Therefore, if it exists, the frequency of d in dβ(x) is equal to

lim
n→∞

1

n

n−1∑
k=0

p−1∑
i=0

χ
{i}×

(
[ d
βi
, d+1
βi

)∩[0,1)
)(T kβ(0, x)

)
.
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Yet, for each i ∈ [[0, p− 1]] and for µβ-almost all y ∈ [[0, p− 1]]× [0, 1), we have

lim
n→∞

1

n

n−1∑
k=0

χ
{i}×

(
[ d
βi
, d+1
βi

)∩[0,1)
)(T kβ(y)

)
=

∫
[[0,p−1]]×[0,1)

χ
{i}×

(
[ d
βi
, d+1
βi

)∩[0,1)
)dµβ

= µβ

(
{i} ×

([
d
βi
, d+1
βi

)
∩ [0, 1)

))
=

1

p
µβ,i

([
d
βi
, d+1
βi

)
∩ [0, 1)

)
where we used Theorem 4.12 and the Ergodic Theorem for the first equality. The conclusion
now follows from Proposition 4.8. �

Note that, when p = 1, Proposition 4.18 gives back the classical formula µβ
(
[ dβ ,

d+1
β ) ∩

[0, 1)
)
for the frequency of the digit d, where µβ is the measure given in Theorem 2.2.

5. Isomorphism between greedy and lazy β-transformations

In this section, we show that

(12) φβ :

p−1⋃
i=0

(
{i} × [0, xβ(i))

)
→

p−1⋃
i=0

(
{i} × (0, xβ(i) ]

)
, (i, x) 7→

(
i, xβ(i) − x

)
defines an isomorphism between the greedy β-transformation and the lazy β-transfor-
mation.

We consider the σ-algebra

Lβ =

{
p−1⋃
i=0

({i} ×Bi) : ∀i ∈ [[0, p− 1]], Bi ∈ B
(
(0, xβ(i) ]

)}

on
⋃p−1
i=0

(
{i} ×

(
0, xβ(i)

])
.

Proposition 5.1. The map φβ is an isomorphism between the dynamical systems
(⋃p−1

i=0

(
{i}×

[0, xβ(i))
)
, T ext

β , µext
β , T ext

β

)
and

(⋃p−1
i=0

(
{i} × (0, xβ(i) ]

)
,Lβ, µext

β ◦ φ
−1
β , Lβ

)
.

Proof. Clearly, φβ is a bimeasurable bijective map. Hence, we only have to show that
φβ ◦ T ext

β = Lβ ◦ φβ. Let (i, x) ∈
⋃p−1
i=0

(
{i} × [0, xβ(i))

)
. First, suppose that x ∈ [0, 1).

Then
φβ ◦ T ext

β (i, x) =
(
(i+ 1) mod p, xβ(i+1) − βix+ bβixc

)
and

Lβ ◦ φβ(i, x) =
(
(i+ 1) mod p, βi(xβ(i) − x)− dβi(xβ(i) − x)− xβ(i+1)e

)
.

Second, suppose that x ∈ [1, xβ(i)). Then

φβ ◦ T ext
β (i, x) =

(
(i+ 1) mod p, xβ(i+1) − βix+ bβic − 1

)
and

Lβ ◦ φβ(i, x) =
(
(i+ 1) mod p, βi(xβ(i) − x)

)
.

In both cases, we easily get that φβ ◦ T ext
β (i, x) = Lβ ◦ φβ(i, x) by using (4). �

Thanks to Proposition 5.1, we obtain an analogue of Theorem 4.13 for the lazy β-
transformation.
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Theorem 5.2. The measure µext
β ◦ φ

−1
β is the unique Lβ-invariant probability measure on

Lβ that is absolutely continuous with respect to λext
β ◦ φ−1

β . Furthermore, µext
β ◦ φ−1

β is
equivalent to λext

β ◦φ
−1
β on Lβ and the dynamical system

(⋃p−1
i=0

(
{i}× (0, xβ(i) ]

)
,Lβ, µext

β ◦
φ−1
β , Lβ

)
is ergodic and has entropy 1

p log(βp−1 · · ·β0).

Similarly, we have an analogue of Theorem 4.12 for the lazy β-transformation, by con-
sidering the σ-algebra

Lrestr
β =

{
p−1⋃
i=0

({i} ×Bi) : ∀i ∈ [[0, p− 1]], Bi ∈ B
(
(xβ(i) − 1, xβ(i) ]

)}
.

Remark that in the lazy case, we denote the restricted σ-algebra by Lrestr
β since there is a

dependence on the alternate base β and not only on its length p as in the greedy case. We
also set

φrestr
β : [[0, p− 1]]× [0, 1)→

p−1⋃
i=0

(
{i} × (xβ(i) − 1, xβ(i) ]

)
, (i, x) 7→

(
i, xβ(i) − x

)
and

Lrestr
β :

p−1⋃
i=0

(
{i} × (xβ(i) − 1, xβ(i) ]

)
→

p−1⋃
i=0

(
{i} × (xβ(i) − 1, xβ(i) ]

)
,

(i, x) 7→
(
(i+ 1) mod p, βix− dβix− xβ(i+1)e

)
.

Theorem 5.3. The measure µβ ◦ (φrestr
β )−1 is the unique Lrestr

β -invariant probability mea-
sure on Lrestr

β that is absolutely continuous with respect to λp ◦ φ−1
β . Furthermore, µβ ◦

(φrestr
β )−1 is equivalent to λp ◦ (φrestr

β )−1 on Lrestr
β and the dynamical system

(⋃p−1
i=0

(
{i} ×

(xβ(i) − 1, xβ(i) ]
)
,Lrestr

β , µβ ◦ (φrestr
β )−1, Lrestr

β

)
is ergodic and has entropy 1

p log(βp−1 · · ·β0).

Remark 5.4. We deduce from Proposition 5.1 that if the greedy β-expansion of a real
number x ∈ [0, xβ) is a0a1a2 · · · , then the lazy β-expansion of xβ − x is (dβ0e − 1 −
a0)(dβ1e − 1− a1)(dβ2e − 1− a2) · · · .

6. Isomorphism with the β-shift

The aim of this section is to generalize the isomorphism between the greedy β-transfor-
mation and the β-shift to the framework of alternate bases. We start by providing some
background of the real base case.

Let Dβ denote the set of all greedy β-expansions of real numbers in the interval [0, 1).
The β-shift is the set Sβ defined as the topological closure of Dβ with respect to the prefix
distance of infinite words. For an alphabet A, we let CA denote the σ-algebra generated
by the cylinders

CA(a0, . . . , a`−1) = {w ∈ AN : w[0] = a0, . . . , w[`− 1] = a`−1}
for all ` ∈ N and a0, . . . , a`−1 ∈ A, where the notation w[k] designates the letter at position
k in the infinite word w, and we call

σA : AN → AN, a0a1a2 · · · 7→ a1a2a3 · · ·
the shift operator over A. If no confusion is possible, we simply write σ instead of σA. Then,
it is a folklore fact (similar to [10, Example 1.2.19]) that the map ψβ : [0, 1) → Sβ, x 7→
dβ(x) defines an isomorphism between the dynamical systems ([0, 1),B([0, 1)), µβ, Tβ) and
(Sβ, CAβ ∩ Sβ, µβ ◦ ψ

−1
β , σ|Sβ ) where Aβ denote the alphabet of digits [[0, dβe − 1]].
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Now, let us extend the previous notation to the framework of alternate bases. Let Aβ

denote the alphabet [[0, max
i∈[[0,p−1]]

dβie−1]], let Dβ denote the subset of AN
β made of all greedy

β-expansions of real numbers in [0, 1) and let Sβ denote the topological closure of Dβ with
respect to the prefix distance of infinite words:

Dβ = {dβ(x) : x ∈ [0, 1)} and Sβ = Dβ.

The following lemma was proved in [5, Proposition 32].

Lemma 6.1. For all n ∈ N, if w ∈ Sβ(n) then σ(w) ∈ Sβ(n+1).

Consider the σ-algebra

Gβ =

{
p−1⋃
i=0

({i} × Ci) : ∀i ∈ [[0, p− 1]], Ci ∈ CAβ
∩ Sβ(i)

}
on
⋃p−1
i=0 ({i} × Sβ(i)). We define

σp :

p−1⋃
i=0

({i} × Sβ(i))→
p−1⋃
i=0

({i} × Sβ(i)), (i, w) 7→ ((i+ 1) mod p, σ(w))

ψβ : [[0, p− 1]]× [0, 1)→
p−1⋃
i=0

({i} × Sβ(i)), (i, x) 7→ (i, dβ(i)(x)).

Note that the transformation σp is well defined by Lemma 6.1.

Proposition 6.2. The map ψβ defines an isomorphism between the dynamical systems

(
[[0, p− 1]]× [0, 1), Tp, µβ, Tβ

)
and

(
p−1⋃
i=0

({i} × Sβ(i)),Gβ, µβ ◦ ψ−1
β , σp

)
.

Proof. It is easily seen that ψβ◦Tβ = σp◦ψβ and that ψβ is injective. Moreover, ψβ

(
[[0, p−

1]]× [0, 1)
)

= ∪p−1
i=0 ({i} ×Dβ(i)) and µβ(ψ−1

β (∪p−1
i=0 ({i} ×Dβ(i))) = 1. �

However, although ψβ is continuous, it does not define a topological isomorphism since
it is not surjective.

Remark 6.3. In view of Proposition 6.2, the set
⋃p−1
i=0 ({i} × Sβ(i)) can be seen as the β-

shift, that is, the generalization of the β-shift to alternate bases. However, in the previous
work [5], what we called the β-shift is the union

⋃p−1
i=0 Sβ(i) . This definition was motivated

by the following combinatorial result [5, Theorem 48] : the set
⋃p−1
i=0 Sβ(i) is sofic if and

only if for every i ∈ [[0, p − 1]], the quasi-greedy β(i)-representation of 1 is ultimately
periodic. In summary, we can say that there are two ways to extend the notion of β-shift
to alternate bases β, depending on the way we look at it: either as a dynamical object or
as a combinatorial object.

Thanks to Proposition 6.2, we obtain an analogue of Theorem 4.12 for the transformation
σp.

Theorem 6.4. The measure µβ ◦ψ−1
β is the unique σp-invariant probability measure on Gβ

that is absolutely continuous with respect to λp ◦ ψ−1
β . Furthermore, µβ ◦ ψ−1

β is equivalent
to λp ◦ψ−1

β on Gβ and the dynamical system
(⋃p−1

i=0 ({i}×Sβ(i)),Gβ, µβ ◦ψ−1
β , σp

)
is ergodic

and has entropy 1
p log(βp−1 · · ·β0).
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Remark 6.5. Let D′β denote the subset of AN
β made of all lazy β-expansions of real

numbers in (xβ − 1, xβ] and let S′β denote the topological closure of D′β with respect to
the prefix distance of infinite words. From Remark 5.4, it is easily seen that

θβ :

p−1⋃
i=0

({i}×Sβ(i))→
p−1⋃
i=0

({i}×S′
β(i)), (i, a0a1 · · · ) 7→ (i, (dβie−1−a0)(dβi+1e−1−a2) · · · )

defines an isomorphism from
(⋃p−1

i=0 ({i}×Sβ(i)),Gβ, µβ◦ψ−1
β , σp

)
to
(⋃p−1

i=0 ({i}×S′
β(i)),G′β,

µβ ◦ ψ−1
β ◦ θ

−1
β , σ′p

)
where

G′β =

{
p−1⋃
i=0

(
{i} × (Ci ∩ S′β(i))

)
: Ci ∈ CAβ

}

σ′p :

p−1⋃
i=0

({i} × S′
β(i))→

p−1⋃
i=0

({i} × S′
β(i)), (i, w) 7→ ((i+ 1) mod p, σ(w)).

We then deduce from Propositions 5.1 and 6.2 that θβ ◦ ψβ ◦ (φrestr
β )−1 is an isomorphism

from
(⋃p−1

i=0

(
{i}× (xβ(i)−1, xβ(i) ]

)
,Lrestr

β , µβ ◦ (φrestr
β )−1, Lrestr

β

)
to
(⋃p−1

i=0 ({i}×S′
β(i)),G′β,

µβ ◦ ψ−1
β ◦ θ

−1
β , σ′p

)
. It is easy to check that, as expected, that for all (i, x) ∈

⋃p−1
i=0

(
{i} ×

(xβ(i) − 1, xβ(i) ], we have θβ ◦ ψβ ◦ (φrestr
β )−1(i, x) = (i, `β(i)(x)) where `β(x) denoted the

lazy β-expansion of x.

7. β-expansions and (βp−1 · · ·β0,∆β)-expansions

By rewriting Equality (1) from Section 3 as

x =
βp−1 · · ·β1a0 + βp−1 · · ·β2a1 + · · ·+ ap−1

βp−1 · · ·β0
(13)

+
βp−1 · · ·β1ap + βp−1 · · ·β1ap+1 + · · ·+ a2p−1

(βp−1 · · ·β0)2

+ · · ·

we can see the greedy and lazy β-expansions of real numbers as (βp−1 · · ·β0)-representations
over the digit set

∆β =

{
p−1∑
i=0

βp−1 · · ·βi+1ci : ∀i ∈ [[0, p− 1]], ci ∈ [[0, dβie − 1]]

}
.

In this section, we examine some cases where by considering the greedy (resp. lazy) β-
expansion and rewriting it as (13), the obtained representation is the greedy (resp. lazy)
(βp−1 · · ·β0,∆β)-expansion. We first recall the formalism of β-expansions of real numbers
over a general digit set [22].

7.1. Real base expansions over general digit sets. Consider an arbitrary finite set
∆ = {d0, d1, . . . , dm} ⊂ R where 0 = d0 < d1 < · · · < dm. Then a (β,∆)-representation of
a real number x in the interval [0, dmβ−1) is an infinite sequence a0a1a2 · · · over ∆ such that
x =

∑∞
n=0

an
βn+1 . Such a set ∆ is called an allowable digit set for β if

(14) max
k∈[[0,m−1]]

(dk+1 − dk) ≤
dm
β − 1

.
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In this case, the greedy (β,∆)-expansion of a real number x ∈ [0, dmβ−1) is defined recursively
as follows: if the firstN digits of the greedy (β,∆)-expansion of x are given by a0, . . . , aN−1,
then the next digit aN is the greatest element in ∆ such that

N∑
n=0

an
βn+1

≤ x.

The greedy (β,∆)-expansion can also be obtained by iterating the greedy (β,∆)-transfor-
mation

Tβ,∆ : [0, dmβ−1)→ [0, dmβ−1), x 7→

{
βx− dk if x ∈ [dkβ ,

dk+1

β ), k ∈ [[0,m− 1]]

βx− dm if x ∈ [dmβ ,
dm
β−1)

as follows: for all n ∈ N, an is the greatest digit d in ∆ such that d
β ≤ T

n
β,∆(x) [7].

Example 7.1. Consider the digit set ∆ = {0, 1, ϕ+ 1
ϕ , ϕ

2}. It is easily checked that ∆ is
an allowable digit set for ϕ. The greedy (ϕ,∆)-transformation

Tϕ,∆ : [0, ϕ2

ϕ−1)→ [0, ϕ2

ϕ−1), x 7→


ϕx if x ∈ [0, 1

ϕ)

ϕx− 1 if x ∈ [ 1
ϕ , 1 + 1

ϕ2 )

ϕx− (ϕ+ 1
ϕ) if x ∈ [1 + 1

ϕ2 , ϕ)

ϕx− ϕ2 if x ∈ [ϕ, ϕ2

ϕ−1)

is depicted in Figure 10.

0 1
ϕ 1 + 1

ϕ2
ϕ ϕ2

ϕ−1

1

2
ϕ

1
ϕ2

ϕ2

ϕ−1

Figure 10. The transformation Tϕ,∆ for ∆ = {0, 1, ϕ+1
ϕ , ϕ2}.

Similarly, if ∆ is an allowable digit set for β, then the lazy (β,∆)-expansion of a real
number x ∈ (0, dmβ−1 ] is defined recursively as follows: if the first N digits of the lazy (β,∆)-
expansion of x are given by a0, . . . , aN−1, then the next digit aN is the least element in ∆
such that

N∑
n=0

an
βn+1

+
∞∑

n=N+1

dm
βn+1

≥ x.

The lazy (β,∆)-transformation

Lβ,∆ : (0, dmβ−1 ]→ (0, dmβ−1 ], x 7→

{
βx if x ∈ (0, dmβ−1−

dm
β ]

βx− dk if x ∈ ( dm
β−1−

dm−dk−1

β , dmβ−1−
dm−dk
β ], k ∈ [[1,m]]
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can be used to obtain the digits of the lazy (β,∆)-expansions: for all n ∈ N, an is the least
digit d in ∆ such that d

β +
∑∞

k=1
dm
βk+1 ≥ Lnβ,∆(x) [7].

In [7, Proposition 2.2], it is shown that if ∆ is an allowable digit set for β then so is the
set ∆̃ := {0, dm−dm−1, . . . , dm−d1, dm} and

φβ,∆ : [0, dmβ−1)→ (0, dmβ−1 ], x 7→ dm
β−1 − x

is a bicontinuous bijection satisfying L
β,∆̃
◦ φβ,∆ = φβ,∆ ◦ Tβ,∆.

Example 7.2. Consider the digit set ∆̃ where ∆ is the digit set from Example 7.1. We
get ∆̃ = {0, 1− 1

ϕ , ϕ, ϕ
2}. The lazy (ϕ, ∆̃)-transformation

L
ϕ,∆̃

: (0, ϕ2

ϕ−1 ]→ (0, ϕ2

ϕ−1 ], x 7→


ϕx if x ∈ (0, ϕ

ϕ−1 ]

ϕx− (1− 1
ϕ) if x ∈ ( ϕ

ϕ−1 ,
ϕ+3
ϕ ]

ϕx− ϕ if x ∈ (ϕ+3
ϕ , 2ϕ−1

ϕ−1 ]

ϕx− ϕ2 if x ∈ (2ϕ−1
ϕ−1 ,

ϕ2

ϕ−1 ]

is depicted in Figure 11. It is conjugate to the greedy (ϕ,∆)-transformation Tϕ,∆ by
φϕ,∆ : [0, ϕ2

ϕ−1)→ (0, ϕ2

ϕ−1 ], x 7→ ϕ2

ϕ−1 − x.

0 ϕ
ϕ−1

ϕ+3
ϕ

2ϕ−1
ϕ−1

ϕ2

ϕ−1

3ϕ− 1

33

2
ϕ−1

ϕ2

ϕ−1

Figure 11. The transformation L
ϕ,∆̃

for ∆ = {0, 1, ϕ+ 1
ϕ , ϕ

2}.

7.2. Comparison between β-expansions and (βp−1 · · ·β0,∆β)-expansions. The digit
set ∆β has cardinality at most

∏p−1
i=0 dβie and can be rewritten ∆β = im(fβ) where

fβ :

p−1∏
i=0

[[0, dβie − 1]]→ R, (c0, . . . , cp−1) 7→
p−1∑
i=0

βp−1 · · ·βi+1ci.

Note that fβ is not injective in general. Let us write ∆β = {d0, d1, . . . , dm} with d0 <
d1 < · · · < dm. We have d0 = fβ(0, . . . , 0) = 0, d1 = fβ(0, . . . , 0, 1) = 1 and dm =

fβ(dβ0e−1, . . . , dβp−1e−1). In what follows, we suppose that
∏p−1
i=0 [[0, dβie−1]] is equipped

with the lexicographic order: (c0, . . . , cp−1) <lex (c′0, . . . , c
′
p−1) if there exists i ∈ [[0, p− 1]]

such that c0 = c′0, . . . , ci−1 = c′i−1 and ci < c′i.

Lemma 7.3. The set ∆β is an allowable digit set for βp−1 · · ·β0.
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Proof. We need to check Condition (14). We have d0 = 0 and

dm = fβ(dβ0e − 1, . . . , dβp−1e − 1) ≥
p−1∑
i=0

βp−1 · · ·βi+1(βi − 1) = βp−1 · · ·β0 − 1,

Therefore, it suffices to show that for all k ∈ [[0,m− 1]], dk+1−dk ≤ 1. Thus, we only have
to show that f(c′0, . . . , c

′
p−1)−f(c0, . . . , cp−1) ≤ 1 where (c0, . . . , cp−1) and (c′0, . . . , c

′
p−1) are

lexicographically consecutive elements of
∏p−1
i=0 [[0, dβie−1]]. For such p-tuples, there exists

j ∈ [[0, p− 1]] such that c0 = c′0, . . . , cj−1 = c′j−1, cj = c′j − 1, cj+1 = dβj+1e− 1, . . . , cp−1 =

dβp−1e − 1 and c′j+1 = · · · = c′p−1 = 0. Then

f(c′0, . . . , c
′
p−1)− f(c0, . . . , cp−1) = βp−1 · · ·βj+1 −

p−1∑
i=j+1

βp−1 · · ·βi+1(dβie − 1)

≤ βp−1 · · ·βj+2 −
p−1∑
i=j+2

βp−1 · · ·βi+1(dβie − 1)

...
≤ βp−1 − (dβp−1e − 1)

≤ 1.

�

Since xβ = dm
βp−1···β0−1 , it follows from Lemma 7.3 that every point in [0, xβ) admits a

greedy (βp−1 · · ·β0,∆β)-expansion.

Proposition 7.4. For all x ∈ [0, xβ), we have Tβp−1···β0,∆β
(x) ≤ π2 ◦ (T ext

β )p ◦ δ0(x) and
Lβp−1···β0,∆β

(x) ≥ π2 ◦ Lpβ ◦ δ0(x).

Proof. Let x ∈ [0, xβ). On the one hand, Tβp−1···β0,∆β
(x) = βp−1 · · ·β0x − d where d

is the greatest digit in ∆β such that d
βp−1···β0 ≤ x. On the other hand, by rephrasing

Proposition 3.2 in terms of the map fβ when n equals p, we get π2 ◦ (T ext
β )p ◦ δ0(x) =

βp−1 · · ·β0x− fβ(c) where c is the lexicographically greatest p-tuple in
∏p−1
i=0 [[0, dβie − 1]]

such that fβ(c)
βp−1···β0 ≤ x. By definition of d, we get d ≥ fβ(c). Therefore, we obtain that

Tβp−1···β0,∆β
(x) ≤ π2 ◦ (T ext

β )p ◦δ0(x). The inequality Lβp−1···β0,∆β
(x) ≥ π2 ◦Lpβ ◦δ0(x) then

follows from Proposition 5.1. �

In what follows, we provide some conditions under which the inequalities of Proposi-
tion 7.4 happen to be equalities.

Proposition 7.5. The transformations Tβp−1···β0,∆β
and π2 ◦ (T ext

β )p ◦ δ0
∣∣[0,xβ)

coincide if

and only if the transformations Lβp−1···β0,∆β
and π2 ◦ Lpβ ◦ δ0

∣∣(0,xβ]
do.

Proof. We only show the forward direction, the backward direction being similar. Suppose
that Tβp−1···β0,∆β

= π2 ◦ (T ext
β )p ◦ δ0

∣∣[0,xβ)
and let x ∈ (0, xβ]. Since xβ = dm

βp−1···β0−1 and

∆β = ∆̃β, we successively obtain that

Lβp−1···β0,∆β
(x) = Lβp−1···β0,∆β

◦ φβp−1···β0,∆β
(xβ − x)

= φβp−1···β0,∆β
◦ Tβp−1···β0,∆β

(xβ − x)

= φβp−1···β0,∆β
◦ π2 ◦ (T ext

β )p ◦ δ0(xβ − x)
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= π2 ◦ φβ ◦ (T ext
β )p ◦ δ0(xβ − x)

= π2 ◦ Lpβ ◦ φβ ◦ δ0(xβ − x)

= π2 ◦ Lpβ ◦ δ0(x).

�

The next result provides us with a sufficient condition under which the transformations
Tβp−1···β0,∆β

and π2 ◦ (T ext
β )p ◦ δ0

∣∣[0,xβ)
coincide. Here, the non-decreasingness of the map

fβ refers to the lexicographic order: for all c, c′ ∈
∏p−1
i=0 [[0, dβie−1]], c <lex c

′ =⇒ fβ(c) ≤
fβ(c′).

Theorem 7.6. If the map fβ is non-decreasing then Tβp−1···β0,∆β
= π2 ◦ (T ext

β )p ◦ δ0
∣∣[0,xβ)

.

Proof. We keep the same notation as in the proof of Proposition 7.4. Let c′ ∈
∏p−1
i=0 [[0, dβie−

1]] such that d = fβ(c′). By definition of c, we get c ≥lex c
′. Now, if fβ is non-decreasing

then fβ(c) ≥ fβ(c′) = d. Hence the conclusion. �

The following example shows that considering the length-p alternate base β = (β, . . . , β)
with p ∈ N≥3, it may happen that Tβp,∆β

differs from π2 ◦ (T ext
β )p ◦ δ0

∣∣[0,xβ)
. This result

was already proved in [6].

Example 7.7. Consider the alternate base β = (ϕ2, ϕ2, ϕ2). Then ∆β = {ϕ4c0+ϕ2c1+c2 :
c0, c1, c2 ∈ {0, 1, 2}}. In [6, Proposition 2.1], it is proved that Tβn,∆β

= Tnβ for all n ∈ N
if and only if fβ is non-decreasing. Since fβ(0, 2, 2) = 2ϕ2 + 2 > ϕ4 = fβ(1, 0, 0), the
tranformations Tϕ6,∆β

and π2 ◦ (T ext
β )3 ◦ δ0

∣∣[0,xβ)
differ by [6, Proposition 2.1].

Whenever fβ is not non-decreasing, the transformations Tβp−1···β0,∆β
and

π2 ◦ (T ext
β )p ◦ δ0

∣∣[0,xβ)
can either coincide or not. The following two examples illustrate

both cases. In particular, Example 7.9 shows that the sufficient condition given in Theo-
rem 7.6 is not necessary.

Example 7.8. Consider the alternate base β = (ϕ,ϕ,
√

5). Then ∆β = {
√

5ϕc0 +
√

5c1 +

c2 : c0, c1 ∈ {0, 1}, c2 ∈ {0, 1, 2}}. However, fβ(0, 1, 2) =
√

5 + 2 ' 4.23 and fβ(1, 0, 0) =√
5ϕ ' 3.61. It can be easily check that there exists x ∈ [0, xβ) such that T√5ϕ2,∆β

(x) 6=
π2 ◦ (T ext

β )3 ◦ δ0(x). For example, we can compute T√5ϕ2,∆β
(0.75) ' 0.15 and π2 ◦ (T ext

β )3 ◦
δ0(0.75) ' 0.77. The transformations T√5ϕ2,∆β

and π2 ◦ (T ext
β )3 ◦ δ0

∣∣[0,xβ)
are depicted in

Figure 12, where the red lines show the images of the interval
[√

5+2√
5ϕ2 ,

√
5ϕ+1√
5ϕ2

)
' [0.72, 0.78),

that is where the two transformations differ. Similarly, the transformations L√5ϕ2,∆β
and

π2 ◦ L3
β ◦ δ0

∣∣(0,xβ]
are depicted in Figure 13. As illustrated in red, the two transformations

differ on the interval φ√5ϕ2,∆β

([√
5+2√
5ϕ2 ,

√
5ϕ+1√
5ϕ2

))
' (0.82, 0.89].

Example 7.9. Consider the alternate base β = (3
2 ,

3
2 , 4). We have ∆β = [[0, 13]]. The

map fβ is not non-decreasing since we have fβ(0, 1, 3) = 7 and fβ(1, 0, 0) = 6. However,
T9,∆β

= π2 ◦ (T ext
β )3 ◦ δ0

∣∣[0,xβ)
and L9,∆β

= π2 ◦ L3
β ◦ δ0

∣∣[0,xβ)
. The transformation T9,∆β

is depicted in Figure 14.

The next example illustrates that it may happen that the transformations Tβp−1···β0,∆β

and π2 ◦ (T ext
β )p ◦ δ0

∣∣[0,xβ)
indeed coincide on [0, 1) but not on [0, xβ).
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0 xβ

xβ

1

1

0 xβ

xβ

1

1

Figure 12. The transformations T√5ϕ2,∆β
(left) and π2 ◦ (T ext

β )3 ◦ δ0
∣∣[0,xβ)

(right) with β = (ϕ,ϕ,
√

5).

0 xβ

xβ

xβ − 1

xβ − 1

0 xβ

xβ

xβ − 1

xβ − 1

Figure 13. The transformations L√5ϕ2,∆β
(left) and π2 ◦ L3

β ◦ δ0
∣∣[0,xβ)

(right) with β = (ϕ,ϕ,
√

5).

Example 7.10. Consider the alternate base β = (
√

5
2 ,
√

6
2 ,
√

7
2 ). Then fβ(0, 1, 1) > fβ(1, 0, 0)

and it can be checked that the maps T√210
8

,∆β
and π2 ◦ (T ext

β )3 ◦ δ0
∣∣[0,xβ)

differ on the in-

terval
[fβ(0,1,1)
β2β1β0

,
fβ(1,0,1)
β2β1β0

)
' [1.28, 1.44). However, the two maps coincide on [0, 1).

Finally, we provide a necessary and sufficient condition for the map fβ to be non-
decreasing.

Proposition 7.11. The map fβ is non-decreasing if and only if for all j ∈ [[1, p− 2]],

(15)
p−1∑
i=j

βp−1 · · ·βi+1(dβie − 1) ≤ βp−1 · · ·βj .
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0 xβ

xβ

1

1

Figure 14. The transformations T9,∆β
where β = (3

2 ,
3
2 , 4).

Proof. If the map fβ is non-decreasing then for all j ∈ [[1, p− 2]],

p−1∑
i=j

βp−1 · · ·βi+1(dβie − 1) = fβ(0, . . . , 0, 0, dβje − 1, . . . , dβp−1e − 1)

≤ fβ(0, . . . , 0, 1, 0, . . . , 0)

= βp−1 · · ·βj .

Conversely, suppose that (15) holds for all j ∈ [[1, p − 2]] and that (c0, . . . , cp−1) and
(c′0, . . . , c

′
p−1) are p-tuples in

∏p−1
i=0 [[0, dβie− 1]] such that (c0, . . . , cp−1) <lex (c′0, . . . , c

′
p−1).

Then there exists j ∈ [[0, p− 1]] such that c0 = c′0, . . . , cj−1 = c′j−1 and cj ≤ c′j − 1. We get

fβ(c0, . . . , cp−1) ≤
j∑
i=0

βp−1 · · ·βi+1c
′
i − βp−1 · · ·βj+1 +

p−1∑
i=j+1

βp−1 · · ·βi+1(dβie − 1)

≤
j∑
i=0

βp−1 · · ·βi+1c
′
i

≤ fβ(c′0, . . . , c
′
p−1).

�

Corollary 7.12. If p = 2 then Tβ1β0,∆β
= π2 ◦ (T ext

β )2 ◦ δ0
∣∣[0,xβ)

. In particular, Tβ1β0,∆β
∣∣[0,1)

=

Tβ1 ◦ Tβ0.

Proof. This follows from Theorem 7.6 and Proposition 7.11. �

Example 7.13. Consider once more the alternate base β = (1+
√

13
2 , 5+

√
13

6 ) from Exam-
ple 3.1. Then ∆β = {0, 1, β1, β1 + 1, 2β1, 2β1 + 1} and xβ = 2β1+1

β1β0−1 = 5+7
√

13
18 . The

transformations π2 ◦ (T ext
β )2 ◦ δ0

∣∣[0,xβ)
and π2 ◦ L2

β ◦ δ0
∣∣(0,xβ]

are depicted in Figure 15. By

Corollary 7.12, they coincides with Tβ1β0,∆β
and Lβ1β0,∆β

respectively.
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0 1

1

xβ

xβ

0 xβ − 1

xβ − 1

xβ

xβ

Figure 15. The transformations π2 ◦ (T ext
β )2 ◦ δ0

∣∣[0,xβ)
(left) and

π2 ◦ L2
β ◦ δ0

∣∣(0,xβ]
(right) for β = (1+

√
13

2 , 5+
√

13
6 ).

8. Further work

In this work, we concentrated on measure theoretical aspects of alternate base expan-
sions. A natural question would be to consider the topological point of view. For example, it
would be of interest to prove that the topological entropies of the topological dynamical sys-
tems under consideration coincide with the measure theoretical entropy 1

p log(βp−1 · · ·β0)

found in this paper. In particular, this would prove that the measure theoretical dynamical
systems studied in this paper are all of maximal entropy.
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