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What is a model ?

What is a model ?

A simplified representation of a complex phenomenon.

What are models used for?

Understand-Quantify / Complete / Predict / Assess
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What is a model ?

What is a model ?

A simplified representation of a complex phenomenon.

What are models used for?

Understand Observations:
I Confront Theory to Observations, ie. check hypotheses
I Unified framework

Complete Observations :
I Upscale Observations
I Quantify processes difficult to measure

Assess Scenarios
I Management
I Predict the Future (or attempt to)
I Reconstruct the Past

Understand-Quantify / Complete / Predict / Assess

A. Capet (http://labos.ulg.ac.be/mast/) Introduction to Environmental Modelling Oct 2019 3 / 65



What is a model ?

What is a model ?

A simplified representation of a complex phenomenon.

What are models used for?

Understand-Quantify / Complete / Predict / Assess

A. Capet (http://labos.ulg.ac.be/mast/) Introduction to Environmental Modelling Oct 2019 3 / 65



What is a model ?

How simple should a model be ?

“As simple as possible, but not simpler” [A. Einstein]

Arguments in favor of:
Simplicity

Computation Time

Facility of Analysis, description

Occam’s Razor

Lack of knowledge /
Observations

Complexity

Realism

Accuracy

Inner ’local’ mechanisms support
system ’global’ properties
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Type of models
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Type of models
Statistical Models

Basis : Observations &
Statistics

Example: Species Distribution
modelling

Hypothesis : environmental
conditions act as the first filter
to determine species
distribution.

Expressed as : Calibrated
relationships.

Use : Predict species
distribution in unsampled sites

Limitation : Extrapolation
outside of obs. range ?
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Type of models
Mechanistic Models

Basis : Knowledge on Processes

Example: Meteo, Ocean circulation, growth, etc ..

Hypothesis : Mechanisms and interactions does not
changes, and rules the evolution of the system.

Expressed as : (Often) Set of differential equations

Use : Understand, Forecast, Scenario.

Limitation : Demanding, needs loads of simplification,
assumptions ..
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Building a model
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Building a model
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Research Questions
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Research Questions

Research Questions

Clear formulation of the research question should lead decisions for all
elements of the model
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Research Questions

n Research Context n

Our study mainly focuses on

increased production of organic
matter (faeces and
pseudofaeces)

food depletion by the growth of
biofouling

impacts on biogeochemical
processes via respiration and
excretion.
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Research Questions

n Research Questions n
How deep can the blue mussels grow under mixed/stratified
conditions,

Will there be local depletion of food resources such as phytoplankton,
zooplankton and detritus ?

Will mussels on seabed have the same effect as mussel on the
structure ?

Does type of turbine and distance between them impacts on the
accumulation of mussel biomass and on ecosystem and
biogeochemical dynamics ?
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Scales
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Scales

Spatial Scales

Relevant scales for system dynamics ?

Relevant scale for operating processes ?

Non-linearities ?

Anisotropy? In forcings ? in processes ?

Length scale of spatial resolution for available observations ?

Memory !
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Scales

n Spatial Scales n
1-dimension

25 m pylone

50 layers of 0.5 m each

Horizontal length scales: characterized with parameters
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Scales

Temporal Scales

Relevant scales for system dynamics

Relevant scale for operating processes

Non-linearities

Periodicity in forcings ?

CPU !
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Scales

n Temporal Scales n
Seasonal Temperature Cycle

Typical rates: Day → Weeks

→ Simulations of a few years, timestep of 1 day.
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State Variables
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2 Conceptual model
Research Questions
Scales
State Variables
Processes & Flows

3 Mathematical model formulation
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Processes & Rates
Processes & Rates

4 Practical Works
Thursday
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State Variables

State variables

State variables define the state of our simplified system, at any time.

Those are the descriptors for which we have to provide ’Rules of
evolution‘, in the form of differential equation.

Usually, those rules are derived from mass conservation principles

→ State Variables needs to be expressed in a common conservative
currency.
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State Variables

n State variables n

3 Components:

Physics

Biogeochemistry

Mussels
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State Variables

n State variables n

3 Components:

Physics
I No feed backs from others
→ Can remains external

Biogeochemistry

Mussels
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State Variables

n State variables n
3 Components:

Physics

Biogeochemistry
I NPZD Approach
I Only N limits growth.
→ Currency: [mmolNm−3]

I F Inorganic
F Living Organic
F Dead Organic

Mussels
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State Variables

n State variables n
3 Components:

Physics

Biogeochemistry
I NPZD Approach
I Only N limits growth.
→ Currency: [mmolNm−3]

I F Inorganic
F Living Organic
F Dead Organic

Mussels

ammonium: NH4

nitrate: NO3

phytoplankton: PHYTO

zooplankton: ZOO

detr.: PELDETRITUS

bot. detr.: BOTDETRITUS
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State Variables

n State variables n
3 Components:

Physics

Biogeochemistry

Mussels
I ! Different domains !
→ Need to convert Biomass on

pylons
→ [indm−2] → [mmolNm−3]
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Processes & Flows
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Processes & Flows

Mass Balance Equation

Connect Flows among state variables

Identify controls on those flows
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Processes & Flows

n Flows n

Phytoplankton

Uptake Nutrients for
Growth

I NH3 and NO3
I NH3 first
I Light limitation

(depth)

Sink

Die
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Processes & Flows

n Flows n

Zooplankton

Graze on
Phytoplankton

Sink

Egest nutrient

Die
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Processes & Flows

n Flows n

Detritus

Decay

Sink
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Processes & Flows

n Flows n

Mussels

Excrete and respire

Produce Faeces and
pseudofaeces

Graze on PHY,
ZOO, DETRITUS

Fall

Die
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Processes & Flows

n Physical Transport n
All pelagic variable are transported by diffusion (vertically mixed).

PHY and DETRITUS have additional vertical sinking

A. Capet (http://labos.ulg.ac.be/mast/) Introduction to Environmental Modelling Oct 2019 25 / 65



Processes & Flows

External Controls on Processes

Temperature affect growth and decay rates.

Turbulent diffusion coefficient controls vertical diffusion.

Light availability limits planktonic growth.
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State Variables
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State Variables

State Vector

Spatial domain is divide in NCell cells.

Sytem defined by NVar State Variables.

The state of the system at time t, C (t), can be stored numerically as
a vector of size NCell .NVar .

n State Vector n
NO3, NH4, PHY, ZOO, DET, and BIVALVE are defined along the
vertical grid.

PELDETRITUS is defined only at the bottom.

Our state vector contains 6x50+1=301 element.
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State Variables
Mussel Counts

Monopiles distant of D1 and D2, and of radius r .

For a given layer (dz)
I Surface of monopile section : 2.π.r .dz
I Volume of water : D1.D2.dz

100 mmolNm−2 mussels on monopile → 100x
(

2πr
D1.D2

)
mmolNm−3

in water layer.
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Processes & Rates

1 Basics Concepts
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Processes & Rates

Equation of evolution for the State Vector

C (t) is the state vector at a given time t.

∂C
∂t is the temporal rate of change of the state vector.

C (t + ∆t) = C (t) + ∂C
∂t ∆t

The equation of evolution for C (t) has the form ∂C
dt = f (C , t)
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Processes & Rates

Transport & Reaction

Transport

& Reaction

dC
dt in the control volume = Mass inflow −Mass outflow

±Reactions

Today, we won’t deal with transport terms, only reaction rates

We express Reaction rates through Mass Balance Equations
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Processes & Rates

n Color Code n
Type Unit Example

State Variable [mmolNm−3] PHY
Processe [mmolNm−3 d−1] MortalityPHY
Parameter diff. sinkingRatePhyt,[md−1]
Work Variable diff., mostly unitless f (T ), [-]
Forcing diff. T
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Processes & Rates

n Mass Balance Equation for PHY n
∂ PHY

∂t
= DiffusionPHY + SinkingPHY

+NPP − Grazingby ZOO − Grazingby BIVAL −MortalityPHY
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Processes & Rates

n Mass Balance Equation for PHY n
∂ PHY

∂t
= DiffusionPHY + SinkingPHY︸ ︷︷ ︸

Transport

+NPP − Grazingby ZOO − Grazingby BIVAL −MortalityPHY
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Processes & Rates

n Mass Balance Equation for PHY n
∂ PHY

∂t
= DiffusionPHY + SinkingPHY

+NPP− Grazingby ZOO − Grazingby BIVAL −MortalityPHY

n NPP n

NPP = maxUptake.PHY .min(f (I ), f (DIN)).f (T )

maxUptake Maximum Uptake of Dissolved Inorganic Nitrogen d−1

f (I ) Light limitation [-]
f (DIN) DIN limitation [-]
f (T ) Temp. effect on growth [-]
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Processes & Rates

n NPP n

NPP = maxUptake.PHY .min(f (I ), f (DIN)).f (T )

maxUptake Maximum Uptake of Dissolved Inorganic Nitrogen d−1

f (I ) Light limitation [-]
f (DIN) DIN limitation [-]
f (T ) Temp. effect on growth [-]

n Light limitation n
f (I ) = tanh

(
I (z , t)

Iopt

)
I (z , t) Light Wm−2

Iopt Optimum light intensity Wm−2
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Processes & Rates

n NPP n

NPP = maxUptake.PHY .min(f (I ), f (DIN)).f (T )

maxUptake Maximum Uptake of Dissolved Inorganic Nitrogen d−1

f (I ) Light limitation [-]
f (DIN) DIN limitation [-]
f (T ) Temp. effect on growth [-]

n Nutrient Limitation n
f (DIN) =

NO3

NO3 + ksNO3
.e−ψ.NH3 +

NH3

NH3 + ksNH3

ksNO3 Half-saturation coefficient for NO3 uptake [mmolNm−3]
ksNH3 Half-saturation coefficient for NH3 uptake [mmolNm−3]
ψ Inhibition coefficient for NH4 [mmolN−1m3]
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Processes & Rates

n NPP n

NPP = maxUptake.PHY .min(f (I ), f (DIN)).f (T )

maxUptake Maximum Uptake of Dissolved Inorganic Nitrogen d−1

f (I ) Light limitation [-]
f (DIN) DIN limitation [-]
f (T ) Temp. effect on growth [-]

n Temperature effect on Growth n
f (T ) = Q10

(
T−Tref

10

)
Q10 Temperature coefficient [-]
Tref Reference temperature [C]
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Processes & Rates

n Mass Balance Equation for PHY n
∂ PHY

∂t
= DiffusionPHY + SinkingPHY

+NPP − Grazingby ZOO − Grazingby BIVAL −MortalityPHY

n Grazingby ZOO n
Grazingby ZOO = maxGrazing .

PHY

PHY + ksPHY
.ZOO.f (T )

maxGrazing Maximum grazing rate by zooplankton d−1

ksPHY Half-saturation for zoo grazing on phyto [mmolNm−3]
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Processes & Rates

n Mass Balance Equation for PHY n
∂ PHY

∂t
= DiffusionPHY + SinkingPHY

+NPP − Grazingby ZOO − Grazingby BIVAL −MortalityPHY

n Grazingby BIVAL n
Grazingby BIVAL = maxClear .BIVAL.PHY .

(
1− BIVAL

maxB

)
.f (T )

maxClear Clearance rate of the mussels [mmolNm−3 d−1

maxB Carrying capacity [mmolNm−3]
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Processes & Rates

n Mass Balance Equation for PHY n
∂ PHY

∂t
= DiffusionPHY + SinkingPHY

+NPP − Grazingby ZOO − Grazingby BIVAL −MortalityPHY

n MortalityPHY n
MortalityPHY = mortalityRatePhyt.PHY .f (T )

mortalityRatePhyt Phyto mortality rate [d−1]
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Processes & Rates

n Mass Balance Equation for NO3 n
∂ NO3

∂t
= DiffusionNO3 − (1− α).NPP + Nitrification

α Inhibition of NO3 uptake by the presence of NH3 [-]
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Processes & Rates

n Mass Balance Equation for NO3 n
∂ NO3

∂t
= DiffusionNO3 − (1− α).NPP + Nitrification

α Inhibition of NO3 uptake by the presence of NH3 [-]

n α n
α =

(
1

f (DIN)

)
.

(
NH3

NH3 + ksNH3

)
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Processes & Rates

n Mass Balance Equation for NO3 n
∂ NO3

∂t
= DiffusionNO3 − (1− α).NPP + Nitrification

α Inhibition of NO3 uptake by the presence of NH3 [-]

n Nitrification n
Nitrification = NitR.NH3.f (T )

NitR Nitrification Rate [d−1]
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Processes & Rates

n Mass Balance Equation for NH3 n
∂ NH3

∂t
= DiffusionNH3

+ExcretionZOO + ExcretionBIVAL

+RespirationZOO + RespirationBIVAL

−Nitrification − (α).NPP

+MineralPELDETRITUS + MineralBOTDETRITUS
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Processes & Rates

n Mass Balance Equation for NH3 n
∂ NH3

∂t
= DiffusionNH3

+ExcretionZOO + ExcretionBIVAL

+RespirationZOO + RespirationBIVAL

−Nitrification − (α).NPP

+MineralPELDETRITUS + MineralBOTDETRITUS

n ExcretionZOO n
ExcretionZOO = excretionRateZOO .ZOO.f (T )

excretionRateZOO Excretion rate of zooplankton [d−1]
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Processes & Rates

n Mass Balance Equation for NH3 n
∂ NH3

∂t
= DiffusionNH3

+ExcretionZOO + ExcretionBIVAL

+RespirationZOO + RespirationBIVAL

−Nitrification − (α).NPP

+MineralPELDETRITUS + MineralBOTDETRITUS

n ExcretionBIVAL n
ExcretionBIVAL = excretionRateBIVAL.BIVAL.f (T )

excretionRateBIVAL Excretion rate of zooplankton [d−1]
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Processes & Rates

n Mass Balance Equation for NH3 n
∂ NH3

∂t
= DiffusionNH3

+ExcretionZOO + ExcretionBIVAL

+RespirationZOO + RespirationBIVAL

−Nitrification − (α).NPP

+MineralPELDETRITUS + MineralBOTDETRITUS

n RespirationZOO n
RespirationZOO = RespirationRateZOO .ZOO.f (T )

RespirationRateZOO Respiration rate of zooplankton [d−1]
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Processes & Rates

n Mass Balance Equation for NH3 n
∂ NH3

∂t
= DiffusionNH3

+ExcretionZOO + ExcretionBIVAL

+RespirationZOO + RespirationBIVAL

−Nitrification − (α).NPP

+MineralPELDETRITUS + MineralBOTDETRITUS

n RespirationBIVAL n
RespirationBIVAL = RespirationRateBIVAL.BIVAL.f (T )

RespirationRateBIVAL Respiration rate of Mussels [d−1]
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Processes & Rates

n Mass Balance Equation for NH3 n
∂ NH3

∂t
= DiffusionNH3

+ExcretionZOO + ExcretionBIVAL

+RespirationZOO + RespirationBIVAL

−Nitrification − (α).NPP

+MineralPELDETRITUS + MineralBOTDETRITUS

n MineralPELDETRITUS n
MineralPELDETRITUS = mineralRatePel .PELDETRITUS .f (T )

mineralRatePel Mineralisation Rate for Pel. Detr. [d−1]
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Processes & Rates

n Mass Balance Equation for ZOO n
∂ ZOO

∂t
= DiffusionZOO + ZooGrowth − ExcretionZOO

−RespirationZOO −MortalityZOO − GrazingZOObyBIVAL
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Processes & Rates

n Mass Balance Equation for ZOO n
∂ ZOO

∂t
= DiffusionZOO + ZooGrowth− ExcretionZOO

−RespirationZOO −MortalityZOO − GrazingZOObyBIVAL

n ZooGrowth n
ZooGrowth = (1− FaecesZOO).Grazingby ZOO

FaecesZOO Fraction of zooplankton faeces [-]
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Processes & Rates

n Mass Balance Equation for ZOO n
∂ ZOO

∂t
= DiffusionZOO + ZooGrowth − ExcretionZOO

−RespirationZOO −MortalityZOO − GrazingZOObyBIVAL

n MortalityZOO n
MortalityZOO = mortalityRateZoo.ZOO2.f (T )

mortalityRateZoo Mortality rate of zooplankton [d−1]
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Processes & Rates

n Mass Balance Equation for ZOO n
∂ ZOO

∂t
= DiffusionZOO + ZooGrowth − ExcretionZOO

−RespirationZOO −MortalityZOO − GrazingZOObyBIVAL

n GrazingZOObyBIVAL n

GrazingZOObyBIVAL = maxClear .BIVAL.ZOO.

(
1− BIVAL

maxB

)
.f (T )
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Processes & Rates

n Mass Balance Equation for BIVAL n
∂ BIVAL

∂t
= GrazingBival + GrazingBivalZOO + GrazingBivalDET

−FaecesBP − FaecesBD − FaecesBZ

−ExcretionBIVAL− FallingBivalve − RespirationBIVAL

−PseudofaecesP − PseudofaecesZ −−PseudofaecesD
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Processes & Rates

n Mass Balance Equation for BIVAL n
∂ BIVAL

∂t
= GrazingBivalPHY + GrazingBivalZOO + GrazingBivalDET

−FaecesBP − FaecesBD − FaecesBZ

−ExcretionBIVAL− FallingBivalve − RespirationBIVAL

−PseudofaecesP − PseudofaecesZ −−PseudofaecesD

n GrazingBivalDET n

GrazingBivalDET = maxClear .BIVAL.PELDETRITUS .

(
1− BIVAL

maxB

)
.f (T )
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Processes & Rates

n Mass Balance Equation for BIVAL n
∂ BIVAL

∂t
= GrazingBivalPHY + GrazingBivalZOO + GrazingBivalDET

−FaecesBP− FaecesBD − FaecesBZ

−ExcretionBIVAL− FallingBivalve − RespirationBIVAL

−PseudofaecesP − PseudofaecesZ −−PseudofaecesD

n FaecesBP n
FaecesBP = pFaecesBP.GrazingBivalPHY

pFaecesBP Production faeces by consuming phytoplankton [-]
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Processes & Rates

n Mass Balance Equation for BIVAL n
∂ BIVAL

∂t
= (1− pFaecesBP − pPseudoBP).GrazingBivalPHY

+(1− pFaecesBZ − pPseudoBZ ).GrazingBivalZOO

+(1− pFaecesBD − pPseudoBD).GrazingBivalDET

−ExcretionBIVAL − FallingBivalve − RespirationBIVAL
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Processes & Rates

n Mass Balance Equation for BIVAL n
∂ BIVAL

∂t
= (1− pFaecesBP − pPseudoBP).GrazingBivalPHY

+(1− pFaecesBZ − pPseudoBZ ).GrazingBivalZOO

+(1− pFaecesBD − pPseudoBD).GrazingBivalDET

−ExcretionBIVAL − RespirationBIVAL − FallingBivalve
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Processes & Rates

n Mass Balance Equation for BIVAL n
∂ BIVAL

∂t
= (1− pFaecesBP − pPseudoBP).GrazingBivalPHY

+(1− pFaecesBZ − pPseudoBZ ).GrazingBivalZOO

+(1− pFaecesBD − pPseudoBD).GrazingBivalDET

−ExcretionBIVAL − RespirationBIVAL − FallingBivalve

n FallingBivalve n
FallingBivalve = pFall .BIVAL

pFall Falling Rate [d−1]
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Processes & Rates

n Mass Balance Eq. for PELDETRITUS n
∂ PELDETRITUS

∂t
= DiffusionPELDETRITUS + SinkingPELDETRITUS

+FaecesZ + FaecesBP + FaecesBD + FaecesBZ

+PseudofaecesP + PseudofaecesZ + PseudofaecesD

+MortalityPHY + MortalityZOO

−MineralPELDETRITUS − GrazingBivalDET
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Processes & Rates

n Mass Balance Eq. for BOTDETRITUS n
∂ BOTDETRITUS

∂t
= sinkingRatePHY .PHY |Bottom

+sinkingRatePELDETRITUS .PELDETRITUS |z=Bottom

+
N∑
i=1

[FallingBivalve|z=Bottom]

−MineralisationBot
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Processes & Rates

1 Basics Concepts
What is a model ?
Type of models
Building a model

2 Conceptual model
Research Questions
Scales
State Variables
Processes & Flows

3 Mathematical model formulation
State Variables
Processes & Rates
Processes & Rates

4 Practical Works
Thursday
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Processes & Rates

Equation of evolution for the State Vector

C (t) is the state vector at a given time t.
∂C
∂t is the temporal rate of change of the state vector.

C (t + ∆t) = C (t) + ∂C
∂t ∆t

The equation of evolution for C (t) has the form ∂C
dt = f (C , t)

It remains to
I Assign initial conditions to variables : C (t = O)
I Use the formulations of ∂C

∂t to compute the next time steps ...
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Thursday

1 Basics Concepts
What is a model ?
Type of models
Building a model

2 Conceptual model
Research Questions
Scales
State Variables
Processes & Flows

3 Mathematical model formulation
State Variables
Processes & Rates
Processes & Rates

4 Practical Works
Thursday
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Thursday

Run the model

Plot model outputs

Play with parameters

Extract and store model outputs for further use
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Thursday

That’s all Folks !
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