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 28 

Summary 29 

 30 

● Regulation of plant Zn acquisition is poorly understood, while Zn deficiency affects over 2 billion 31 

people worldwide. We therefore dissected the dynamic response to changes in Zn supply in 32 

Arabidopsis. 33 

● Hydroponically-grown Zn starved plants were re-supplied with Zn. Subsequent time-resolved 34 

sampling strategy allowed concomitant quantification of the dynamics of Zn uptake, microsomal 35 

and soluble proteins, and specific transcripts, in space (roots and shoots) and time. 36 

● Zn accumulates in roots within 10min, but 8h are needed before shoot Zn increases. By 8h, root 37 

Zn concentration was ~60% of non-starved plants. Overexpressed root Zn transporters further 38 

peaked in 10-30min post re-supply, before reaching a minimum in 120min and 200 ppm Zn. Zn-39 

responding signaling/regulatory molecules include receptor and MAP kinases, calcium signaling 40 

proteins, phosphoinositides, G-proteins, COP9 signalosome members, as well as multiple 41 

transcription factors. 42 

● Zn acquisition is a highly controlled dynamic process. Our study identifies novel players in Zn 43 

homeostasis and points to cross-talk with other nutrients. It paves the way for directed 44 

investigation of so far omitted candidates which dynamically respond to sudden changes in Zn 45 

supply but are expressed at similar levels at steady-state Zn deficiency and sufficiency. 46 

 47 

 48 
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Introduction 52 

Zinc (Zn) is an essential micronutrient for all organisms (Ricachenevsky et al., 2015). In plants, Zn is 53 

important for plant growth and development, as well as increased tolerance to abiotic stress and 54 

resistance against pathogens (Broadley et al., 2007; Palmgren et al., 2008; Huang et al., 2009; Kodaira et 55 

al., 2011). Zn deficiency can cause loss of enzyme activity, photosynthesis inhibition resulting in leaf 56 

chlorosis, reduced root growth, poor floral fertility, low biomass, and poor quality in reproductive 57 

structures. Zn excess is also detrimental to plants, resulting in reduced growth, chlorosis and altered 58 

nutrient homeostasis (Broadley et al., 2007; Nouet et al., 2011; Sinclair & Krämer, 2012). In nature, plants 59 

face these opposite challenges. Soils are indeed Zn deficient in large areas worldwide, resulting in about 60 

one third of the human population risking Zn deficiency with severe health impact (Alloway, 2009). In 61 

contrast, Zn-contaminated soils are the result of a range of anthropogenic activities (Broadley et al. 2007). 62 

On individual basis, plant roots may have to face non-homogeneous Zn availability in soils when growing 63 

and have to rapidly adjust their response. Thus, plants encounter highly variable conditions in time and 64 

space during their lifetime and possess sophisticated molecular mechanisms, referred to as Zn 65 

homeostasis, that adjust the amount of Zn in various tissues and during development to a wide range of 66 

Zn availability, to ensure optimum nutrition and growth (Palmer & Guerinot, 2009; Briat et al., 2015). 67 

Cellular Zn, as well as copper (Cu), cadmium (Cd) and possibly manganese (Mn), uptake is mediated by 68 

Zinc-Regulated Transporter/Iron-Regulated Transporter proteins [ZRT/IRT-like proteins (ZIPs)], which are 69 

hypothesized to play an important role in Zn absorption from soil (Krämer et al., 2007; Milner et al., 2013; 70 

Ricachenevsky et al., 2015). Arabidopsis possesses 15 ZIP transporter-encoding genes of which ZIP1 to 71 

ZIP10 are transcriptionally upregulated under Zn deficiency. Some ZIP proteins are localized in the root 72 

plasma membrane (e.g. ZIP2); some at the tonoplast (e.g. ZIP1). IRT1 is a plasma membrane transporter 73 

responsible for primarily iron (Fe), but also Zn and Cd, uptake from soil (Vert et al., 2002). Its transcript 74 

and protein levels are increased under excess Zn (Barberon et al., 2011). IRT2 has a transcriptional 75 

response similar to IRT1, while the IRT3 expression is increased upon Zn deficiency (Talke et al., 2006; 76 

Palmer & Guerinot, 2009; Vert et al., 2009). The precise function of most ZIPs remains to be elucidated 77 

(Ricachenevsky et al., 2015). 78 

After uptake, the amount of Zn available for translocation to shoots results from the balance between root 79 

vacuolar storage and radial transport (Hanikenne & Nouet, 2011; Deinlein et al., 2012; Claus et al., 2013). 80 
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Storage of excess Zn and Zn translocation to shoots are mediated, among other transporters, by Heavy 81 

Metal ATPase (HMA) Zn/Cd pumps (Williams & Mills, 2005; Hanikenne & Baurain, 2014) and by Cation 82 

Diffusion Facilitator proteins [CDF, called Metal Transport Proteins (MTPs) in plants] (Sinclair & Krämer, 83 

2012). HMA3 is localized to vacuolar membrane and contributes to Zn, and Cd, storage in vacuoles, 84 

accommodating Zn excess (Gravot et al., 2004; Morel et al., 2009). MTP1 and MTP3 also transport Zn into 85 

the vacuole, and the two corresponding genes are expressed differentially in distinct tissues. MTP1 is 86 

involved in basal Zn tolerance, whereas the MTP3 gene is induced upon Zn excess or Fe deficiency in a FIT 87 

(FER‐Like Iron Deficiency‐Induced Transcription Factor)-dependent manner to store excess Zn in roots 88 

(Colangelo & Guerinot, 2004; Desbrosses-Fonrouge et al., 2005; Arrivault et al., 2006). HMA4 and HMA2 89 

are plasma membrane pumps and transport Zn from the root pericycle cells to the apoplast in the xylem, 90 

playing a key role in Zn translocation to shoots (Hussain et al., 2004; Hanikenne et al., 2008). Unlike HMA4, 91 

the HMA2 transcript levels are increased under Zn deficiency and are systemically responding to an 92 

unidentified shoot-born signal (Wintz et al., 2003b; Sinclair et al., 2018). The MTP2 gene, which is strongly 93 

responding to Zn deficiency, is contributing together with HMA2 to Zn translocation to shoots in these 94 

conditions (Sinclair et al., 2018). 95 

Zn transport over plasma or vacuolar membranes occurs as a free ion or bound to various 96 

ligands/chelators. Intracellular Zn ions are exclusively present as chelates, with for instance histidine, 97 

nicotianamine (NA) or organic acids, in the cytosol or are compartmentalized primarily in the vacuole 98 

(Sinclair & Krämer, 2012; Sharma et al., 2016). 99 

The mechanisms controlling Zn transporter transcriptional regulation are far less known. In contrast to Fe 100 

homeostasis (Thomine & Vert, 2013; Brumbarova et al., 2015; Yan et al., 2016), few transcriptional 101 

regulators of Zn homeostasis are described. The ZIP gene regulation is partially explained by the function 102 

of bZIP19 and bZIP23, two Zn deficiency-responsive TFs that in addition to most ZIPs also regulate NAS (NA 103 

synthase) genes in response to Zn deficiency (Assunção et al., 2010; Inaba et al., 2015). Reversible binding 104 

of free Zn to Cys/His-rich motif of these TFs is proposed to regulate their activity (Assunção et al., 2013). 105 

Only very basic knowledge exists about how Zn status is sensed within plant tissues, and the information 106 

pathway that results in adjusted Zn transport and overall homeostasis remains unknown. Signaling 107 

molecules, e.g. phytohormones (Masood et al., 2012; Fan et al., 2014; Wang et al., 2015) as well as nitric 108 

oxide and Reactive Oxygen Species (Chmielowska-Bąk et al., 2014), have been implicated in Cd and Zn 109 
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excess responses and linked to Mitogen-Activated Protein Kinase (MAPK) cascades and calcium signaling 110 

(Luo et al., 2016). However, all of these molecules are biosynthetic products whose pathways need to be 111 

initiated by a primary signal. 112 

To identify new players of Zn homeostasis in plants, a number of large-scale studies have focused on 113 

transcriptional changes (Wintz et al., 2003a; Becher et al., 2004; Talke et al., 2006; van de Mortel et al., 114 

2006). Only a few proteomic studies of Zn homeostasis exist (Farinati et al., 2009; Fukao et al., 2009; Fukao 115 

et al., 2011; Chiapello et al., 2015; Lucini & Bernardo, 2015; Zargar et al., 2015b), analyzing the response 116 

to Zn excess/toxicity in Arabidopsis. These studies used plants constitutively grown at high Zn whereas 117 

deficiency, as a global problem, was not addressed (Inaba et al., 2015; Zargar et al., 2015a). In all cases, 118 

tissues were harvested at a single time point, effectively taking a snapshot of the physiological adjustment 119 

to increased Zn levels. Here, we used Zn-starved Arabidopsis plants and monitored their proteome in 120 

parallel to ionome and selected transcripts, in short time points post Zn re-supply to reveal early and 121 

dynamic responses upon a change in Zn supply in plants. 122 

Materials and methods 123 

Plant material cultivation, harvest and phenotyping 124 

Arabidopsis thaliana (Col-0) was grown with 8h light per day at 100 µE/m2.s, 20°c. Seeds were germinated 125 

on plates with half MS medium (Murashige & Skoog, 1962) and 1% sucrose. After two weeks, plants were 126 

moved onto hydroponic trays (Araponics, Belgium) in modified Hoagland medium (Nouet et al. 2015) with 127 

Zn-sufficient medium (1 µM Zn) for two weeks. Fresh medium was exchanged weekly. Then, medium 128 

without Zn was used for three weeks. Before harvest, control medium (1 µM Zn) was re-supplied and roots 129 

and shoots were harvested 10, 30, 120 and 480minutes post re-supply (Fig. S1). In addition, roots and 130 

shoots from Zn-starved plants and from plants grown under 1 µM Zn during the 3 weeks were harvested 131 

as controls; in these cases, the respective medium was last exchanged 8 hours before harvest. Harvest 132 

took place in a 2h45 window at day end. Two sets of plants were grown in parallel. Plants for elemental 133 

analysis were processed as described (Nouet et al., 2015). Plants for molecular analyses were harvested in 134 

liquid nitrogen and stored at -80°C. Three biological replicates (pools of 3-4 plants) were obtained for each 135 

time point. 136 
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Quantitative RT-PCR 137 

Total RNA was extracted using the RNeasy Plant Mini kit with on-column DNase treatment (Qiagen). cDNAs 138 

were synthesized with 1µg of total RNA by the RevertAid H Minus First Strand cDNA Synthesis kit with 139 

Oligo dT (Thermo Scientific). Quantitative PCRs were performed using Mesa Green qPCR MasterMix 140 

(Eurogentec) in 384-well plates with a Quantstudio Q5 system (Applied Biosystems) and primers listed in 141 

Table S1. Reactions were performed in 3 technical replicates for each biological replicate. Relative gene 142 

expression levels were calculated by the 2-∆∆Ct method (Pfaffl et al., 2001) using multiple reference genes 143 

(EF1α, At1g18050) (Nouet et al., 2015) for normalization with the qBase software (Biogazelle). 144 

Ionome profiling 145 

Plant material was digested and used to perform elemental analysis using inductively coupled plasma 146 

atomic emission spectroscopy (ICP-OES) as described (Nouet et al., 2015). 147 

Sample preparation for mass-spectrometry 148 

Frozen tissue was re-suspended in cold extraction buffer (100mM Hepes/KOH pH7.5, 250mM Sucrose, 149 

10% w/v Glycerol, 5mM EDTA, 5mM Ascorbic acid, 2% PVPP, 5mM DTT) with protease and phosphatase 150 

inhibitors (Sigma Aldrich and Serva). Microsomal fraction was separated as in Kierszniowska et al., (2009). 151 

The microsomal pellet was washed with extraction buffer without PVPP and re-suspended in 100-200µL 152 

extraction buffer with SDS. Protein concentration was determined using Bradford (Thermo Fisher 153 

Scientific). Where necessary, soluble fraction proteins were pelleted with 3-5 times ice cold acetone. The 154 

SDS concentration was adjusted to 1% (w/w). Proteins were reduced with 10mM DTT for 30min, alkylated 155 

in 20mM Iodacetamide for 20min in the dark, and reduction was repeated in 21mM final concentration of 156 

DTT. 157 

Proteins were precipitated using the 2D Clean-up Kit (GE Healthcare). The pellet was reconstituted in 158 

50mM ammonium bicarbonate and digested with Trypsin (1/50 w/w) overnight at 37°C, followed with a 159 

second Trypsin digestion (1/100 w/w) in 80% Acetonitrile at 37°C for 4 hours. The reaction was stopped 160 

with 0.5% Trifluoroacetic Acid (w/v). 20µg of digested protein were desalted using 8µg C18 ZipTip 161 

(Millipore, Bedford, MA, USA). Approximately 1.5µg protein was injected into Acquity M-Class UPLC 162 

(Waters). Peptides were separated using a 180min gradient which increased from 0 to 40% acetonitrile in 163 

150min and then moved up to 80% acetonitrile. 164 
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Eluted peptides were analyzed online on a Q Exactive Plus Orbitrap mass spectrometer (Thermo Scientific) 165 

operated with nanoESI in positive mode, with TopN-MSMS method, where N = 12. MS spectra were 166 

acquired with Mass range - 400 to 1750 m/z, Resolution of 70000, AGC target of 1e6 or Maximum injection 167 

time of 50 ms. The parameters for MS2 spectra were: Isolation Window of 2.0 m/z, Collision energy (NCE) 168 

of 25, Resolution of 17500, AGC target of 1e5 or Maximum injection time of 50 ms.  169 

Proteomics data analysis and candidate selection 170 

The membrane and soluble fractions for both shoot and root tissues for each biological replicate were 171 

measured independently. The 72 ‘.raw’ files have been deposited to the ProteomeXchange Consortium 172 

via the PRIDE partner repository (Deutsch et al., 2017; Perez-Riverol et al., 2019) with dataset identifiers 173 

PXD013049 – root, and PXD013050 - shoot, sample identifiers are in Data S1 (data publicly available after 174 

official publication). 175 

Mass spectra were processed with the MaxQuant software v.1.3.0.5 (Cox & Mann, 2008). The following 176 

settings were changed from the default: a minimum of 2 peptides for peptide identification out of which 177 

one had to be unique, match between runs set to 2min. The proteins were quantified using cRacker 178 

(Zauber & Schulze, 2012). After fold change calculations and for MapMan visualization (Usadel et al., 179 

2009), protein intensities were log2 transformed. Biological pathway analysis was performed with 180 

MapMan v. 3.6.0RC1 (Usadel et al., 2009). Functional enrichment was performed using the 181 

https://usadellab.github.io/MapManJS/test_oo11.html (Schwacke et al., 2019) Data S6, categories were 182 

compared to the entire dataset (i.e. all proteins detected in all samples, 6463 proteins). 183 

Results 184 

Plant phenotype upon Zn starvation and re-supply 185 

After 3 weeks of Zn starvation, plants had smaller rosettes than control plants, wavy leaf edges and partial 186 

chlorosis, which concentrated around the vein regions and the younger leaves in the center of the rosette 187 

(Fig. 1a,b). Zn levels in roots and shoots of Zn-starved plants were significantly lower than in Zn-sufficient 188 

plants (Fig. 1c). 189 

Upon Zn re-supply, the kinetics and magnitude of Zn accumulation in roots was quite striking. Significantly 190 

greater Zn was observed in roots of Zn re-supplied plants than of starved plants as early as 10 min upon 191 

re-supply (Fig. 1c). This difference remained across most consecutive time points and within 8h Zn 192 
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concentration in roots increased by 13 fold. Zn accumulation in shoots lagged behind that of roots; a 193 

significant increase was not observed until 8h post Zn re-supply. The maximum Zn level reached in shoots 194 

was 84 ppm, only 68 ppm higher than the Zn levels in Zn-starved roots, and far from the levels in Zn-195 

sufficient rosettes, indicating that full re-accumulation of Zn would take more than 8h (Fig. 1c). 196 

Fe, Cu and Mn levels were significantly higher in roots and shoots of Zn-starved compared to Zn-sufficient 197 

plants (Fig. 1d-f). Fe and Cu levels in roots responded dynamically to Zn re-supply, declining between 10 198 

and 120 min compared to Zn-starved plants followed by re-accumulation. In shoots, only moderate 199 

changes in Fe and Cu levels were observed (Fig. 1d,e). In contrast, Mn levels quickly increased in both roots 200 

and shoots up to 30min (Fig. 1f) and then decreased to levels observed in Zn-sufficient plants. 201 

Transcriptional dynamics of known Zn-regulated genes 202 

Transcript levels of known Zn-regulated genes, ZIP3, ZIP9 and IRT3 (Talke et al., 2006), were higher in Zn-203 

starved compared to Zn-sufficient plants (Fig. 1g-h), and displayed similar, highly dynamic pattern through 204 

time (Fig. 1g-h). In roots, ZIP9 and IRT3 transcript levels increased significantly during the first 10min. After 205 

30min, the expression level of the 3 genes decreased compared to Zn-starved conditions to either reach a 206 

minimum at 120min, lower than expression in Zn-sufficient plants (ZIP3 and IRT3), or reach the expression 207 

level in Zn-sufficient plants (ZIP9). ZIP3 and IRT3 displayed a sinusoidal-like expression pattern with the 208 

maximum and minimum occurring between the starved and sufficient conditions. In shoots, the gene 209 

expression levels remained stable until 120min, and only significantly decreased after 480min, remaining 210 

much higher than in Zn-sufficient plants (Fig. 1g-h). 211 

In contrast to ZIP genes, the bZIP19 and bZIP23 transcripts did not show much expression variation, except 212 

for bZIP23 which displayed a slow decrease of expression level through time in shoots, with significantly 213 

lower expression in sufficient vs starved conditions (Fig. S2a). 214 

Together with ionome data (Fig. 1c-f), this preliminary expression analysis showed that (i) the plants were 215 

indeed Zn-starved at the beginning of the time series, and (ii) the transcript response differed between 216 

roots and shoots with, among other, a very rapid response in roots and a delayed response in shoots (Fig. 217 

1g-h). 218 
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The Zn starvation re-supply proteomics dataset 219 

A total of 5249 and 4698 proteins were quantified in roots and shoots, respectively (Fig. 2a), submitted to 220 

functional annotation (Fig. 2b) and then examined to detect over- and under-representation of functional 221 

categories (Fig. 3, Fig. S3, Data S3, Data S4). 222 

Soluble fraction 223 

In the soluble fraction, overrepresented functions included photosynthesis, primary energy metabolism 224 

(carbohydrate, TCA cycle, glycolysis), amino acid metabolism and proteins involved in redox regulation and 225 

protein degradation (Fig. S3). Root and shoot tissues were distinguished based on the representation of 226 

the photosynthesis and related functions (Fig. 2b, S3). In roots, proteins involved in cell-wall precursor 227 

synthesis were also overrepresented showing a rapid dynamics throughout the time series, whereas 228 

nitrogen (N) metabolism responded in both tissues (Fig. 3b). Protein folding and 14-3-3 signaling proteins 229 

were overrepresented in both root and shoot tissues, whereas a dynamic response of proteins involved in 230 

ubiquitination was observed in roots. Underrepresented functions included RNA processing, protein 231 

synthesis, signaling and transport (Fig. S3). 232 

Microsomal Fraction 233 

Generally, the membrane enrichment procedure facilitated the identification of a number of transporters 234 

and signaling proteins in both roots and shoots that may otherwise have gone undetected due to their low 235 

abundance (Fig. 2b, 3d, S3). The shoot microsomal fractions displayed typical over-representation of 236 

prokaryotic ribosomal subunits (chloroplast) and proteins involved in photosystem II compared to the root 237 

fractions (Fig. S3). 238 

In roots, the transport functional category, including a number of transporter families (Major Intrinsic 239 

Proteins, p- and v- ATPases), was enriched and displayed a dynamic response through time (Fig. 3d). 240 

Similarly, the signaling category was also highly enriched at 10 to 120min, including calcium signaling 241 

molecules and receptor kinases. Enrichment in lipid metabolism, dynamin and vesicle transport were also 242 

observed at early time points (Fig. S3). Altogether, this suggested very rapid signaling response to Zn re-243 

supply, combined with dynamic changes in plasma membrane, protein movement to/from the 244 

membranes and transport. In the shoot microsomal fraction, further evidence of regulation of protein 245 

association to membranes (dynamin, myristoylation) was observed (Fig. 3c, ‘misc’), as well as an increase 246 

in p- and v-type ATPase transport proteins (Fig. 3d). 247 
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Altogether, this analysis provided an overview of the systemic response to the treatment and revealed 248 

that a number of processes responded dynamically to Zn re-supply. 249 

Elucidation of time-related dynamic responses 250 

To identify novel players responsible for Zn signaling and regulation of Zn homeostasis, a comparison of 251 

each time point post re-supply (i) to Zn deficiency, and (ii) to the previous time point in the time series was 252 

conducted, focusing on proteins showing at least a 4-fold change and an adjusted p<0.05 (Fig. S4, Data 253 

S5). The rationale for this double comparison was: it identified (i) proteins with a rapid response between 254 

two consecutive time points, as well as (ii) proteins that take longer to respond (when a time-point is 255 

compared to Zn deficiency). Due to protein extraction and sample preparation procedures, comparisons 256 

were always conducted within one tissue and fraction (Data S5) but summarized together for clarity (Data 257 

S6). 258 

The dynamic Zn response mobilized the regulation of 1877 proteins from a large set of functional 259 

categories (Fig. 4). The number of regulated proteins, and accordingly represented functional categories, 260 

was higher in roots than in shoots, with a delayed response in shoots. 261 

In roots, the number of proteins increasing or decreasing (Fig. 4a, c) through time changed from a few 262 

dozens to hundreds, to reach a maximum at 480min indicating that the response was still progressing at 263 

this point. At all time-points except 30min, the number of proteins with decreased expression was higher 264 

than those with increased expression (e.g. 400 and 72 down- and up-regulated proteins at 120min, 265 

respectively), suggesting that rapid dynamic changes are mostly enabled by repression rather than 266 

synthesis of new proteins (Fig. 4a, c). In early time points, a limited number of functional categories were 267 

involved and included RNA regulation, metal handling, transport, signaling and biotic responses (PR 268 

proteins/defensins), highlighting important contribution of those processes to the early response to Zn 269 

supply (Fig. 5a,c, Table S2). After 480min, the response mobilized 16 Mapman main functional categories 270 

(and more than 200 sub-categories), e.g. transport, signaling, TCA/Organic transformation, cell wall 271 

precursor synthesis, peroxidases, ribosomal protein synthesis, central amino acid metabolism, N-272 

metabolism, glycolysis and RNA, thus interlinking Zn acquisition with a large part of the metabolic network 273 

(Table S2). It appears that proteins important for plant maintenance under Zn deficient conditions (e.g. 274 

stress response, Zn scavenging) remain highly expressed for at least 120min, when Zn levels in roots 275 

reached about a third of the Zn found under Zn sufficient conditions (Fig. 1c). Additionally, every functional 276 
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category that shows proteins decreasing in expression at 120min in roots sees an equal or larger number 277 

of proteins decreasing in expression at 480min (Fig. 5c). This indicated a coordinated decrease of proteins 278 

belonging to several functional groups, e.g. transport, RNA, signaling, which correlated with Zn influx in 279 

the plant (Fig. 1c, 5c). 280 

Interestingly, the pattern of up-regulated proteins in shoots displayed a similar dynamics as in roots, but 281 

with a delay of one time point (Fig. 4a,b). The first peak of up-regulated proteins (Fig. 4b) appeared after 282 

120min, which precedes the first time point where a significant Zn increase was measured in shoots (Fig. 283 

1c) and included enrichment of signaling proteins, protein synthesis, stress and Calcium transport (Fig. 5b, 284 

Table S3). Compared to roots, it also appears that a number of metabolic functions only became activated 285 

at 120 and 480min in shoots, whereas these proteins responded at earlier time points in roots (e.g. 286 

fermentation, C1 metabolism or oxidative phosphorylation, Fig. 5a,b). 287 

In agreement with the delayed accumulation of Zn in shoots (Fig. 1c), only a small number of proteins were 288 

downregulated in response to Zn re-supply, with major difference only observed between Zn deficiency 289 

and Zn sufficiency (Fig. 4d), including TCA/org transformation, protein, metal handling, and signaling 290 

functions (Fig. 5d, Table S3). Changes of metal handling proteins (ferritins and copper binding proteins) 291 

can be linked to lower Fe and Cu concentrations in Zn-sufficient conditions (Fig. 1d,f). It is likely that a 292 

longer time series would be required to discover more Zn-responding proteins in shoots, as the second 293 

peak observed in roots (480min) is missing in the shoot response curve (Fig. 4a,b). 294 

Temporal regulation of Zn-related proteins and Zn amount required for recovery from Zn 295 

starvation 296 

A number of metal transporters and proteins involved in metal homeostasis were present in the dataset. 297 

In agreement with transcriptional regulation (Fig. 1g,h), protein levels of ZIP3, ZIP9 and IRT3 were 298 

dramatically increased in both roots and shoots upon Zn deficiency. A similar pattern was observed for 299 

putative Zn-transporting proteins or Zn chelator synthesis proteins, including ZIP4, ZIP5, MTP2, HMA2, 300 

NAS4 (Fig. 6, Data S2). Most of these proteins were not detected in Zn sufficient conditions, consistent 301 

with very low transcript levels. In roots, the protein levels of the 5 ZIP proteins, as well as HMA2 and NAS4, 302 

increased moderately in the early time points, with varying amplitude and time dependency, before 303 

decreasing at later time. The observed increase in protein levels was slightly delayed compared to 304 

transcript regulation, suggesting rapid de novo protein synthesis from newly synthesized transcripts. In 305 
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contrast, the MTP2 protein levels decreased very rapidly in roots upon Zn re-supply. In shoots, most 306 

protein levels showed little variation and remained high until 480min, similar to transcript levels (Figure 307 

6). An exception was IRT3 (Fig. 6e) which increased and displayed a maximum at 30min.  308 

Next, the relation between Zn and Mn concentrations in tissues was examined in correlation to metal-309 

transporter transcript expression. In both root and shoot comparisons (Fig. 7, 8), the time series was 310 

preserved along an axis defined by Zn concentration. In roots, Zn levels negatively correlated with 311 

transcript levels, with exception of HMA2, and this correlation was not linear but rather followed a 312 

quadratic equation with a parabola shape (Fig. 7). Note that the 10 and/or 30min points often appeared 313 

as outliers indicating that, at these times, increased transcript levels were associated with increased Zn 314 

accumulation. In roots, transcript levels decreased to Zn sufficient levels when Zn amount approximated 315 

200 ppm, which was achieved in 120min. In shoots, and despite a delayed Zn accumulation (Fig. 1c), a 316 

similar correlation, mainly influenced by the 480min and Zn-sufficient conditions, was observed indicating 317 

that even minute amounts of Zn were sufficient to decrease Zn transporter transcripts (Fig. 8).  318 

The relation between Mn concentration and transcript levels was very different than for Zn (Fig. S5, S6), 319 

following a quadratic equation with an upside down parabola shape in roots. The time series was not 320 

preserved along the Mn concentration axis and, in most cases, appeared reversed. This suggested that the 321 

transient increase in transcript levels of ZIP transporters is likely responsible for the transient increase of 322 

Mn in roots at the 10 and 30min time-points. A similar pattern, although attenuated was observed in 323 

shoots (Fig. S6). 324 

In addition to Zn, proteins primarily involved in Fe and Cu homeostasis were also dynamically regulated 325 

upon Zn deficiency and re-supply. In roots, the Ferric-chelate reductase FRO2, the iron transporter IRT1 326 

and the vacuolar Zn transporter MTP3, all members of the FIT regulon (see Introduction, Fig. 6 i, j, k), 327 

displayed a similar expression pattern at both transcript (all 3) and protein (FRO2 and IRT1) levels, with a 328 

sinusoidal behavior along the time series (Fig. 6). This regulation pattern was similar to other ZIPs, e.g. ZIP3 329 

or ZIP9, with the exception that FRO2, IRT1 and MTP3 were expressed at respectable levels in Zn sufficient 330 

conditions. The MTP3 protein was only detected at a few points in the time series, preventing to draw firm 331 

conclusion about its regulation, it however seemed to diverge from its regulation at transcript levels. In 332 

shoots, the transcripts of these three genes were lowly expressed, with a similar and peculiar pattern, but 333 

the corresponding proteins were not detected in agreement with their preponderant function in roots 334 
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(Thomine & Vert, 2013). The YSL6 protein, a nicotianamine-metal transporter, was more highly expressed 335 

in shoots than in roots (Fig. 6l, Data S2), which is consistent with its function in Fe release from chloroplast 336 

(Divol et al., 2013). However, it displayed a rapid and strong induction in roots in the early time points (10-337 

120min.). This pattern was different from the transcript behavior, suggesting post-translational control 338 

enabling rapide response to accommodate Zn re-entry in root cells (Fig. 6l). The Vacuolar iron transporter 339 

(VIT, At4g27870), an uncharacterized transporter related to ER Mn transporters (Yamada et al., 2013), 340 

showed a similar pattern (Fig. 6m). Finally, transcript and protein levels of HMA5, involved in Cu tolerance 341 

(Andres-Colas et al., 2006; Kobayashi et al., 2008), were higher in Zn-deficient conditions and throughout 342 

the time series compared to +Zn, with a regulation pattern very similar to HMA2 (Fig. 6n). 343 

Dynamics of Signaling and Regulation proteins upon Zn re-supply in roots 344 

Coordinated metal uptake and transcriptional/translational responses of Zn transporters in roots (Fig. 7) 345 

suggested that signaling and regulation events occurred during Zn re-supply. Therefore we dissected the 346 

dynamics of proteins in the functional categories signaling, protein posttranslational modification and 347 

RNA-regulation (>4-fold change and p < 0.05, Fig.9), as putative players in cellular signal transduction 348 

pathways (Memon and Durakovic, 2014). 349 

The signaling and regulatory response to Zn re-supply in roots progressed and amplified with time, 350 

appearing organized in two waves. First, only a few responding proteins (kinases, calcium and 351 

phosphoinositide signaling) were detected after 10min and the number of regulated proteins then 352 

moderately increased in both microsomal and soluble fractions until 120min. Second, at 480min, a massive 353 

shift of signaling processes was observed with a marked down-regulation of proteins in the microsomal 354 

fraction (103 down vs 1 up) and a reverse behavior in the soluble fraction (40 up vs 6 down) (Fig 9). 355 

For instance, the number of responding kinases increased from 3 after 10min to more than 35 after 480min 356 

of Zn re-supply (Fig. 9). The early responding kinases included MARIS, a root hair expressed receptor-like 357 

kinase (Boisson-Dernier et al., 2015), and MPK3 suggesting the inclusion of the MAP kinase pathway 358 

(Wengier et al., 2018; Zhu et al., 2019), which is confirmed at 120min by the detection of MKK2 (Furuya et 359 

al., 2014). In addition, LRR1, a leucine rich repeat receptor kinase involved in defense signaling (Choi et al., 360 

2012) is repeatedly one of the most highly responding kinases at 10, 30min and Zn sufficiency. 361 

Interestingly, At5g67380 (AtCk2) decreased in roots at 480min (Data S6), which is homologous to the only 362 

kinase (CK2, casein kinase 2) shown to regulate the human ZIP7 protein (Taylor et al., 2012). 363 
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Out of 29 responding GTP-binding proteins, 17 decreases in the microsomal fraction at 480min while 5 364 

increased in the soluble fraction. Some of the highest responding G-proteins included siRANBP and RABD1 365 

(30min), SAR1 (120min); GB1 and RAB11 (480min) and ARAC1 (480min and +Zn) (Fig. 9). 366 

While individual calcium-related signaling molecules were detected earlier in the time series, the 480min 367 

time-point marked a hotspot for downregulation of Ca2+ signaling with 18 proteins decreasing. These 368 

included: Calcium-dependent protein kinase 19 (CDPK19), Calcium dependent protein kinase 1 (CDPK1), 369 

calmodulin-domain protein kinase 7 (CPK 7), CPK27, CPK29, CPK31, CPK32, and Calcium ATPase 2 (ACA2) 370 

(Data S6). 371 

Among the proteins dynamically responding throughout the Zn re-supply time series, five were COP9 372 

signalosome proteins (COP9, 12, 13, 15 and CIP1) (Wei et al., 2008). Similar to bZIP19 and bZIP23 (Fig. S2), 373 

the transcript levels of COP9, 12, 13, 15 and CIP1 were not significantly regulated by Zn status even though 374 

the corresponding proteins fluctuated through time (Fig. S7), suggesting that post-transcriptional 375 

regulation has a significant role in the early stages of Zn re-supply. Out of five checked proteins, four (COP9, 376 

COP12, COP15 and CIP1) showed large fluctuations in protein levels in the root soluble fraction, all having 377 

a first peak at 30min and a second at 480min. This synchronized response in roots leads to speculation 378 

that the proteasome and COP9 signalosome may have a function in establishing Zn homeostasis. 379 

Similarly, a putative transcription factor (At1g02080) showed no significant regulation of transcript levels, 380 

but large variation in microsomal and soluble protein levels in roots and shoots (Fig S2b). Overall, a 381 

substantial number of transcription factors were regulated through the Zn re-supply time series (in blue 382 

in Fig. 9). 383 

 384 

Discussion 385 

Plants and plant roots are inherently dynamic in their response to the environment with strategies ranging 386 

from molecular to anatomical changes (Arsova, et al., submitted). We postulated that this acclimation 387 

period represents the true plasticity of an organism and must be studied in detail to understand Zn uptake 388 

and homeostasis. Several studies used proteomics to clarify Zn homeostasis. Inaba et al. (2015) and (Zargar 389 

et al., 2015b)Zargar et al. (2015b) are the only studies clearly focusing on Zn deficiency, whereas others 390 

(Fukao et al., 2009; Fukao et al., 2011; Zargar et al., 2015b) focused on Zn excess or crosstalk with other 391 
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metals. All studies examined steady-state protein levels at a single time point. Here, our experimental 392 

design, inspired by Talke et al. (2006) and Engelsberger and Schulze (2012), relied on consecutive sampling 393 

of treated plants to resolve sequential and dynamic changes in the Arabidopsis proteome in response to 394 

changes in Zn supply. 395 

A time-dependent dataset 396 

We quantified over 6400 proteins (5249 in roots and 4698 in shoots, respectively), effectively combining 397 

4 time-resolved datasets (Figure 2), providing one of the most encompassing proteomic studies in 398 

Arabidopsis (Majeran et al., 2018). We expected that a fixed condition comparison (i.e. +Zn vs -Zn) would 399 

only reveal a fraction of the proteins responding to a change in Zn status. Indeed, with our very 400 

conservative thresholds (4-fold changes, adjusted p<0.05), only 70 proteins were regulated in the 401 

microsomal fractions between -Zn and +Zn conditions. This number increased for instance to 134 and 531 402 

regulated proteins in -Zn/120min and -Zn/480min comparisons, respectively, depicting the multitude of 403 

dynamic processes that take place between static conditions. 404 

Sequential sampling additionally enabled visualizing the progression of the response through the plant in 405 

context of time (Fig. 4, 5), for instance revealing points of cross-talk to other nutrients. Hence, 5 nitrogen 406 

related proteins (1 glutamate dehydrogenase, 3 glutamate synthases and nitrate reductase) and 22 407 

proteins related to amino acid metabolism were up-regulated at 480min of Zn re-supply (Data S6). 408 

Moreover, the SnRK1.1 kinase [Sucrose non-fermenting 1 (SNF1)-related protein kinase 1.1] known to 409 

regulate both carbon and nitrogen metabolism was already up-regulated 10min post re-supply (Fig. 9) 410 

(Coello & Martinez-Barajas, 2014), highlighting a rapid impact of change in Zn supply on nitrogen 411 

homeostasis. Interestingly, the activity of SnRK2 proteins has been linked to the regulation of Fe and Cd 412 

uptake and distribution in plants (Fan et al., 2014; Wang et al., 2019)(see SnRK2.8, Fig. 9). Similar step by 413 

step increase in the number of responding proteins was observed for functional categories such as lipid 414 

metabolism, stress, protein or signaling (Fig. 5a). 415 

Time-resolution of transporter dynamics and their possible regulation 416 

Hypothetically, a Zn-deficient plant would perform several functions upon Zn re-supply before Zn 417 

homeostasis is re-adjusted to a new, Zn-sufficient, steady-state: (i) sensing that Zn is now present, (ii) 418 

taking up Zn from the environment into roots, but also temporarily accommodating a possible Zn excess, 419 
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(iii) signaling the rest of the plant that Zn is coming, (iv) eventually shutting down Zn import, (v) 420 

transporting chelated Zn from roots to shoots; (vi) distributing Zn in tissues and organic compounds/target 421 

proteins. 422 

How Zn is sensed in the rhizosphere and in plant tissues remains an open question, with the hypothesis 423 

that the bZIP19 and bZIP23 transcription factors may partially fill this role (Assunção et al., 2013). The 424 

regulation of several transporters and proteins involved in Zn and metal homeostasis upon Zn re-supply 425 

was revealed here in unprecedented detail, together with the corresponding transcript levels (Fig. 6) and 426 

the dynamics of Zn entry in the plant (Fig. 7). For instance, many ZIP transporters, already strongly up-427 

regulated at Zn deficiency, further peaked in expression at 10-30min upon Zn re-supply (Fig. 6), before 428 

going down, reversely proportional to increased Zn concentration in roots (Fig. 7, S5). It is clear that time 429 

and/or metal amount are needed for the transporters to decrease in expression (30 -120min), suggesting 430 

that a feedback mechanism inside root cells responds to either Zn ions or chelated Zn and starts a 431 

regulatory cascade once a given concentration (slightly below 200 ppm in roots) is reached. This signal 432 

may be part of a damped oscillator response (Fukuda et al., 2013; Gould et al., 2018) that corrects a 433 

transcription overshoot at early time points of the re-supply, and manifested as peaks of expression of 434 

many transporters at 10-30min (Fig. 6). 435 

Sinclair et al. (2018) showed that among the genes transcriptionally regulated by Zn deficiency in 436 

Arabidopsis roots, some (e.g. ZIPs) are controlled by a local signal, possibly via bZIP19 and bZIP23, whereas 437 

others (e.g. HMA2 and MTP2) are controlled by an unidentified shoot-born Zn deficiency signal. The 438 

dynamics of HMA2 and MTP2 transcript and protein levels upon Zn re-supply of Zn-deficient plants (Fig. 6) 439 

indicate that their regulation might be even more complex: their rapid up- then down-regulation in roots 440 

before Zn has reached shoots (Fig. 1, 6) suggests that their expression is also controlled by a local Zn 441 

sufficiency/excess signal, which overrides the systemic shoot Zn-deficiency signaling. 442 

The observation that Zn uptake and constant accumulation is accompanied by an initial and transient (10-443 

30min) increase in Mn concentrations in roots (Fig. 1c,e) possibly highlights the dual affinity of a number 444 

of ZIP transporters for both Zn and Mn (Milner et al., 2013), but also suggests that a possible Mn excess is 445 

rapidly counteracted by exclusion. Such a Mn exclusion transporter and a possible Mn sensing mechanism 446 

remain to be identified. In contrast, Zn deficiency resulted in an increased Fe and Cu accumulation and Zn-447 

resupply rapidly transiently decreased Fe and Cu concentrations in roots (Fig. 1), suggesting competition 448 
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for uptake with Zn. Several transporters involved in Fe and Cu homeostasis were rapidly and dynamically 449 

regulated by Zn re-supply (Fig. 6h-n). 450 

Early signaling events upon Zn re-supply in roots 451 

The dynamics of signaling proteins responding to Zn re-supply in roots segregated in two waves (Fig. 9, 452 

Data S6). Coincidently, the timing of the first wave matched the downregulation of Zn transporter 453 

transcript and protein levels and the increase of Zn concentration to about 200ppm (Fig. 7, 9). We 454 

speculate that information/sensing of restored Zn availability and an activation of uptake mechanisms is 455 

transmitted through some of the early responders (e.g. MARIS, MPK3, LRR1) to Zn re-supply whereas this 456 

initial response is rapidly replaced by signaling for shutting down Zn transporters, which probably involves 457 

molecules identified between 30 - 120min (Fig. 9). The second wave, which is characterized by massive 458 

downregulation of microsomal regulatory proteins and increase of soluble fraction signaling, coincided 459 

with the first increase of Zn in shoot and possibly the initial steps of restoring a Zn-sufficiency steady-state 460 

in roots. Thus, this is the time point when we expect systemic signals to become active (Sinclair et al., 461 

2018), while the roots are actively working to avoid excess Zn (Fig. 6). 462 

Overall, this dynamic response to Zn re-supply mobilized numerous signaling proteins, including kinases, 463 

GTP-binding proteins, calcium and phosphoinositide signaling, as well as proteins of the signalosome and 464 

transcription factors (Fig. 9).  465 

Interestingly, among the earliest responding proteins (Fig. 9), the number of identified kinases largely 466 

outnumbered phosphatases (e.g. Hint 2, TOPP2, TOPP 8, PTP1, and PP2A-4), supporting a previous claim 467 

that a variety of kinases are balanced by a smaller number of phosphatases (Smoly et al., 2017). Mostly 468 

responding at 120-480min (Fig. 9), GTP-based membrane receptors activate further signaling cascades in 469 

the cytosolic fraction (Memon & Durakovic, 2014), whereas phosphoinositides are involved in multiple 470 

aspects of cellular regulation of vesicular trafficking, lipid distribution, metabolism, as well as of ion 471 

channels, pumps and transporters. For instance, the localization of NRAMP1 in Arabidopsis is controlled 472 

by the Phosphatidylinositol 3-phosphate–binding protein (Agorio et al., 2017). Membrane-bound 473 

phosphoinositides are also involved in the production of the secondary messenger molecules Inositol 474 

trisphosphate (IP3) and diacylglycerol (DAG), through Phospholipase C (PLC) enzymes. The activation of 475 
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PLCs in humans precedes cytoplasmic Ca signaling. G-proteins have been suggested as regulators of PLCs 476 

(Balla, 2013). 477 

In plants, the COP9 signalosome is essential for correct expression of Fe homeostasis genes in Arabidopsis, 478 

although the corresponding COP9 genes did not respond to Fe deficiency (Eroglu & Aksoy, 2017). Several 479 

proteins of the COP9 signalosome dynamically responded to a change in Zn supply, with however often 480 

similar protein levels in Zn deficiency and sufficiency conditions (Fig. S7). The COP9 functions are 481 

associated with de-ubiquitination activity as well as protein kinase activity of various signaling regulators 482 

(Wei & Deng, 2003; Wei et al., 2008). Their function could be important in understanding protein turnover 483 

of Zn- or metal-related proteins (Fig. 6), similar to the mechanism involved in IRT1 turnover (Kerkeb et al., 484 

2008; Dubeaux et al., 2018). 485 

Finally, progressive regulation of various transcription factors and proteins otherwise involved in 486 

regulation of RNA transcription culminated at 480min. It is expected that some of these will be involved in 487 

control of Zn homeostasis or of pathways which are in cross-talk to Zn homeostasis (Khan et al., 2014; 488 

Naeem et al., 2018). 489 

In conclusion, our dataset identifies a number of candidates for further investigation of Zn related 490 

signaling, which will need to be confirmed by targeted mutant analyses. Admittedly, information on 491 

protein posttranslational modifications would be useful to further elucidate the rapid dynamics of metal 492 

transporters (e.g. ZIPs), similar to the human ZIP7 (Taylor et al., 2012). This effort is ongoing. Directed 493 

protein interaction assays will also be necessary to fully elucidate the signal transduction cascades involved 494 

in Zn homeostasis. Overall, the time-related sampling allowed unraveling the protein dynamics upon 495 

changes in Zn supply, including cases where the start and end protein levels are similar but the protein 496 

fluctuates through time. 497 
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Figure Legends 743 

Figure 1. The zinc starvation and re-supply plant material. Plant phenotype of hydroponically grown 744 

Arabidopsis plants with sufficient Zn supply (a) and in Zn deficient conditions (b). Elemental analysis of zinc 745 

(c), iron (d), manganese (e), copper (f) concentrations for root and shoot tissues throughout the Zn re-746 

supply time series. Gene transcript levels for ZIP3, ZIP9 and IRT3 for root (g) and shoot (h) tissues. Legend 747 

in (f) applies to bar charts c-f. Error bars show standard deviation (c-f) and standard error (g-h). Each 748 

bar/sample point is the average of 3 biological replicates, except root tissues 480 min in plots c-f where 749 

n=2. Student’s T-test was performed within each tissue, for data in c-f, where difference with p<0.05 is 750 

depicted by the presence of a different letter. 751 

Figure 2. Quantified proteins in root and shoot microsomal and soluble fractions encompassing all six time 752 

points of the Zn deficiency and re-supply time series. Overlap of the quantified proteins in each tissue and 753 

fraction (a). Qualitative composition of the quantified proteins in each fraction, according to MapMan 754 

functional categories (b). The Venn diagram was created using jvenn (Bardou et al, 2014). Microsomal 755 

fraction (mic.), soluble fraction (sol.). Total number of proteins for each tissue and fraction listed are in 756 

brackets. 757 

Figure 3. Selected MapMan overview of the root and shoot proteome dataset. A full representation is 758 

available as Fig. S3. The protein levels were log2-transformed and sorted into MapMan functional 759 

categories (Usadel et al., 2009). The protein categories were subjected to a bin-wise Wilcoxon test (ora 760 

cutoff = 1.0) and Benjamini-Hochberg multiple testing correction. Data is presented using PageMan 761 

(Usadel et al., 2006), with over-represented (blue) and under-represented (red) functional categories, with 762 

color scale in the top right corner. OPP: oxidative phosphorylation; TCA: tricarboxylic acid; Misc: 763 

Miscellaneous. 764 

Figure 4. Overview of the up- and down-regulated proteins for the root and shoot datasets during the Zn 765 

re-supply time series and the number of unique MapMan (sub)-functional categories represented at each 766 

time point. The criteria for protein selection are 4 fold change and a p<0.05 in multiple testing correction 767 

as represented in Data S6. Each time point includes the proteins that pass the set thresholds in comparison 768 

to the Zn deficiency condition (-Zn) and the previous point in the time-series. 769 

 770 
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Figure 5. Qualitative composition of the dynamic response after Zn re-supply presented using the MapMan 771 

functional categories. Proteins that increase through time in roots (a); Proteins that increase through time 772 

in shoots (b); Proteins that decrease through time in roots (c); Proteins that decrease through time in 773 

shoots (d). The response for each time point is outlined in colored bars: 10min- light blue, 30min- orange, 774 

120min- grey, 480min- yellow, +Zn- dark blue. Individual AGI can be found in Data S6, information about 775 

functional enrichment can be found in Data S6 and precise fold changes can be found in Data S5. 776 

Figure 6. Comparison of transcript and protein regulation profiles for a selection of genes during the Zn 777 

starvation and re-supply time series. To present both transcript and protein levels for a gene on the same 778 

scale, the transcript expression/protein intensity is presented as the percent for the respective time point 779 

from the total of all time points in that tissue and fraction. The reader is reminded that these are relative 780 

values to start with and that transcript and protein intensities from each protein fraction are obtained in 781 

separate extraction steps. Relative protein intensity was obtained from cRacker (Zauber and Schulze, 782 

2012), transcript levels are relative to EF1α and At1g58050, the value on the y-axis is common log, brown 783 

x-axis labels: root data, green x-axis labels: shoot data. 784 

Figure 7. Relation between Zn levels and transcript levels of selected transporter-encoding genes in roots 785 

during the Zn starvation and re-supply time series. A quadratic equation with one unknown y= ax2 + bx + 786 

c was used for the fitting, the parameters are listed in each graph. As tissues for elemental analysis and 787 

transcript profiling were obtained in independent experiments, each biological replicate where transcript 788 

levels were measured, was plotted against a randomly selected biological replicate from the elemental 789 

analysis dataset for the same time point. Time points post re-supply are depicted in shades of grey from –790 

Zn (white) to +Zn (black). 791 

Figure 8. Relation between Zn levels and transcript levels of selected transporter-encoding genes in shoots 792 

during the Zn starvation and re-supply time series. A quadratic equation with one unknown y= ax2 + bx + 793 

c was used for the fitting, the parameters are listed in each graph. As tissues for elemental analysis and 794 

transcript profiling were obtained in independent experiments, each biological replicate where transcript 795 

levels were measured, was plotted against a randomly selected biological replicate from the elemental 796 
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analysis dataset for the same time point. Time points post re-supply are depicted in shades of grey from –797 

Zn (white) to +Zn (black). 798 

Figure 9. Involvement in signaling and potential regulation proteins through time during the Zn starvation 799 

and re-supply time series. Candidates were collected from the MapMan functional categories “signaling”, 800 

protein post-translational modifications and RNA regulation of transcription that passed the 4 fold change 801 

and p<0.05 thresholds (after multiple testing correction). Triangles indicate protein increase, inverted 802 

triangles protein decrease. The size of the symbols is proportional to the number of proteins from the 803 

respective functional class, and this number is also indicated in the symbol. Selected proteins, chosen from 804 

the highest responding proteins in the specific functional class, are listed by name, whenever possible, or 805 

AGI code. An asterisk (*) behind the protein name indicates that this particular protein shows >4 fold 806 

change to the previous time point. Colors indicate functional category. Orange: COP9 signalosome, yellow: 807 

kinases (mainly receptor-like kinases) and PTM signaling (MapMan categories 30 and 29.4), neon yellow: 808 

other signaling molecules related to sugar, nutrients and light (30.1 and 30.11), light green: 809 

Phosphoinositide signaling (30.4), dark green: Calcium signaling (30.3), cyan: G proteins signaling (bin 810 

30.5), light purple: phosphatases (bin 29.4), light pink: other PTM (bin 29.4), blue: Regulation of 811 

transcription (27.3.54). The two signaling waves are indicated in red arrows. Protein names: At3g59690 812 

(IQD13), At5g16590 (LRR1), At1g02090 (COP15), At1g07360 (COP 12), At1g18890 (ATCDPK1), At1g21210 813 

(WAK4), At1g31160 (HINT 2), At1g48480 (RKL1), At1g56330 (SAR1), At1g66700 (PXMT1), At1g71860 814 

(PTP1), At1g75170 (SEC14), At2g17560 (HMGB4), At2g17800 (ARAC1), At2g22300 (SR1), At2g24765 815 

(ARF3), At2g29700 (ATPH1), At2g41970 (MARIS), At2g47640 (snRNP), At3g01090 (SNRK1.1), At3g11730 816 

(RABD1), At3g14350 (SRF7), At3g15790 (MBD11), At3g26030 (ATB' DELTA), At3g47220 (PLC9), At3g54040 817 

(PAR1), At3g59770 (SAC9), At4g04800 (ATMSRB3), At4g14110 (COP9), At4g21860 (MSRB2), At4g29810 818 

(MKK2), At4g38130 (HD1), At5g09440 (EXL4), At5g14250 (COP13), At5g16590 (LRR1), At5g19450 819 

(CDPK19), At5g19520 (MSL9), At5g22650 (HD2B), At5g27840 (TOPP8), At5g52210 (ATGB1), At1g07140.1 820 

(siRanBP), At5g59160 (TOPP2), At5g64260 (EXL2), At3g45640 (MPK3). 821 
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The following Supporting Information is available for this article: 823 

Figure S1. Experimental design of the Zn deficiency and re-supply. 824 

Figure S2. Expression of the transcription factors bZIP19, bZIP23 and At1g02080. 825 

Figure S3. Overview of the root and shoot dataset. 826 

Figure S4. Selection process of proteins responding to Zn re-supply  827 

Figure S5. Relation between Mn levels and transcript levels of selected transporter-encoding genes in 828 

roots during the Zn starvation and re-supply time series. 829 

Figure S6. Relation between Mn levels and transcript levels of selected transporter-encoding genes in 830 

shoots during the Zn starvation and re-supply time series. 831 

Figure S7. Transcript and protein levels of the COP9 signalosome members. 832 

Table S1. Sequence of primers for quantitative RT-PCR. 833 

Table S2. Enrichment of MapMan functional categories among the responding proteins in roots. 834 

Table S3. Enrichment of MapMan functional categories among the responding proteins in shoots. 835 

Data S1. Raw file names for proteomics measurements. 836 

Data S2. Transcript expression by qRT-PCR. 837 

Data S3. Root quantified proteins. 838 

Data S4. Shoot quantified proteins. 839 

Data S5. Protein ratios and multiple testing correction. 840 

Data S6. Responding proteins and enrichment of functional categories. 841 
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Manuscript Figures:  Arsova et al, Zinc starvation and re-supply 853 
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Figure 1. The zinc starvation and re-supply plant material. Plant phenotype of hydroponically grown 855 

Arabidopsis plants with sufficient Zn supply (a) and in Zn deficient conditions (b). Elemental analysis of the 856 

zinc (c), iron (d), manganese (e), copper (f) content for root and shoot tissues throughout the time series. 857 

Gene transcript levels for ZIP3, ZIP9 and IRT3 for root (g) and shoot (h) tissues. Legend in (f) applies to bar 858 

charts c - f. Error bars show standard deviation (c - f) and standard error (g - h). Each bar/sample point is 859 

the average of 3 biological replicates, except root tissues 480 min in plots C-F where n=2. Student’s T-test 860 

was performed within each tissue, for data in c -f, where difference with p<0.05 is depicted by the presence 861 

of a different letter. 862 
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Figure 2: Quantified proteins in root and shoot microsomal and soluble fractions encompassing all six time 865 

points. Overlap of the quantified proteins in each tissue and fraction (a). Qualitative composition of the 866 

quantified proteins in each fraction, according to the MapMan functional bins (b). The Venn diagram was 867 

created using jvenn (Bardou et al, 2014). Microsomal fraction (mic.), soluble fraction (sol.), total number 868 

of proteins for each tissue and fraction listed in brackets. 869 
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 877 

Figure 3. Selected MapMan overview of the root and shoot proteome dataset. A full representation is 878 

available as Fig. S3. The protein levels were log2-transformed and sorted into MapMan functional 879 

categories (Usadel et al., 2009). The protein categories were subjected to a bin-wise Wilcoxon test (ora 880 

cutoff = 1.0) and Benjamini-Hochberg multiple testing correction. Data is presented using PageMan 881 

(Usadel et al., 2006), with over-represented (blue) and under-represented (red) functional categories, with 882 

color scale in the top right corner. OPP: oxidative phosphorylation; TCA: tricarboxylic acid; Misc: 883 

Miscellaneous. 884 
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 887 

Figure 4: An overview of the up- and down-regulated proteins for the root and shoot datasets during the 888 

time series and the number of unique MapMan (sub) bins that are represented at each time point. The 889 

criteria for protein selection are 4 fold change and a p<0.05 in multiple testing correction as represented 890 

in supplemental data S6, each time point includes the proteins that pass the set thresholds in comparison 891 

to –Zn and the previous point in the time-series. 892 
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Figure 5: The qualitative composition of the dynamic response after Zn re-supply is presented using the 895 

MapMan functional bins. Proteins that increase through time in the root (a); Proteins that increase through 896 

time in the shoot (b); Proteins that decrease through time in the root (c); Proteins that decrease through 897 

time in the shoot (d). The response for each time point is outlined in colored bars: 10 min- light blue, 30 898 

min- orange, 120 min- grey, 480 min- yellow, +Zn- dark blue. The comparisons for each time point are 899 

listed in Fig S4. Individual AGI can be found in supplemental data S6, information about functional 900 

enrichment can be found in supplemental data S6 and tables S2, S3, precise fold change can be found in 901 

Data S5. 902 
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Figure 6: Comparison of transcript and protein regulation profiles for a selection of genes during the Zn 920 

starvation and re-supply time series. To present both transcript and protein levels for a gene on the same 921 

scale, the transcript expression/protein intensity is presented as the percent for the respective time point 922 

form the total of all time points in that tissue and fraction. The reader is reminded that these are relative 923 

values to start with and that transcript and protein intensities from each protein fraction are obtained in 924 

separate extraction steps. Relative protein intensity was obtained from cRacker (Zauber and Schulze, 925 

2012), transcript levels are relative to EF1α and At1g58050, the value on the y-axis is common log, brown 926 

x-axis labels- root data, green x-axis labels- shoot data. 927 
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Figure 7: Relation between Zn levels and transcript levels of selected transporter-encoding genes in root 945 

during the Zn starvation and re-supply time series. A quadratic equation with one unknown y= ax2 + bx+c  946 

was used for the fitting, the parameters are listed in each graph. Each biological replicate where transcript 947 

levels were measured, was plotted against a randomly selected biological replicate from the elemental 948 

analysis dataset for the same time point. Time points post re-supply are depicted in shades of grey from –949 

Zn (white) to +Zn (black). 950 
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 952 

Figure 8. Relation between Zn levels and transcript levels of selected transporter-encoding genes in shoot 953 

during the Zn starvation and re-supply time series. A quadratic equation with one unknown y= ax2 + bx+c 954 

was used for the fitting, the parameters are listed in each graph. Each biological replicate where transcript 955 

levels were measured, was plotted against a randomly selected biological replicate from the elemental 956 

analysis dataset for the same time point. Time points post re-supply are depicted in shades of grey from –957 

Zn (white) to +Zn (black) 958 
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 969 

Figure 9. Involvement in signaling and potential regulation proteins through time during the Zn starvation 970 

and re-supply time series. Candidates were collected from the MapMan functional categories “signaling”, 971 

protein post-translational modifications and RNA regulation of transcription that passed the 4 fold change 972 

and p<0.05 thresholds (after multiple testing correction). Triangles indicate protein increase, inverted 973 

triangles protein decrease. The size of the symbols is proportional to the number of proteins from the 974 

respective functional class, and this number is also indicated in the symbol. Selected proteins, chosen from 975 

the highest responding proteins in the specific functional class, are listed by name, whenever possible, or 976 

AGI code. An asterisk (*) behind the protein name indicates that this particular protein shows >4 fold 977 

change to the previous time point. Colors indicate functional category. Orange: COP9 signalosome, yellow: 978 

kinases (mainly receptor-like kinases) and PTM signaling (MapMan categories 30 and 29.4), neon yellow: 979 

other signaling molecules related to sugar, nutrients and light (30.1 and 30.11), light green: 980 
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Phosphoinositide signaling (30.4), dark green: Calcium signaling (30.3), cyan: G proteins signaling (bin 981 

30.5), light purple: phosphatases (bin 29.4), light pink: other PTM (bin 29.4), blue: Regulation of 982 

transcription (27.3.54). The two signaling waves are indicated in red arrows. Protein names: At3g59690 983 

(IQD13), At5g16590 (LRR1), At1g02090 (COP15), At1g07360 (COP 12), At1g18890 (ATCDPK1), At1g21210 984 

(WAK4), At1g31160 (HINT 2), At1g48480 (RKL1), At1g56330 (SAR1), At1g66700 (PXMT1), At1g71860 985 

(PTP1), At1g75170 (SEC14), At2g17560 (HMGB4), At2g17800 (ARAC1), At2g22300 (SR1), At2g24765 986 

(ARF3), At2g29700 (ATPH1), At2g41970 (MARIS), At2g47640 (snRNP), At3g01090 (SNRK1.1), At3g11730 987 

(RABD1), At3g14350 (SRF7), At3g15790 (MBD11), At3g26030 (ATB' DELTA), At3g47220 (PLC9), At3g54040 988 

(PAR1), At3g59770 (SAC9), At4g04800 (ATMSRB3), At4g14110 (COP9), At4g21860 (MSRB2), At4g29810 989 

(MKK2), At4g38130 (HD1), At5g09440 (EXL4), At5g14250 (COP13), At5g16590 (LRR1), At5g19450 990 

(CDPK19), At5g19520 (MSL9), At5g22650 (HD2B), At5g27840 (TOPP8), At5g52210 (ATGB1), At1g07140.1 991 

(siRanBP), At5g59160 (TOPP2), At5g64260 (EXL2), At3g45640 (MPK3). 992 
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